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1. Introduction

Convexity theory has played fundamental parts in the developments of various fields of pure and
applied sciences. Due to its impermanence, convex functions and convex sets have been generalized
and extended in different directions. It has been shown that a function is convex, if and only if, it
satisfies an integral inequality, which his called the Hermite-Hadamard inequality. On other hand, the
minimum of the differentiable convex functions can be characterized by variational inequalities. These
two aspects of the convexity theory have far reaching applications and have provided powerful tools
for studying difficult problems. In recent years, integral inequalities are being derived via fractional
analysis, which has emerged as another interesting technique. Fractional analysis is an area that is
constantly developing and trying to renew itself to produce solutions to the changing world and
problems. Various types of fractional derivative and integral operators were studied. In fractional
calculus, the fractional derivatives are defined via fractional integrals. The conformable fractional
integral plays a major role in fractional calculus. There were several studies in the literature that include
further properties such as expansion formulas, variational calculus applications, control theoretical
applications, convexity and integral inequalities and Hermite-Hadamard type inequalities of this new
operator and similar operators.

Exponentially convex functions have emerged an a significant new class of convex functions,
which have important applications in technology, data science and statistics. The main motivation
of this paper depends on a new identity that has been proved via a-fractional integrals (conformable
fractional integral operators) and applied for exponentially convex functions. This identity offers
new upper bounds and estimations of Hadamard type integral inequalities. Some special cases such
for « = 1 have been discussed, which can be deduced from these results. In derivation of these
results, we have used integration techniques, some integral inequalities as power-mean inequality
and Jensen inequality.
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We now recall some well known concepts and basic results, which are needed in the derivation of
our results.

Definition 1. A set K C R — R is said to be a convex set, if
tu+(1—tvek, YuveK, te|0,1].
Definition 2. A function f : K C R — R is said to be convex function, if
fltu+ (1 —t)o) <tf(u)+(1—1t)f(v), Vu,veK, tel0,1].
For convex functions, many equalities or inequalities have been established by many authors;
for example, Hardy type inequality [1], Ostrowski type inequality [2], Olsen type inequality [3] and

Gagliardo-Nirenberg type inequality [4] but the most celebrated and significant inequality is the
Hermite-Hadamard type inequality [5-12], which is defined as:

(557 < 1aa/bf<x>dx§f(”)+m 0

b— 2 ’

A number of mathematicians in the field of applied and pure mathematics have dedicated their
efforts to extend, generalize, counterpart, and refine the Hermite-Hadamard inequality (1) for different
classes of convex functions and mappings. For more more recent results obtained on inequality (1), we
refer the reader to References [5-12].

In recent years, the concept of convexity has been extended and generalized in various directions
using novel and innovative ideas and techniques to study a a wide class of unrelated problems in a
unified framework. Awan et al. [5] considered and studied a new class of exponentially convex
functions. Antczak [13] explored the applications of the exponentially convex functions in the
mathematical programming problems. Dragomir and Gomm [7] derived some integral inequalities for
the exponentially convex functions.

We now recall the definition of exponentially convex function.

Definition 3. (See [7,13]) Let f : K C R — R is exponentially convex function, if f is positive, Vu,v € K
and t € [0,1], we have
of (A=Dutto) < (1 — p)ef(0) 4 gof (@),

Exponentially convex functions are used to manipulate for statistical learning, sequential
prediction and stochastic optimization, see [13-15] and the references therein. The class of exponentially
convex functions was introduced by Antczak [13] and Dragomir et al. [7].

One can easily show that the minimum u € K is the minimum of the differentiable exponentially
convex functions f, if and only if, u € K satisfies the inequality

(F(wef ™, o—u) >0, Voek,

which is called the exponentially variational inequality and appears to be new one. It is an open
problem to study the exponentially variational inequalities and their properties. For the applications,
numerical methods and other aspects of variational inequalities, see Noor [16].

An important definition called Riemann-Liouville fractional integrals which is a milestone in the
theory of fractional calculus:
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Definition 4. (See[17]) Let f € Lq[a,b]. The Riemann—Liouville integrals |, f and J;_f of order a > 0 are
defined by

Jar f(t) = r(l) /ﬂt(t —x)* f(x)dx, t>a

14

and L
B F0 = gy ) 0, 1<

t

respectively where T'(w) = [;° e~ 't~ 1dt. Here JO, f(t) = JO_f(t) = f(t).

In the case of « = 1, the fractional integral reduces to classical integral. Several researchers
have focused on new integral inequalities involving Riemann-Liouville fractional integrals in recent
years, see the papers [3,10,17-23]. Recently Khalil et al. [22] gave a new definition that is called
the “conformable fractional derivative” and its properties. The conformable fractional derivative
attracts attention with conformity to the classical derivative. Khalil et al. [22] have introduced the
conformable fractional derivative by the equation which has a limit form similar to the classical
derivative. Khalil et al. [22] have proved that this definition provides multiplication and division rules.
They also express the Roll’s theorem and the mean value theorem for functions which are differentiable
with conformable fractional order.

Now, we give the definition of the conformable fractional derivative with its important properties
which are useful in order to obtain our main results see, [18-20,22].

In our study, we use the Katugampola derivative formulation of conformable derivative, which is
explained in the following definition:

Definition 5. ([21]) Given a function f : [0,00) — R. Then, the conformable fractional derivative of f of order
« of f at t is defined by

D (F)(8) = lim f(t+et'=%) —h(t)

e—0 €

, € (0,1), t>0. )

If f is a-differentiable in some (0,&), & > 0, lim,_,o+ h(¥)(t) exist, then define

£4(0) = lim h®)(¢).

t—0t

Note that, if f is differentiable, then

Dy (f)(t) = 7%F(t), where f'(t) = lim w 3)

e—0 €

We can write f*(t) for D, (f)(t) denotes the conformable fractional derivatives of f of order « at ¢.
If the conformable fractional derivative of f of order « exists, then we simply say f is a-differentiable.
Khalil et al. [22] considered the following definition:

Definition 6. ([22]) (Conformable fractional integral) Let « € (0,1],0 < a < b. A function f : [a,b] — R
is a-fractional integrable on [a, b] if the integral

b b
/f(x)dax = /f(x)x"‘_ldx 4)

exists and is finite. All a—fractional integrable functions on [a, b] is indicated by LY, ([a, b]).
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Remark 1. (See [22])

5 =10 = [

where the integral is the usual Riemann improper integral, and « € (0,1].

40f16

The motivation of this article is to discuss some new fractional bounds involving the functions
having exponential convexity property. In order to obtain main results of the article, we derive several
new conformable fractional integral identities. We hope that the ideas and techniques of this article

will inspire interested readers.

2. Results

Our main results depend on the following inequality:

Lemma 1. Let f : [a,b] C R — R be an a-fractional differentiable mapping on (a,b) with 0 < a < b. If

D, (ef) € Ly[a, b], then

4

Yf(tx,' a, b) = ;91',

where
1 20-1
_b—a 3a+b
0 =2 O/Kaur(l—t) 4)
3a+b\" 3a+b\"! 3a+b
- at+(1—1t) x Da(eN) f¥(at+ (1 —1) dut,
4 4 4
1 2a—1
_b—a 3a+b a+b
) =3 O/Kt 2 +(1—¢) 2)
3a+b\"/ 3a+b a+b\"! Frpaf,3a+D a+b
7( . )(t P ) }XD,X(e ) (tT -t )dat,
1 201
b—a a+b a+3b
03 = .O/Kt 7 +(1-1) 1 )
3a+b\“[ a+b a+3b\*"! Freaf,atD a+3b
_( . )(t ra-nt ) }XD,X(e)f (tT+(1—t) ; )dat,
1 20-1
b—a a+3b
04 =2 J Kt 1 +(1—t)b>
3a+b\"( a+3b ol Fypaf, 813D
- 2 t 1 +(1—t)b x Du(e)f fT+(1—t)b dut,
and

©)
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Proof. Using integration by parts, we have

1 4 4
o, - b;“/ Kat—l—(l—t)g'a:b) _ <3”Zb> ]ef(ﬂfmt>3"4“’)f'<at+(1_t)3”+b)dt
0

4
4 1 o
=|(57) e e [ (a2 ) e
0

4 4

Using the change of the variable x := at + (1 — )34, t € [0,1] and the definition of conformable
fractional integral (4), we obtain

3a+b
o 4
01 = [(3{12_17) —a"‘}ef(”)—zx / x*1ef ) dx
3a+b
4

Similarly, we get

a+b

_ " - =
(R (2 e s

- - 3uzrb

a+3b

r 14 KA 4
o[ e s

and
o b
o, - [ba (‘Hf?) ]eﬂb),x / O,

a+3b
4

Adding 6;, 6, 65 and 0, together, we obtain the desired inequality (5). O

Remark 2. If we set o« = 1, then under the assumption of Lemma 1, the identity (5) reduces to the the following
new identity.

1
3atbyy (1_p)ath 3a+b a+b
Ytab) = [-nCHH00) p (2L S a
0

1
—/tef(”f+<1—f>3”z*b)f’(at+ (1-1) 3a:b)dt
0

(6)

+ /(1 - t)ef("tf}bt*(l*””)f’(‘Z z%t +(1—t)b)dt
0
1

—/tef(”%bfﬂlft)%”)f/(“ er b a—p)” Z3b)dt,

0
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b

1 gf(a) _|_gf(h) f(a+b) 4

. 1 w0y £(x)

Yf(1;a,b) 5 7 +e/\2 } b—a./e dx
a

[a,b] C R — R be an a-fractional exponentially differentiable mapping on (a,b) with

where

Theorem 1. Let f : [a,b] C
0 <a<b.IfDy(ef) € Lyla,b) and |f'| is convex on [a, b], then

b—a
Yy(a;a,b) < 710

| 1ef@ £ (a) | Hy () + |ef

3a+b ‘H3

O (b) | Ha(a) + [ (5

Dp (e
a+3b ’Hs Al(a,sa;rb)Hé(zx)

a+3b
2 ,b)Hg(lX) ,

+|€f(#)f a+b |H4 +|e a+3b)f(
a+b a+3b)Hg(o¢)+A4+(

3a+0Db a—l—b
+A2( 4 7 2 )H7() A3( 2 4

where

3a+b 3a+b\"
)5

a—1
Hl(l):12a+3a<3a:b) —|—3a"‘_1(
o« a—1
”+3b) +3b(”z3b) +3b“*1(—”z3b)+12b“,

Hz(w)=*18(
a+b\"* a+30\*! w1/ a+3b 3a+b\* tatb
L R R O P
a+b\"'3a+b a+b\"* .,
) R ) e
a—1 a—1 a—1
3a+b a+b+3 3a+b a+b 45 a+3b a+b
4 2 4 2

2

a+b\*
H4(a)_10( 2 > +3( 1
a+b “7111—&—317 a+3b\*
() ()
a+b\" a+3b a71a+b a+3b a+b a1 a+3b
H5(uc)—10( : ) +3( . ) ! +3( . )( 2) 716( ; )
LL3b)+2b”‘,

a+3b et a—1
can( 2 v (2

He () =3a* +2a ( ) +3a H(MZZ’) —7(3’1:b)a,
3a+b> 2(3a+b)“1<a+b>+2(3a+b><a+b>“1_2<3a+b)
2 4 2 4 ’
(

a—+3b “71114—17 10 a+b “71a+3b_7 a-+3b
4 4 !

+b

Hy () —3(

2

2

a+b
) + 10 n

Hg(D() —3(
o
a+3b) 10b( 43b) +1Ob"‘_1(a—z3b).

Hg(a) =3b* — (
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and

(o 250 =167 (50 )+ 1) )

1 .
A2(3a:b/a—2kb) _ }ef(%b)f,(%:b)! n \ef(s%b)f/(a;b) /
A3(a;b’a23b) _ }ef(#)f,(azsb)Hef(#)f,(a;b),
M) = OB o) 0 ()

Proof. Using Lemma 1 and the convexity of |f’|, we find

Yf(zx;a,b)
- b4{/ (e a-n(32) - () [t r e a-n 2

- o ®
- (3”+bt+(1ft)”+b> 7(3“”) ]ef(safﬂ”“’”%b)f’(gaﬂw(17t)a+b)dt

_

4 2 4 4 2

1 .
[/a+b a+3b\" a+3b\" F(Her-na®) 4 a+b a+3b
+0/< > t+(1—t) 1 > 7< 1 )]e z =) f( > t+(1—1#) 1 )dt

_/1 () - () e (R o,
/1

By using the convexity of x*1forx >0, a € (0, 1], we have

(at+ (1—t)3a;rb)“ — (SHZZ’)“ = (at+ (1_t)3a;rb)“_l+1 - (MTM)IX

- (ut+(1—t)sazb)w(at—l—(l—t)?’a;rb) - (361;}])“

< {a“1t+(1—t)<3“:b)al} <at+ (1 —t)3“:b) - (S‘ZIb)a,
(3az—bt+(17t)a—;b)“i(351;—11)”
p {t(SaZb)“_l+(1_t)(a42rb>“_1} (3u:bt+(1_t)a42rb) - (3a;rb)“,
(a—;bt+(1_t)a—z3b)“_(a—;%)“

< {t(a;b)alJr(lt)(”Z%)“l} (anrbH(l*t)uZ%) B (azg,b)“,

(az%t—k(l—t)b)“— (a—z%)“

g {t(u—ZSb)“lJr(lt)ba—l] (u—z3bt+(17t)b) - (uz%)f

and

7 of 16

@)

®)

©)

(10)

1)
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Using (8), (9), (10) and (11) in (7) and the properties of modulus, we get

Y¢(a;a,b) < b—a

() s ) - (4]
>>f(at+1_t3 )

)
Y ) o ety ()

of (ter-n(4t)) ¢ (3“+b (1—1)( JZF ))‘dt

IR o) ) ) (5]

ef(%ﬂlft)(“%“’))f'(“*bu(14)(“*3’7))‘,#

o |of (at+0=5) (34

2 4

1
a+3b\*"! w1 /a+3b a+3b\"
+O/K< . ) E+(1— )b )( a t+(1—t)b)—( : ) }
ef(#fﬂl—t)b)f/(”z?’btjt(l—t)b)‘dt}.
Since | f'| is exponentially convex on [a, b] for any t € [0,1], so

))f’(tu+(1—t)(3a+b)>’

X

of (tar(1=) (222

4

< (1@ + (1= )] ) LH (@) + (1 - 1) 7 ( 3a+b)‘}
=207 @)+ (-2l ) (D) s -] 0 (1Y) o/ 8 o
= 2f@f (@) + (1 t) |e )f(3”+b)|+ H1— D (a, 3a;—b).

Thus (12) and (13) become

8 of 16

(12)

(13)
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W-ab)

<t f[(reramn () Yoo - (5]
<[P @)+ (=02l 8 CEED 1 = (0,250
(e emn (1)) (o) - ()]
x [t2|ef<3ﬁ>f(3””>|+< 2 (50 - (P 2|
I o () (b))
[P T+ = 2l ) (- e (2 S|

a+3b

+/1[((”Z3b)alt+(1—t)b“1) (“ZSbtJr(l—t ) (’”3 ) }
0
x{tﬂd(#)f(“*a‘b)” D2]ef® £ (b)] + 11— ) ”

Simple calculations yield

Yf( ,b)
< 2 [l @@ + O @ + 1) P o
+|e(2)f a+b |H4 —I—‘e az’%b)f(ll-‘r3b)’H5 )+ Ay (a, BaZ—b)Hé(’X)

3a+b a+b a+b a+3b a+3b

AZ( 4 ' 2 )H7( )+A3( 2 4 )Hs(a)+A4+( ’b)H9(“) ’

which is the required result. O
Theorem 2. Let f : [a,b] C R — R be an a-fractional exponentially differentiable mapping on (a,b) with
0 <a<b. IfDy(ef) € Lyla,b) and |f'|9 is concave on [a, b], then

b—a
4

Yf(uz;a,b) <

3a+b)]3f

+ Ag()ds(a, =5

+ By(a)As(

3a+Db a+b)%
4 7 2

q a a
)| +citmas5L, *43”)]

00| +Diwas 2] '],
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where
_ (3a+0b)*t — (4a)*t1 (Ba+Db)*
M) = “b—a)(a+1) 4
A _ 1(Ba+0b)*  (4a)*"Ha+2)(a+3)(a—b)?
200) =3 g 4w +1)(a+2)(a +3)(b—a)3

{(42)*"3 — (Ba+b)* "3} — (a — b)(a + 3)(3a + b)**2
4 (a+1)(a+2)(a+3)(b—a)’
1(Ba+b)* | (a—b)*(w+2)(a+3)(3a+b) !
3 4« 4(a+1)(a+2)(a+3)(b—a)d
2(a—Db)(a+3)(3a+b)*T2—2((3a+b)*3 — (4a)*+3)
4 (a+1)(a+2)(a+3)(b—a) ’
1(Ba+b)* | (a—Db)(a+3)[(4a)*" — (3a+b)*
6 4« 44(a+1)(a+2)(a+3)(b—a)3
2[(4a)(*+3) — (3a + b)*+3]
4w+ 1) (a+2)(a+3)(b—a)?

+2

4

Az(a) =

Ay(a) =

~ [(Ba+b)* 1t — (22 4 2b) ] 3a+b\"
Bi@) B 44(x +1)(a—Db) _< 4 )’

1 (3a+b\"  2[(3a+Db)**? —(2a+42b)*"3]

Ba(w) ‘7( 4 > 44(a+1)(a+2)(a +3)(b —a)?
2(a—b)(a+3)(3a+b)*2 — (a — b)?(a +2)(a + 3)(3a + b)* 1]
4(a+1)(a+2)(a+3)(b—a)3 !

1 (3a+b\"  2[Ba+b)*"—(2a+2b)*"]
Ba (@) _7( 4 )+4"‘(a+1)(1x+2)(a+3)(b—a)3

~ 2(a—b)(a+3)(2a+2b)""2 + (a +2)(x +3)(a — b)*(2a + 2b)* !

44 +1)(a+2)(a+3)(b—a)’
—1/3a+b\* (a+3)(a—b)[(Ba+0b)*"2+ (2a+2b)*+2]
?( 4 ) 4%(a + 1) (a +2)(a+3) (b —a)3

2[(3a 4 b)**3 + (2a + 2b)**3]
4 (a+1)(a+2)(a+3)(b—a)®

By(a) =

(20 +2b)*! — (a4 3b)*H! a+3b\"
Ci(a) N 4%(a+1)(a—b) _( 4 >’

1 /a+3b\"  2[(2a+2b)**3 — (a4 3b)*]
C2(a) _?< 4 ) FarD(at2)(@td)b_ap
2(2a+2b)* 2 (a +3)(a—b) — (2a+2b)* N (a +2) (a + 3)(a — b)?]
B 4% (a+1)(a+2)(a+3)(b—a) ’
1 /a+3b\*  2[(2a+2b)**3 — (a4 3b)*]
Ca(a) _7< 4 ) 44w +1)(a+2)(a+3)(b—a)

(a—Db)(a+3)(a+3b)**2+ (a+3b)* 1 (a+2)(a+3)(a—b)?
(0 +1)(a+2)(a+3)(b—a)3 ’

Cala) :;1<a+3b)”‘ [(2a+2b)**2 + (a+3b)* 2] (x + 3)

4 6 4 4(a+1)(a+2)(a+3)(b—a)
2[(2a + 20)3 — (a +3b)**+3]

4w+ 1) (a+2)(a+3)(b—a)3’

(a—b)
3

10 of 16
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a atl _ at1 a o
Dy = @30 @b _( —|—3b> ,

4% (x+1)(a—b) 4
 —1(a+3b\"  (a+2)(a+3)(a—0b)*(a+3b) !
Da(#) _?( 4) 440+ 1)(a+2)(a+3)(b—a)
2(a+3)(a—b)(a+3b)* 2 +2[(a+3b)*3 — (4b)+*3]
- 4%(a+1)(a +2)(a +3)(b —a)? ’
B a+3b\"  (4b)* 1 (a +2)(a+3)(a —b)?
Ds(@) _?( 4 ) 40+ 1)(a+2)(a+3)(b—a)
2(4b)**2(a+3)(a — b) — 2[(a + 3b)* T3 — (4b)* 3]
B 40(q+1)(a+2)(a+3)(b—a) ’

nw =2 (52)

[(a+3b)"F2 4 (4b)*F2] +2[(a +3b)* 3 — (4b)* 7]
+ 4(a+1)(a+2)(a+3)(b—a)3 ’

and

A5(ll,3a+b):{€f<)f (3a+b>"1+|e 4 )f/(tl)

4 7
3a+b a+b ath 3a+b 3a+h a+b
6 R :\ef(ﬁ)f'<T)\’7+}ef( I)f’( 5 )|,
a+b a+3b atb a+3b a+3b a+b
(10 ):\ef(z)ff<T)w+}ef(z)f/( o
a+3b a+3b a+3b
8s("E2 ) = o C5) ()7 4 F O (L2

Proof. Using Lemma 1 and the concavity of | f'|7, we find

Yf(zx'a b)
1 & u
{/Kut+ 1-1t) <3u+b> - (3””7) }ef(”’*“’”%‘fb)f'(aw(1—t)3a+b)dt
) 4 4 4
1 .
[ /3a+b a+b\" 3a+b\" F(3 s (1opast) o 30+ b a+b
0/( 2 t+(1—1t) > ) 7< 1 )}e ) 1 t+(1—1t) > )dt
1
[[a+Db a+3b t a+3b * f(”+bt+(1—t)”+3) " a+b a+3b
+0/< > t+(1—1t) 1 ) 7< 1 )}e = > t+(1—1t) 1 )dt

(S amne) - () [ P e o

|
- o
r

—a
= (n+m+m+m)
It follows from the power-mean inequality that
I 3a+b 3a4b\"], )\
no = (ffreemo () - () o)
0
1 o
(/ KHH_ (11 <3a+b> (3a+b> :Hef(utJr(l—t)S”I
s 4 4

Since | f’|7 is exponentially concave on [4, b] for any ¢ € [0, 1], we obtain

3a+b

b)f’(ut+(l—t) 1

) ’dt)

.

110f16

(14)
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woe (a2 - () )
><<. Knt—t—(l—t)(?’ﬂ:b)“_ (311:};)“] [(tzlef(“)f/(g)w

ef(*fb)f(“fl%)‘+t(17t){\ef< (g () (11)\‘7}>dt}

S

f( +43b)f (a+3b)

= (@) [ A7 @+ Ax() .

+ A4(D()A5(ﬂ,

atb g
. ,

where we have used the fact that

miwri [ (s a-n0) - (250 a
0

B (3a+b)”‘+1 _ (4u)zx+1 B (3a—|—b)”‘
T b—a)(a+1) 4u

1
o 2
As(®) .—O/t § ) e

(ut+(1_t)3a+b>”‘_ (3a+b)"‘}dt: ~1(Ba+b)"®

(40) @) (@ +2) (0 + 3) (a — b)? — 2(4a)* 1 (a + 3) (a — b) +2((4a)**3 — (3a + b)(*+3))
i F@r )2 @+3)(b—ap '

Asz(w) —/1 1—1t) Kut+ 17t)3a:b)a7(BQZb)a]dt:fé(g’“;b)“
0

+

(a—b)*(a+2)(a+3)(3a+b)* —2(a—b)(a+3)(3a+ b)*T2 +2((3a + b)**+3 — (4a)*+3)
44(a +1) (e +2)(a+3)(b—a)d ’

and
1

3a+b\"  (3a+b\" 1 (3a+b)*

Ay(a) t1—t)|(at+(1—1) - dt = —= i

= [rnmollea-o=) (557 =
(a—b)(a+3) [(411)(‘”2> — (3a+0b)**?] -2 [(4u)(“+3) — (3a+ b)* 3]
N 4% (o +1)(ax+2)(a+3)(b—a)d :

Analogously:

at 1 i
ef(%)f/(”b)‘ +B4(a)A6(3a:b, “;b)] "

1
as3 +3b, |7 +b a+3b 17
o) 1 (2 )‘ +Calw)ar (=, )} ,

ef<b>f’<b>'q T Da(w)s(

ma < (D1(@) [ Da(@lef ) £ (“E )1 4 Dy (o)

1
a+3b a
=0

Using 71, 172, 173 and 74 in (14), we obtain the desired inequality. [
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Theorem 3. Let f : [a,b] C R — R be an a-fractional exponentially differentiable mapping on (a,b) with
0 <a<b. IfDy(ef) € Ly[a,b] and |f'|7 is convex on [a, b], then

. b—a ARG pr Qi) F(54)) o Qala)
Yy(a;a,b) < 1 Aq(a)e V@7 Y 1(X ) + By (a)e’ B1@ f(Blz(zx)) -

i G0 (B8 4 b e

1
(@) :/[at+(1—t)(3a:b)“— (3{12—11)“} (at—l—(l—t)?)a:b)dt

0
2[(4a)**2 — (Ba+b)* 2] — (a +2)(3a + b)*(7a® — 6ab — b?)
(a+2)(a — b)224+3 ’

sl — '/1{((3a;b>t+(1_t)(a42rb))“_(3u:b)a}{(3a:b>t+(1_t)(a42rb)}dt

 2[(Ba+b)""2 — (2(a+b))*"?] — (« +2)(3a + b)* (5a* — 2ab — 3b?)
B (a+2)(a— b)22e+3 ’

Qsle) = /1[((“zb)tﬂl—t)(“z%))a—<”Z3b)“}[(”;b)tﬂl—t)(“z%)}dt

2[(Ba+b)*2 — (2(a+b))*"2] — (a +2)(3a + b)*(5a> — 2ab — 3b?)
(a+2)(a — b)22x+3 ’

and

Ou(a) = j{((az3b>t+(1—t)b))a— (a—;(%b)a} Kaz%)t—&-(l—t)b}dt

 2[(a+3b)*"2 — (4b)**2] — (a +2)(a + 3b)*(a® + 6ab — 7b?)
(a+2)(a — b)220+3

Proof. By using the power-mean inequality and the concavity of |f’|7 for any t € [0,1], we have

q

f(at+(1—t)3“+”)
e ’ f’(at+(1—t)3a4+b)

a q a q
> (@4 =01 L) (@ a -l ()

This implies that

f <ut+(1t)3”+b)
e ' f’<at+(1—t)3az_b>'

(16)

> (1] + (-0l (L)) (s + @ -l (5E0)),
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This shows that |f’] is also concave. Using inequality (16) and (14) and applying the Jensen’s
integral inequality, we get

Fl(e-n(222)) " (22)") (v 2

01 < (/1 {(at—o—(l_t)(&l;rb))a B <3a4+h>a>dt>e ({1[(ﬂt+(1—[)(3ﬂ4’l’))a,(3ﬂzb)k]dt

) a7)

where we have used the facts that

mw = [[(aea-n()) - () e

0
~ (Ba+0b)*t— (4a)*™ (Ba+Db)*

4b—a)(a+1) 4
1
Q@ = [la+ -0 - N @+ - 92 ar
0
_2 [(42)*T2 — (3a + b)* 2] — (x +2)(3a + b)*(7a> — 6ab — b?)

(a +2)(a—b)22++3 ’

Qo) = 0/1 K(Bwrb) (1_t)(11-£b)>"‘_ (3a:b)a] KBazb)tJr(l—t)(a;rb)]dt

[(3a+b)*T2— (2(a+1))*"2] — (a +2)(3a + b)* (5a* — 2ab — 3b?)
(a +2)(a —b)22x+3 ’

0s(3) — /lK(a—b—b) 1_t)(a—z3b))”‘_ (az%)a] Ku;b)H(l_t)(aZgb)]dt
2

(3a+b)**t2 — (2(a+b))* 2] — (a +2)(3a + b)* (54> — 2ab — 3b?)
[ ]
(a +2)(a—b)22x+3 ’

and

04(0) = N((H%) (1_t)b)>a_<azsb),x]Kazsb)H(l_t)b]dt

a+3b)*+2 — (4b)*2] — (a +2)(a + 3b)*(a® + 6ab — 7b?)
[ ]
(a +2)(a —b)22a+3 ’

Similarly, we get po < Bj(a)e G

Q3(w)
D (@), oy < il G (2

Qq(w)
Dy (a)ef(D1 (@) )f,(%)' Using p1, p2, p3 and p4 in (14), we obtain the required inequality (15). This
completes the proof. O

) and py <
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Corollary 1. If we choose « = 1, then, under the assumption of Theorem 3, we have a new result

Yf(l;a,b) < b ; a Al(l)ef(%)f/(gl(l)) + Bl(l)ef(%)f/(Qz(l))

Aq(1) Bi1(1)
f(?ff(ll)) ;1 Q3(1) f(g‘jf(?) s Qa(1)
+Ci(1)e ) f(C1(1)>+D1(1)e @ f(Dl(l)) ’
where
am="3% mm="g" am="2" pm="2"
and
 2[(4a)® — (3a+b)3] —3(3a+ b)(7a* — 6ab — b?)
Q1) = 96(a — ) ,
~ 2[(Ba+b)* - (2(a+b))>] —3(3a + b)(5a> — 2ab — 3b*)
Q1) = %(a —b) ,
~ 2[(Ba+b)*— (2(a+b))>] —3(3a + b)(5a> — 2ab — 3b*)
Qs(1) = %6(a —b) ,
 2[(a+3b)> — (4b)*] —3(a + 3b)(a* + 6ab — 7b?)
Q) = 96(a — b) '

3. Conclusions

In this paper, we have established several new conformable fractional integral inequalities of
Hermite-Hadamard type for exponentially convex functions. If # = 1, then, one can obtain the
classical integrals (as a special case) from the general definition of Conformable fractional integrals.
Consequently, we have obtained some new inequalities of Hermite-Hadamard type for exponentially
convex functions involving classical integrals. The ideas and techniques of this paper may stimulate
further research in this dynamic field.

Author Contributions: Conceptualization, M.A.N. and K.LN.; Methodology, S.R.; Software, S.R.; Validation,
M.AN.,, K.LN. and S.R.; Formal Analysis, M.A.N.; Investigation, S.R.; Resources, M.A.N.; Data Curation, S.R.;
Writing—Original Draft Preparation, S.R.; Writing—M.A.N., KIN. and S.R. & Editing, M.A.N.; Visualization,
M.AN., KIN,, S.R;; Supervision, M.A.N.; Project Administration, K.I.N.

Funding: This research received no external funding.

Acknowledgments: Authors are pleased to thank the Rector, COMSATS University Islamabad, Islamabad,
Pakistan for providing excellent research and academic environments. authors are grateful to the referees for their
valuable and constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Citti, P; Cowling, M.G.; Ricci, F. Hardy and uncertainty inequalities on stratified Lie groups. Adv. Math.
2015, 49, 365-387. [CrossRef]

2. Gavrea, I.B. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33—44.

3. Gunawan, H.; Eridani, E. Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 2009,
49, 31-39. [CrossRef]

4. Swanano, Y.; Wadade, H. On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Orrey space.
J. Fourier Ann. Appl. 2013, 19, 20-47. [CrossRef]

5. Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite-Hadamard inequalities for exponentially convex functions.
Appl. Math. Inf. Sci. 2018, 12, 405-409. [CrossRef]

6. Bakula, M.K.; Ozdemir, M.E.; Pecaric, ]J. Hadamard type inequalities for m-convex and (a, m)-convex
functions. J. Inequal. Pure. Appl. Math. 2008, 9, 12.


http://dx.doi.org/10.1016/j.aim.2014.12.040
http://dx.doi.org/10.5666/KMJ.2009.49.1.031
http://dx.doi.org/10.1007/s00041-012-9223-8
http://dx.doi.org/10.18576/amis/120215

Fractal Fract. 2019, 3, 19 16 of 16

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.
22.

23.

Dragomir, S.S.; Gomm, I. Some Hermite-Hadamard type inequalities for functions whose exponentials are
convex. Stud. Univ. Babes Bolyai Math. 2015, 60, 527-534.

Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite—Hadamamrd Inequalities and Applications, rtGMIA
Monographs; Victoria University: Melbourne, Australia, 2000.

Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Heramits—Hadamard’s inequalities for fractional integrals and
related fractional inequalities. Math. Comput. Model. 2013, 57, 2403-2407. [CrossRef]

Shi, D.-P; Xi, B.-Y.; Qi, F. Hermite Hadamard type inequalities for Reimann-Liouville fractional integrals of
(a, m)-convex functions. Fract. Differ. Calc. 2014, 4, 33-45.

Wang, J.; Zhu, C.; Zhoy, Y. On new generalized Hermite-Hadamard type inequalites and applications to
special means. J. Inequal. Appl. 2013, 325, 1-15.

Wu, S.-H. On the weighted generaizations of the Hermite-Hadamard inequality and its applications.
Rocky Mt. J. Math. 2009, 39, 1741-1749. [CrossRef]

Antczak, T. On (p, r)-invex sets and functions. J. Math. Anal. Appl. 2001, 263, 355-379. [CrossRef]
Alirezaei, G.; Mathar, R. On exponentially concave functions and their impact in information theory.
In Proceedings of the 2018 Information Theory and Applications Workshop, San Diego, CA, USA,
11-16 February 2018.

Pal, S.; Wong, TK.L. On exponentially concave functions and a new information geometry. Ann. Prob. 2018,
46,1070-1113. [CrossRef]

Noor, M.A. Some deveolpments in general variational inequalities. Appl. Math. Comput. 2004, 152, 199-277.
Prudnikov, A.P; Brychkov, Y.A.; Marichev, O.I. Integral and Series in Elementry Functions; Nauka: Moscow,
Russia, 1981.

Abdeljawad, T. On conformable fractional calculas. J. Comput. Appl. Math. 2015, 279, 57-66. [CrossRef]
Hammad, M.A.; Khalil, R. Abel’s formula and wronskian for confromable fractional differential equations.
Int. |. Differ. Equ. Appl. 2014, 13, 177-183.

Hammad, M.A.; Khalil, R. Conformable fractional heat differental equations. Int. J. Pure Appl. Math. 2014,
94,215-221.

Katugampola, U. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1-15.
Khalil, R.; Horani, M.A.; Yousaf, A.; Sababeh, M.A. New definition of fractional derivative. ]. Comput.
Appl. Math. 2014, 264, 65-70. [CrossRef]

Kilbas, A.A; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier:
Amsterdam, The Netherlands, 2006.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.mcm.2011.12.048
http://dx.doi.org/10.1216/RMJ-2009-39-5-1741
http://dx.doi.org/10.1006/jmaa.2001.7574
http://dx.doi.org/10.1214/17-AOP1201
http://dx.doi.org/10.1016/j.cam.2014.10.016
http://dx.doi.org/10.1016/j.cam.2014.01.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results
	Conclusions
	References

