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Abstract: In this paper, some real world modeling problems: vertical motion of a falling body
problem in a resistant medium, and the Malthusian growth equation, are considered by the newly
defined Liouville–Caputo fractional conformable derivative and the modified form of this new
definition. We utilize the σ auxiliary parameter for preserving the dimension of physical quantities
for newly defined fractional conformable vertical motion of a falling body problem in a resistant
medium. The analytical solutions are obtained by iterating this new fractional integral and results are
illustrated under different orders by comparison with the Liouville–Caputo fractional operator.
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1. Introduction

Fractional differential equations were first suggested as an idea by Leibniz on generalizing
the integer order derivative about three centuries ago. From this point of view, they introduced
Riemann–Liouville and Liouville–Caputo fractional derivatives. Very recently, Jarad et al. [1] have
introduced a new fractional derivative called the Liouville-Caputo fractional conformable derivative.
Nowadays, fractional derivatives have been begun to be applied to real world modeling problems [2–8].
However, many new fractional derivative definitions have been introduced in recent years. Some of those
are Atangana–Baleanu [9], Hilfer [10], Hadamard [11], Caputo–Fabrizio [12], etc. The Liouville-Caputo
fractional conformable derivative is a fractional form of conformable derivative introduced by
Abdeljawad [13]. On the other hand, Delgado et al. [2] used this new fractional definition for electrical
circuits and they made contribution to this new definition by introducing the β-form of this new fractional
definition. The β-form of conformable derivative has been introduced by Atangana [14]. However,
the conformable derivative idea has been firstly suggested by Khalil et al. [15] and thereafter a different
form of this definition called as proportional α-derivative has been defined in [16]. On the other hand,
you can find new studies about this new generalized fractional conformable definition in [17–20]. Some
studies about fractional differential equations and its applications are studied in [21–25].

In this paper, we consider firstly the vertical motion of a falling body problem in a resistant
medium and it is defined as in the classical meaning as

m
dv (t)

dt
= −mg−mkv (t) ,

v (0) = v0,
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where v (t) (m/s) is velocity, t (s) is time, g (m/s2) is a gravitational force, m (kg) is mass, and k (s−1)
air drag. If we fractionalize the ordinary derivative, we must make use of the σ auxiliary parameter,
which has time−1 ( s−1) dimension, for preserving the dimension of physical quantities, so we get

d
dt
→ σ1−αβ Cβ

a Dα
t

where Cβ
a Dα

t is Liouville-Caputo fractional conformable derivative operator introduced by
Jarad et al. [1]. We consider a similar case with beta form of Liouville-Caputo fractional conformable
derivative defined by Delgado et al. [2]. This approach will shed a light on future studies including
fractional physical problems.

In population biology, we use the Malthusian growth model to define animal population or the
growth of tumor and bacteria. Fractional models of these equations give more sensitive results than
the integer order differential equations. The Malthusian growth model is used to guess approximately
in the change of the population in time. It is also used to guess the approximate numbers of bacterial
culture, approximate radioactive decay time, etc., and it is defined classically as

P′ (t) = kP (t) ,

where P (t) is the population, k is the change rate.

2. Preliminaries

Definition 1. [21] The Riemann-Liouville derivative of order α is defined as

RL
a Dα

x f (x) =
1

Γ (n− α)

dn

dtn

x∫
a

f (t) (x− t)n−α−1 dt, n− 1 < α < n.

Definition 2. [21] The Liouville–Caputo derivative definition of order α is defined as

C
a Dα

x f (t) =
1

Γ (n− α)

x∫
a

dn

dtn f (t) (x− t)n−α−1 dt, n− 1 < α < n.

Definition 3. [21] Let z, β ∈ C, Re(α) > 0. Then Mittag–Leffler function with two parameters is defined as

Eα,β (z) =
∞

∑
k=0

zk

Γ (αk + β)
.

Definition 4. [15] Let f : [a, ∞)→ R. The conformable derivative of f (t) is defined as follows

Dα
t f (t) = lim

ε→0

f
(
t + εt1−α

)
− f (t)

ε

for all t > 0, α ∈ (0, 1] . If f (t) is α− differentiable in some (0, a) , a > 0 and if lim
ε→0+

f (α) (t) exists, then define

lim
t→0+

f (α) (t) = f (α) (0) .
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Definition 5. [13] Let f : [a, ∞) → R. The left and right conformable derivative of f (t) is defined as
follows respectively

aDα
t f (t) = lim

ε→0

f
(
t + ε(t− a)1−α

)
− f (t)

ε
,

tDα
b f (t) = lim

ε→0

f
(
t + ε(b− t)1−α

)
− f (t)

ε
,

for all t > 0, α ∈ (0, 1] .

Definition 6. [13,15] The left and right conformable integrals are defined as

a Iα f (x) =
x∫

a

(t− a)α−1 f (t) dt, x ≥ a, 0 < α ≤ 1 (1)

Iα
b f (x) =

b∫
x

(b− t)α−1 f (t) dt, x ≤ b.

Definition 7. [1] Fractional conformable integral is defined as, β ∈ R, Re (β) > 0,

β
a Iα f (x) =

1
Γ (β)

x∫
a

(
(x− a)α − (t− a)α

α

)β−1 f (t)

(t− a)1−α
dt. (2)

Theorem 1. [1] Let Re (β) ≥ 0, n = [Re (β)] + 1, f ∈ Cn
α,a ([a, b]) . Then, Riemann-Liouville fractional

conformable derivatives are defined as follows,

β
a Dα f (x) =

n
a Dα f (t)
Γ (n− β)

x∫
a

(
(x− a)α − (t− a)α

α

)n−β−1 f (t)

(t− a)1−α
dt, (3)

and

βDα
b f (x) =

(−1)n nDα
b f (t)

Γ (n− β)

b∫
x

(
(b− x)α − (b− t)α

α

)n−β−1 f (t)

(b− t)1−α
dt, (4)

where n
a Dα and nDα

b are the left and right conformable derivatives.

Proof. You can find the proof of this theorem in [1].

Theorem 2. [1] Let Re (β) ≥ 0, n = [Re (β)] + 1, f ∈ Cn
α,a ([a, b]) . Then, Liouville–Caputo fractional

conformable derivatives are given by,

Cβ
a Dα f (x) =

1
Γ (n− β)

x∫
a

(
(x− a)α − (t− a)α

α

)n−β−1 n
a Dα f (t)

(t− a)1−α
dt, (5)

and

CβDα
b f (x) =

(−1)n

Γ (n− β)

b∫
x

(
(b− x)α − (b− t)α

α

)n−β−1 nDα
b f (t)

(b− t)1−α
dt. (6)

Proof. You can find the proof of this theorem in [1].
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Definition 8. [14] Let f :
[
− a

Γ(α) , ∞
)
→ R, then a different type of conformable derivative of f (t) is defined as

A
0 Dα f (x) = lim

ε→0

f
(

t + ε
(

t + 1
Γ(α)

)1−α
)
− f (t)

ε
.

The different type of left conformable integral is defined as

A
0 Iα f (x) =

t∫
0

f (x)(
x + 1

Γ(α)

)1−α
, 0 < α ≤ 1.

Theorem 3. [2] Let Re (β) ≥ 0, n = [Re (β)] + 1, f ∈ Cn
α,a ([a, b]) . Then a different type of Liouville–Caputo

fractional conformable derivatives are defined as follows,

ACβ
a Dα f (x) =

1
Γ (n− β)

x∫
− a

Γ(α)


(

x + a
Γ(α)

)α
−
(

t + a
Γ(α)

)α

α


n−β−1

A n
a Dα

t− f (t)(
t + a

Γ(α)

)1−α
dt, (7)

and

ACβDα
b f (x) =

(−1)n

Γ (n− β)

− b
Γ(α)∫

x


(

b
Γ(α) + t

)α
−
(

b
Γ(α) + x

)α

α


n−β−1

A n
t Dα

b− f (t)(
b

Γ(α) + t
)1−α

dt. (8)

Proof. You can find the proof of this theorem in [2].

Theorem 4. [2] Let Re (β) ≥ 0, n = [Re (β)] + 1, f ∈ Cn
α,a ([a, b]) . Then a different type of

Riemann-Liouville fractional conformable derivatives are defined as follows,

ARβ
a Dα f (x) =

A n
a Dα

Γ (n− β)

x∫
a


(

x + a
Γ(α)

)α
−
(

t + a
Γ(α)

)α

α


n−β−1

f (t)(
t + a

Γ(α)

)1−α
dt, (9)

and

ARβDα
b f (x) =

(−1)n A n Dα
b

Γ (n− β)

b∫
x


(

b
Γ(α) + t

)α
−
(

b
Γ(α) + x

)α

α


n−β−1

f (t)(
b

Γ(α) + t
)1−α

dt. (10)

Proof. You can find the proof of this theorem in [2].

Theorem 5. [2] Let f ∈ Cn
α,a ([a, b]) , β ∈ R. Then the following property is valid,

β
a Iα
(

ACβ
a Dα f (t)

)
= f (t)−

n−1

∑
k=0

k
aDα

t f (a) (t− a)αk

αkk!
,

and
β
a Iα
(

ACβ
a Dα f (t)

)
= f (t)−

n−1

∑
k=0

(−1)k k
t Dα

b f (b) (b− t)αk

αkk!
.

Proof. You can find the proof of this theorem in [2].
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3. Main Results

In this section, we find exact analytical solutions of vertical motion of falling body problem in
the resistant medium, and fractional Malthusian growth model with newly defined Liouville-Caputo
fractional conformable derivative.

3.1. The Fractional Vertical Motion of a Falling Body Problem in a Resistant Medium

3.1.1. The Vertical Motion of a Falling Body Problem in a Resistant Medium with Liouville–Caputo
Fractional Conformable Derivative

Let us consider Liouville-Caputo fractional conformable derivative, and obtain the analytical solution
of the vertical motion of a falling body problem in a resistant medium. Taking the initial value problem

mσ1−αβ Cβ
0 Dα

t v (t) = −mg−mkv (t) , (11)

v (0) = v0. (12)

Solution 1. We apply Picard successive approximation method for obtaining the analytical solution of the
problem (11)–(12). So, let us apply the inverse operator of Cβ

a Dα
t to Equation (11) , we get

β
0 Iα

t

(
Cβ
0 Dα

t v (t)
)
= −σαβ−1 β

0 Iα
t {g} − σαβ−1 β

0 Iα
t (kv (t)) .

Considering the Theorem 2 and the initial condition (12) , we have

v (t) = v (0)− σαβ−1 β
0 Iα

t {g} − kσαβ−1
(

β
0 Iα

t (v (t))
)

.

Then
vi+1 (t) = v0 −

β
0 Iα

t {g} σαβ−1 − kσαβ−1 β
0 Iα

t (vi (t)) , i = 0, 1, 2, . . .

For i = 0, we can write

v1 (t) = v0 −
β
0 Iα

t (g) σαβ−1 − kσαβ−1
(

β
0 Iα

t (v0 (t))
)

(13)

where

β
0 Iα

t (v0 (t)) =
v0 (t)
Γ (β)

t∫
0

(
tα − xα

α

)β−1 dx
x1−α

Using the change of variable u =
( x−a

t−a
)α , we have

0 Iα
t (v0) =

v0tαβ

αβΓ (β + 1)
(14)

Substituting Equation (14) into (13) , we have

v1 (t) = v0 −
gtαβσαβ−1

αβΓ (β + 1)
− kσαβ−1v0tαβ

αβΓ (β + 1)
.
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For i = 1, we get

v2 (t) = v0 −
β
0 Iα

t {g} σαβ−1 − kσαβ−1 β
a Iα

t {v1 (t)}

= v0 −
gtαβσαβ−1

αβΓ (β + 1)
− kσαβ−1 β

0 Iα
t

{
v0 −

gtαβσαβ−1

αβΓ (β + 1)
− kσαβ−1v0tαβ

αβΓ (β + 1)

}
(15)

= v0 −
gtαβσαβ−1

αβΓ (β + 1)
− kσαβ−1v0tαβ

αβΓ (β + 1)
+

k
(
σαβ−1)2 gt2αβ

α2βΓ (2β + 1)
+

(
kσαβ−1)2 v0

(
β
0 Iα

t tαβ
)

αβΓ (β + 1)

where β
0 Iα

t (t− a)αβ =
Γ (β + 1) t2αβ

αβΓ (2β + 1)
, then we can rewrite Equation (15)

v2 (t) = v0

(
1− kσαβ−1tαβ

αβΓ (β + 1)
+

(
kσαβ−1)2 t2αβ

α2βΓ (2β + 1)

)

−σαβ−1gtαβ

αβ

(
1

βΓ (β)
− kσαβ−1tαβ

αβ2βΓ (2β)

)
Proceeding inductively we have

vi (t) = v0

(
1− kσαβ−1tαβ

αβΓ (β + 1)
+

(
kσαβ−1)2 t2αβ

α2βΓ (2β + 1)
− . . .

)

−σαβ−1g (t)αβ

αβ

(
1

βΓ (β)
− kσαβ−1tαβ

αβ2βΓ (2β)
+ . . .

)
= v0

i

∑
z=0

(−1)z (kσαβ−1)z tzαβ

αzβΓ (zβ + 1)
− σαβ−1gtαβ

αβ

i

∑
z=0

(−1)z (kσαβ−1)z tzαβ

αzβ (z + 1) βΓ (zβ + β)
.

Therefore, as i→ ∞, we find the velocity as follows,

v (t) = v0Eβ

(
− kσαβ−1

αβ
tαβ

)
− σαβ−1gtαβ

αβ

∞

∑
z=0

(
−kσαβ−1tαβ

)z

αzβ (z + 1) βΓ (zβ + β)
,

from here we get vertical distance of falling body in a resistant medium as follows

X (t) = h + v0tEβ,2

(
− kσαβ−1

αβ
tαβ

)
− σαβ−1gtαβ+1

αβ

∞

∑
z=0

(
−kσαβ−1tαβ

)z

[(z + 1) αβ + 1] αzβ (z + 1) βΓ (zβ + β)
, (16)

where Eβ,2 (t) is Mittag-Leffler function [21].

Now, let’s consider the different type of Liouville–Caputo fractional conformable derivatives
defined in [2]. We obtain the analytical solution of the vertical motion of a falling body problem in a
resistant medium. Considering the initial value problem

ACβ
a Dαv (t) = −mg−mkv (t) ,

v (0) = v0.

Solution 2. If we apply similar arguments used in the proof of Problem (11)–(12), then we have

X (t) = h + v0(t +
a

Γ (α)
)Eβ,2

(
− kσαβ−1

αβ
(t +

a
Γ (α)

)αβ

)

−
σαβ−1g(t + a

Γ(α) )
αβ+1

αβ

∞

∑
z=0

(
−kσαβ−1(t + a

Γ(α) )
αβ
)z

[(z + 1) αβ + 1] αzβ (z + 1) βΓ (zβ + β)
.
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3.1.2. Vertical Motion of Falling Body Problem in a Resistant Medium with Liouville–Caputo
Fractional Derivative

Now, let’s consider to the model of the vertical motion of a falling body problem in a resistant
medium with the Liouville–Caputo fractional operator in [22] for comparing to Solution (16) ,

mσ1−α C
0 Dα

t v (t) = −mg−mkv (t) ,

v (0) = v0.

Taking direct and inverse Laplace transform to the equation above, we have analytical solutions

v (t) = − g
k
+
(

v0 +
g
k

)
Eα

(
−kσα−1tα

)
,

X (t) = h− gt
k
+
(

v0 +
g
k

)
tEα,2

(
−kσα−1tα

)
.

We observe the vertical motion of a falling body in the resistant medium with Liouville–Caputo
conformable fractional derivative taking v (0) = 5 m/s, k = 0.01 s−1, g = 9.8 m/s2, h = 31,400 m in
Figures 1–4.

α=0.3 α=0.5 α=0.7 α=0.9 Classical

0 20 40 60 80 100
t0

5000

10000

15000

20000

25000

30000

X(t)

Figure 1. Analysis of the vertical motion of a falling body in a resistant medium under different orders
while β = 0.9.

Caputo Conformable Caputo Classical

0 20 40 60 80 100
t0

5000

10000

15000

20000

25000

30000

X(t)

Figure 2. Comparative analysis of the vertical motion of a falling body with different types of
derivatives while α = 0.95, β = 0.95.
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Caputo Conformable Caputo Classical

0 20 40 60 80 100
t0

5000

10000

15000

20000

25000

30000

X(t)

Figure 3. Comparative analysis of the vertical motion of a falling body with different types of
derivatives while α = 0.8, β = 1.

β=0.3 β=0.5 β=0.7 β=0.9 Classical

0 20 40 60 80 100
t0

5000

10000

15000

20000

25000

30000

X(t)

Figure 4. Analysis of the vertical motion of a falling body in a resistant medium under different orders
while α = 0.9.

3.2. Fractional Malthusian Growth Model

3.2.1. Malthusian Growth Model with Liouville–Caputo Fractional Conformable Derivative

Let us consider the Liouville-Caputo fractional conformable derivative, and obtain the analytical
solution of Malthusian growth model. Considering the initial value problem

Cβ
a Dα

t P (t) = kP (t) , α > 0, 0 < β ≤ 1, (17)

P (a) = P0. (18)

where P (t) denote the population at time t, k is a positive constant.

Solution 3. Let’s apply the Picard successive approximation method for obtaining the analytical solution of the
problem (17) and (18). So, applying the inverse operator of Cβ

a Dα
t to Equation (17) , we get

β
a Iα

t

(
CβDα

t P (t)
)
=

β
a Iα

t (kP (t)) .

Considering the Theorem 2 and the initial condition (18) , we have

P (t) = P (a) +β
a Iα

t (kP (t)) .

Then
Pn+1 (t) = P0 + kβ

0 Iα
t (Pn (t)) , n = 0, 1, 2, . . .
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For n = 0, we can write
P1 (t) = P0 + kβ

0 Iα
t (P0 (t)) (19)

where

β
a Iα

t (P0) =
P0

Γ (β)

t∫
a

(
(t− a)α − (x− a)α

α

)β−1 dx

(x− a)1−α
.

Applying the change of variable u =
( x−a

t−a
)α , we have

Iα
t (P0) =

P0 (t− a)αβ

αβΓ (β + 1)
(20)

Substituting Equation (20) into (19) , we have

P1 (t) = P0 +
kP0 (t− a)αβ

αβΓ (β + 1)
.

For n = 1, we get

P2 (t) = P0 + kβ
a Iα

t (P1)

= P0 + kβ
a Iα

t

{(
P0 +

kP0 (t− a)αβ

αβΓ (β + 1)

)}

= P0 +
kP0 (t− a)αβ

αβΓ (β + 1)
+

k2P0

αβΓ (β + 1)
β
a Iα

t

{
(t− a)αβ

}
, (21)

where
(

β
a Iα

t (t− a)αβ
)
= Γ(β+1)(t−a)2αβ

αβΓ(2β+1)
, then we can rewrite Equation (21)

= P0 +
kP0 (t− a)αβ

αβΓ (β + 1)
+

k2P0 (t− a)2αβ

α2βΓ (2β + 1)

= P0

(
1 +

k (t− a)αβ

αβΓ (β + 1)
+

k2 (t− a)2αβ

α2βΓ (2β + 1)

)
.

Proceeding inductively we have

Pn (t) = P0

(
1 +

k (t− a)αβ

αβΓ (β + 1)
+

k2 (t− a)2αβ

α2βΓ (2β + 1)
+ . . .

)

= P0

n

∑
z=0

kz (t− a)zαβ

αzβΓ (zβ + 1)
.

Therefore, as n→ ∞, we find

P (t) = P0Eβ

(
k

αβ
(t− a)αβ

)
. (22)

Now, let’s consider the different type of Liouville–Caputo fractional conformable derivatives
defined in [2]. We obtain the analytical solution of Malthusian growth model. Considering the initial
value problem

ACβ
a DαP (t) = kP (t) , α > 0, 0 < β ≤ 1,

P (a) = P0.
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Solution 4. If we apply similar arguments used in the proof of Problem (17)–(18), then we have

P (t) = P0Eβ

(
k

αβ
(t +

a
Γ (α)

)αβ

)
.

3.2.2. Malthusian Growth Model with Liouville–Caputo Fractional Derivative

Now, let us consider the Malthusian growth model with the Liouville–Caputo fractional operator
in [23] for comparing to Solution (22)

C
a Dα

t P (t) = kP (t) , 0 < α ≤ 1,

P (0) = P0.

Taking direct and inverse Laplace transform to the equation above, we have the analytical solution

x (t) = P0Eα (ktα) .

We observe Malthusian growth model with Liouville–Caputo conformable fractional derivative taking
x (0) = 500, k = 0.5 in the Figures 5–8.

α=0.5 α=0.7 α=0.9 Classical

0 2 4 6 8 10
t

2000

4000

6000

8000

10000

P(t)

Figure 5. Analysis of the Malthusian growth model under different orders while β = 0.9.

β=0.5 β=0.7 β=0.9 Classical

0 2 4 6 8
t

1000

2000

3000

4000

5000

P(t)

Figure 6. Analysis of the Malthusian growth model under different orders while α = 0.9.
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Caputo Conformable Caputo Classical

0 1 2 3 4 5 6 7
t

2000

4000

6000

8000

10000

P(t)

Figure 7. Comparative analysis of the Malthusian growth model with different types of derivatives
while α = 0.8, β = 1.

Caputo Conformable Caputo Classical

0 1 2 3 4 5 6 7
t

2000

4000

6000

8000

10000

P(t)

Figure 8. Comparative analysis of the Malthusian growth model with different types of derivatives
while α = β = 0.95.

4. Conclusions

The vertical motion of a falling body in a resistant medium and the Malthusian growth model
with a newly defined fractional conformable derivative are analyzed. The σ auxiliary parameter is
introduced for fractionalizing truly in view of physical comment of the vertical motion of a falling
body problem. Analytical solutions of these modeling problems are found and shown by figures
comparatively with the Liouville–Caputo fractional versions.

We observe the solution of the vertical motion of a falling body approaches to the classical case
while α and β approach to 1 in Figures 1 and 2. Besides, we show the comparison of this problem with
the Liouville–Caputo and classical cases while α, β approach to 1, and so, we observe that the solution
converges to the Liouville–Caputo and classical case in Figures 3 and 4.

We observe the solution of the Malthusian growth model approaches to the classical case
while α and β approach to 1 in Figures 5 and 6, we show the comparison of this problem with
the Liouville–Caputo and classical cases while α, β approach to 1, and we observe that the solution
converges to the Liouville–Caputo and classical case in Figures 7 and 8.
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