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Abstract: The Sonine–Letnikov fractional derivative provides the generalized Leibniz rule and, some
singular differential equations with integer order can be transformed into the fractional differential
equations. The solutions of these equations obtained by some transformations have the fractional
forms, and these forms can be obtained as the explicit solutions of these singular equations by using
the fractional calculus definitions of Riemann–Liouville, Grünwald–Letnikov, Caputo, etc. Explicit
solutions of the Schrödinger equation have an important position in quantum mechanics due to the
fact that the wave function includes all essential information for the exact definition of a physical
system. In this paper, our aim is to obtain fractional solutions of the radial Schrödinger equation which
is a singular differential equation with second-order, via the Sonine–Letnikov fractional derivative.

Keywords: fractional calculus; Sonine–Letnikov fractional derivative; generalized Leibniz rule; radial
Schrödinger equation

1. Introduction

The derivative concept with fractional order was first mentioned by L’Hospital in a letter sent to
Leibniz in 1695. Since then, it has been an interesting work item and, many theories on this subject
have been developed and are still being developed. Some applications of fractional calculus can be
seen in recent studies such as fractional differential equations [1], fractional subdiffusion equations [2],
non-Gaussian distributions to random walk in the context of memory kernels [3], response functions [4]
and fractional Prabhakar derivative [5].

The generalization of the Cauchy differentiation formula to non-integer orders, which has been
suggested by Sonine [6] in 1872, has an important place in the fractional calculus. This generalization
has been adjusted by Letnikov [7] in 1873. Therefore, this formula, which forms the basis of the
generalized Leibniz rule, may be called the Sonine–Letnikov fractional derivative (see reference [8]).
In some studies, the generalized Leibniz rule has been called the Nishimoto fractional derivative
(N-fractional calculus operator) instead of the Sonine–Letnikov fractional derivative because Nishomoto
has also studied on the generalization of the Cauchy differentiation formula since 1976 (see
references [9–11]). However, the basis of this rule has been mentioned by Sonine. It is possible
to see many works based on the Sonine–Letnikov fractional derivative, although it is often known as
N-fractional calculus operator. These works include the solutions of the Gauss equation [12], solutions
of modified Whittaker equations [13], an almost free damping vibration equation [14], differential
operators and integral operators in univalent function theory [15], geometric univalent function
theory [16], power and logarithmic functions, Weber’s equation, Gauss hypergeometric equations and
some double infinite, finite and mixed sums [17], products of some power functions and some doubly
infinite sums [18], some composite functions [19], some algebraic functions [20], some functions which
include a root sign [21], a modified hydrogen atom equation [22], some second order homogeneous
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Euler’s equation [23], some logarithmic functions and some identities [24], fractional solutions of
homogeneous and nonhomogeneous Chebyshev’s equations [25,26], explicit solutions of Gegenbauer
equation [27], fractional solutions of Bessel equation [28], fractional solutions of the radial part in the
fractional Schrödinger equation [29] and some singular differential equations [30].

The fractional quantum mechanics and fractional Schrödinger equations were first considered
by Vladimirov et al. [31]. The fractional calculus studies have been also discussed in the different
fields of fractional quantum theory such as space-fractional Schrödinger equation [32], fractional
Heisenberg equation [33], quantization of fractional derivatives [34], fractional generalization of
the quantum Markovian master equation [35], fractional dynamics of open quantum systems [36],
quantum dissipation from power-law memory [37], fractional quantum field theory [38], time-fractional
Schrödinger equation [39] and time-dependent fractional dynamics with memory in quantum
physics [40]. In addition to all these, we intended to use a Sonine–Letnikov fractional derivative
for the radial Schrödinger equation in this paper.

2. Materials and Methods

Definition 1. [41,42] Fractional derivative of f (z) with order µ is fµ(z) (µ > 0) and fractional integral
of f (z) with order –µ is fµ(z) (µ < 0) where∣∣ fµ(z)

∣∣ < ∞ (µ ∈ R), (1)

and,
fµ(z) =

Γ(µ+1)
2πi

∫
C

f (τ)dτ

(τ−z)µ+1 (µ /∈ Z−, τ 6= z),

f−n(z) = lim
µ→−n

fµ(z) (n ∈ Z+),
(2)

where f (z) is regular inside and on C and,

−π ≤ arg(τ − z) ≤ π for C−,
0 ≤ arg(τ − z) ≤ 2π for C+.

(3)

Definition 2. Riemann-Liouville fractional calculus definitions are, respectively [43],

aD−µ
z f (z) = 1

Γ(µ)

z∫
a

f (τ)(z− τ)µ−1dτ (z > a, µ > 0),

aDµ
z f (z) = 1

Γ(n−µ)

(
d
dz

)n z∫
a

f (τ)(z− τ)n−µ−1dτ (n− 1 ≤ µ < n, n ∈ N).
(4)

Lemma 1. (Linearity) Suppose that f (z) and g(z) are analytic and single-valued. When fµ and gµ

exist, so
(A f + Bg)µ = A fµ + Bgµ, (5)

where A and B are constants and µ ∈ R, z ∈ C [29].

Lemma 2. (Index law) Suppose that f (z) is an analytic and single-valued. When ( fν)µ and
(

fµ

)
ν

exist, so
( fν)µ = fν+µ =

(
fµ

)
ν
, (6)

where ν, µ ∈ R and z ∈ C [29].
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Lemma 3. (Generalized Leibniz rule) Suppose that f (z) and g(z) are analytic and single-valued. Then,
generalized Leibniz rule obtained from the Sonine–Letnikov derivative is

( f g)µ =
∞

∑
n=0

Γ(µ + 1)
Γ(µ + 1− n)Γ(n + 1)

fµ−ngn, (7)

where µ ∈ R, z ∈ C and
∣∣∣ Γ(µ+1)

Γ(µ+1−n)Γ(n+1)

∣∣∣ < ∞ [30].

Property 1. For a constant λ, (
eλz
)

µ
= λµeλz, (8)(

e−λz
)

µ
= e−iπµλµe−λz, (9)

(
zλ
)

µ
= e−iπµ Γ(µ− λ)

Γ(−λ)
zλ−µ, (10)

where λ 6= 0, µ ∈ R, z ∈ C and
∣∣∣ Γ(µ−λ)

Γ(−λ)

∣∣∣ < ∞ [30].

Property 2.
Γ(z + 1) = zΓ(z) = z!, (11)

Γ(µ− n) = (−1)n Γ(µ)Γ(1− µ)

Γ(n + 1− µ)
, (12)

where n ∈ Z+
0 and µ ∈ R.

3. Main Results

In 1926, Schrödinger asserted that electrons show wave properties. Then, he defined the
time-independent Schrödinger equation Hψ = Eψ, where the wave function is ψ, the wave operator is
H, and the energy of the wave is E . In the quantum theory, the classical wave equation is[

∇2 − 1
v2

∂2

∂t2

]
ψ(r, θ, Φ, t) = 0, (13)

where∇2 is Laplace operator, v is linear velocity, t is time, r is radial distance, θ is polar angle and Φ is
azimuth. In the CGS units, V(r) potential energy is

V(r) = − ε2

r
, (14)

where ε is the magnitude of the electron charge. When the time harmonic function is eliminated,
the Schrödinger equation is

− }2

2m

[
1
r2

∂
∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ
∂
∂θ

(
sin θ

∂ψ
∂θ

)
r,Φ

+ 1
r2 sin2 θ

(
∂2ψ

∂Φ2

)
r,θ

]
+ V(r)ψ(r, θ, Φ)

= Eψ(r, θ, Φ),
(15)

where } is Planck constant
(
} = 1.01× 10−34 Js

)
and m is the mass of the electron. In the spherical

coordinates, the radial equation of (15) is

d
dr

(
r2 dR

dr

)
+

2mr2

}2

[
E − V(r)− l(l + 1)}2

2mr2

]
R(r) = 0. (16)
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We use the substitution U (r) = rR(r), then we have

U ′′ + 2m
}2

[
E − V(r)− l(l + 1)}2

2mr2

]
U = 0, (17)

and U ′′∞ −
( ρ

2
)2U = 0. We obtain

ρ2 =
−8mE
}2 , (18)

where ρ is the eigenvalue of the eigenfunction solution of the Schrödinger equation and E is the energy
levels of the hydrogen atom [44]. In Equation (16), let r = z/ρ where ρ has the form of Equation (18).
Then,

dR
dr

= ρ
dR
dz

,
d2R
dr2 = ρ2 d2R

dz2 , V = −ρε2

z
, E = −ρ2}2

8m
,

and,
d2R
dz2 +

2
z

dR
dz

+

[
−1

4
+

2mε2

}2ρz
− l(l + 1)

z2

]
R = 0. (19)

LetR = g/z (g = g(z)), then we obtain at the differential equation

d2g
dz2 +

[
−1

4
+

2mε2

}2ρz
− l(l + 1)

z2

]
g = 0. (20)

For Equation (20), we use the transformation

g(z) = z1/2 f (z), σ =
2mε2

}2ρ
, l(l + 1) =

τ2 − 1
4

(τ = 2l + 1). (21)

Finally, we have

z2 d2 f
dz2 + z

d f
dz

+

(
− z2

4
+ σz− τ2

4

)
f (z) = 0. (22)

Theorem 1. Let f ∈
{

f : 0 6=
∣∣ fµ

∣∣< ∞; µ ∈ R
}

. Equation (22) can be written as follows

z2 f2 + z f1 +

(
− z2

4
+ σz− τ2

4

)
f = 0 (z 6= 0). (23)

Equation (23) has four different fractional solutions of the forms:

f (ı) = Azτ/2ez/2
[
z(
−τ+2σ−1

2 )e−z
]

τ+2σ−1
2

, (24)

f (ıı) = Bzτ/2e−z/2
[
z(
−τ−2σ−1

2 )ez
]

τ−2σ−1
2

, (25)

f (ııı) = Cz−τ/2ez/2
[
z(

τ+2σ−1
2 )e−z

]
−τ+2σ−1

2

, (26)

f (ıv) = Dz−τ/2e−z/2
[
z(

τ−2σ−1
2 )ez

]
−τ−2σ−1

2

, (27)

where fn = dn f /dzn (n = 0, 1, 2, . . .), f0 = f = f (z), z ∈ C, τ and σ are defined in Equation (21)
and, A, B, C, D are constants.

Proof. Let g = g(z). Set
f = zωg (z 6= 0). (28)
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Hence, we have

zg2 + (2ω + 1)g1 +

[
σ− z

4
+

(
ω2 − τ2

4

)
z−1
]

g = 0. (29)

Here, we choose ω such that ω2 −
(
τ2/4

)
= 0, that is, ω = ±τ/2.

(I). Let ω = τ/2. From (28) and (29), we have

f = zτ/2g, (30)

and,
zg2 + (1 + τ)g1 +

(
σ− z

4

)
g = 0. (31)

Let h = h(z). Set
g = eλzh (z 6= 0), (32)

and by substituting (32) into (31), we have

z
(

eλzh
)

2
+ (1 + τ)

(
eλzh

)
1
+
(

σ− z
4

)(
eλzh

)
= 0, (33)

hence,

zh2 + (2λz + 1 + τ)h1 +

[
z
(

λ2 − 1
4

)
+ λ(1 + τ) + σ

]
h = 0. (34)

In Equation (34), we choose λ such that λ2 − (1/4) = 0, that is, λ = ±1/2.
(i). Let λ = 1/2. So, we have

g = ez/2h, (35)

and,

zh2 + (z + 1 + τ)h1 +

(
1 + τ

2
+ σ

)
h = 0. (36)

By applying Equation (7) to both members of (36), thus the singular differential equation with integer
order (36) transforms into the following fractional differential equation

zh2+µ + (µ + z + 1 + τ)h1+µ +

(
µ +

1 + τ

2
+ σ

)
hµ = 0. (37)

Here, we get µ as µ + (1 + τ/2) + σ = 0, then,

µ = (−τ − 2σ− 1)/2. (38)

By substituting (38) into (37), we have

h−τ−2σ+1
2 +1 +

[(
τ − 2σ + 1

2

)
z−1 + 1

]
h−τ−2σ+1

2
= 0. (39)

Set

h1+µ = h−τ−2σ+1
2

= u(ı) = u(ı)(z)
(

h(z) =
(

u(ı)
)

τ+2σ−1
2

)
, (40)

and, we have then

u(ı)
1 +

[(
τ − 2σ + 1

2

)
z−1 + 1

]
u(ı) = 0 (41)

from (39). The solution of Equation (41) is obtained by

u(ı) = Az(
−τ+2σ−1

2 )e−z. (42)
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Then, we have Equation (24) from (34), (40) and (42). Meanwhile,

h = A
(

u(ı)
)

τ+2σ−1
2

, (43)

satisfies (39). Therefore (24) satisfies (23), since we have (30).
(ii). We get λ = −1/2. Then,

g = e−z/2h. (44)

So, we obtain
µ = (−τ + 2σ− 1)/2, (45)

h−τ+2σ+1
2 +1 +

[(
τ + 2σ + 1

2

)
z−1 − 1

]
h−τ+2σ+1

2
= 0, (46)

h1+µ = h−τ+2σ+1
2

= u(ıı) = u(ıı)(z)
(

h(z) =
(

u(ıı)
)

τ−2σ−1
2

)
, (47)

with similar steps and,

u(ıı)
1 +

[(
τ + 2σ + 1

2

)
z−1 − 1

]
u(ıı) = 0. (48)

The solution of Equation (48) is obtained by

u(ıı) = Bz(
−τ−2σ−1

2 )ez. (49)

Then, we have Equation (25) from (44), (47) and (49). Also,

h = B
[
z(
−τ−2σ−1

2 )ez
]

τ−2σ−1
2

, (50)

satisfies (46). Therefore (25) satisfies (23), since we have (30).
(II). Let ω = −τ/2. From (28) and (29) we have

f = z−τ/2g, (51)

and,
zg2 + (1− τ)g1 +

(
σ− z

4

)
g = 0. (52)

Let h = h(z). Then, we obtain (32) and λ = ±1/2.
(iii) Let λ = 1/2. So, we obtain (35). By applying similar steps, we have

µ = (τ − 2σ− 1)/2, (53)

h τ−2σ+1
2 +1 +

[(
−τ − 2σ + 1

2

)
z−1 + 1

]
h τ−2σ+1

2
= 0, (54)

h1+µ = h τ−2σ+1
2

= u(ııı) = u(ııı)(z)
(

h(z) =
(

u(ııı)
)
−τ+2σ−1

2

)
, (55)

and,

u(ııı)
1 +

[(
−τ − 2σ + 1

2

)
z−1 + 1

]
u(ııı) = 0. (56)

The solution of Equation (56) is obtained by

u(ııı) = Cz(
τ+2σ−1

2 )e−z. (57)



Fractal Fract. 2019, 3, 16 7 of 10

Then, we have Equation (26) from (35), (55) and (57). And,

h = C
[
z(

τ+2σ−1
2 )e−z

]
−τ+2σ−1

2

, (58)

satisfies (54). Therefore (26) satisfies (23), since we have (51).
(iv) Let λ = −1/2. So, we obtain (44). By applying similar steps, we have

µ = (τ + 2σ− 1)/2, (59)

h τ+2σ+1
2 +1 +

[(
−τ + 2σ + 1

2

)
z−1 − 1

]
h τ+2σ+1

2
= 0, (60)

h1+µ = h τ+2σ+1
2

= u(ıv) = u(ıv)(z)
(

h(z) =
(

u(ıv)
)
−τ−2σ−1

2

)
, (61)

and,

u(ıv)
1 +

[(
−τ + 2σ + 1

2

)
z−1 − 1

]
u(ıv) = 0. (62)

The solution of Equation (62) is obtained by

u(ıv) = Dz(
τ−2σ−1

2 )ez. (63)

Then, we have Equation (27) from (44), (61) and (63). And,

h = D
[
z(

τ−2σ−1
2 )ez

]
−τ−2σ−1

2

, (64)

satisfies (60). Therefore (27) satisfies (23), since we have (51).

Theorem 2. Let
∣∣∣[z(−τ+2σ−1

2 )
]

n

∣∣∣ < ∞
(
n ∈ Z+

0
)
, z 6= 0 and

∣∣∣− 1
z

∣∣∣ < 1. Equation (24) can be given
as follows

f (z) = z(2σ−1)/2e−z/2F
[

1−
(

τ + 2σ + 1
2

)
,

τ − 2σ + 1
2

;−1
z

]
, (65)

where F is the Gauss hypergeometric function.

Proof. By using (7) for (24),

f (z) = Azτ/2ez/2
∞

∑
n=0

Γ
(

τ+2σ+1
2

)
Γ
(

τ+2σ+1
2 − n

)
Γ(n + 1)

e−z
( τ+2σ−1

2 −n)

[
z(
−τ+2σ−1

2 )
]

n
. (66)

By using (9) and (10), we obtain

e−z
( τ+2σ−1

2 −n) = e−iπ( τ+2σ−1
2 −n)e−z, (67)

and, [
z(
−τ+2σ−1

2 )
]

n
= e−iπn

Γ
[
n + τ−2σ+1

2

]
Γ
[

τ−2σ+1
2

] z
−τ+2σ−1

2 −n, (68)

where
∣∣∣∣ Γ[n+ τ−2σ+1

2 ]
Γ[ τ−2σ+1

2 ]

∣∣∣∣ < ∞.



Fractal Fract. 2019, 3, 16 8 of 10

By substituting (67) and (68) into (66), we have

f (z) = Az
2σ−1

2 e
−1
2 [z+iπ(τ+2σ−1)]

∞

∑
n=0

Γ
(

τ+2σ+1
2

)
Γ
(

τ+2σ+1
2 − n

) Γ
[
n + τ−2σ+1

2

]
Γ
[

τ−2σ+1
2

] z−n

Γ(n + 1)
. (69)

By applying (11) and (12) to (69), then

f (z) = Az
2σ−1

2 e
−1
2 [z+iπ(τ+2σ−1)]

∞

∑
n=0

Γ
[
n + 1−

(
τ+2σ+1

2

)]
Γ
[
1−

(
τ+2σ+1

2

)] Γ
[
n + τ−2σ+1

2

]
Γ
[

τ−2σ+1
2

] (
−1

z

)n 1
n!

. (70)

And, we have

f (z) = Az
2σ−1

2 e
−1
2 [z+iπ(τ+2σ−1)]

∞

∑
n=0

[
1−

(
τ + 2σ + 1

2

)]
n

[
τ − 2σ + 1

2

]
n

(
−1

z

)n 1
n!

. (71)

We suppose that
1
A

= e−iπ( τ+2σ−1
2 ).

Finally, we obtain (65) from (71).

By applying similar steps, we have Theorem 3–5 as follows:

Theorem 3. Let
∣∣∣[z(−τ−2σ−1

2 )
]

n

∣∣∣ < ∞
(
n ∈ Z+

0
)
, z 6= 0 and

∣∣∣ 1
z

∣∣∣ < 1. Equation (25) can be given
as follows

f (z) = z(−2σ−1)/2ez/2F
[

1−
(

τ − 2σ + 1
2

)
,

τ + 2σ + 1
2

;
1
z

]
, (72)

where F is the Gauss hypergeometric function.

Theorem 4. Let
∣∣∣[z( τ+2σ−1

2 )
]

n

∣∣∣ < ∞
(
n ∈ Z+

0
)
, z 6= 0 and

∣∣∣− 1
z

∣∣∣ < 1. Equation (26) can be given
as follows

f (z) = z(2σ−1)/2e−z/2F
[

1−
(
−τ + 2σ + 1

2

)
,
−τ − 2σ + 1

2
;−1

z

]
(73)

where F is the Gauss hypergeometric function.

Theorem 5. Let
∣∣∣[z( τ−2σ−1

2 )
]

n

∣∣∣ < ∞
(
n ∈ Z+

0
)
, z 6= 0 and

∣∣∣ 1
z

∣∣∣ < 1. Equation (27) can be given as follows

f (z) = z(−2σ−1)/2ez/2F
[

1−
(
−τ − 2σ + 1

2

)
,
−τ + 2σ + 1

2
;

1
z

]
(74)

where F is the Gauss hypergeometric function.

4. Conclusions

In this study, we applied the Sonine–Letnikov fractional derivative to the radial Schrödinger
equation. We also presented fractional and hypergeometric forms of the solutions. The most important
advantage of the Sonine–Letnikov fractional derivative is that it can be applied for singular equations.
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