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Abstract: This paper establishes a real integral representation of the reciprocal Gamma function in
terms of a regularized hypersingular integral along the real line. A regularized complex representation
along the Hankel path is derived. The equivalence with the Heine’s complex representation is
demonstrated. For both real and complex integrals, the regularized representation can be expressed
in terms of the two-parameter Mittag-Leffler function. Reference numerical implementations in the
Computer Algebra System Maxima are provided.
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1. Introduction

Applications of the Gamma function in fractional calculus and the special function theory are
ubiquitous. For example, the function is indispensable in the theory of Laplace transforms. The history
of the Gamma function is surveyed in [1], in which the author further states that “of the so-called ’higher
mathematical functions’, the Gamma function is undoubtedly the most fundamental”. A classical
reference on the Gamma function is given by Artin [2]. The Gamma function has numerous remarkable
properties that are surveyed in [3]. For example, one of its classical applications is the formula for the
volume of an n-dimensional ball.

The reciprocal Gamma function is a normalization constant in all of the classical fractional
derivative operators: the Riemann–Liouville, Caputo, and Grünwald–Letnikov. The reciprocal Gamma
function is also prominent in the analytic number theory and its various connections to other
transcendental functions (for example, the Riemann zeta function). Therefore, methods for the fast
computation of the reciprocal Gamma function for arbitrary arguments may be beneficial for numerical
applications of fractional calculus.

In the special function theory, the Gamma function is used explicitly in the definitions of the Fox
type and Fox–Wright type of special functions, which are related to actions of fractional differential
operators [4].

In a previous work, I investigated an approach to regularize derivatives at points where the
ordinary limit diverges [5]. This paper exploits the same approach for the purposes of numerical
computation of singular integrals, such as the Euler Γ integrals for negative arguments.

The present paper proves a real singular integral representation of the reciprocal Γ function.
The algorithm was implemented in the computer algebra system Maxima for reference and
demonstration purposes.

As a second application, the paper provides an integral representation of the Gamma function for
negative numbers related to the Cauchy–Saalschütz integral [6]. The algorithm was also implemented
in Maxima. Finally, the paper demonstrates an equivalent regularized complex representation based
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on the regularization of the Heine integral. The regularization procedure can be expressed in terms of
the two-parameter Mittag-Leffler function.

2. Preliminaries and Notation

The reciprocal Gamma function is an entire function. Starting from the Euler’s infinite product
definition, the reciprocal Gamma function can be defined by the infinite product:

1
Γ(z)

:= lim
n→∞

z (z + 1) . . . (z + n)
nz n!

Proceeding from the Euler’s reflection formula for negative arguments, the reciprocal Gamma
function is simply

1
Γ(−z)

= − sin πz
π

Γ(z + 1) (1)

The plot of the above function is presented in Figure 1.

Figure 1. 1/Γ(−z) computed from Equation (1).

2.1. Real Representations

The Euler’s Gamma function integral representation is valid for real z > 0 or complex numbers
such that Re z > 0

Γ(z) =
∫ ∞

0
e−ττz−1 dτ

However, for negative z, the integral diverges. A less well-known integral representation for
Re z < 0 is the Cauchy–Saalschütz integral [7] (Chapter 3), also along the real line:

Γ(−z) =
∫ ∞

0

e−τ − en(−τ)

τz+1 dτ

where en() is given by Definition 3.
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2.2. Complex Representations

Hankel’s representation of the Gamma function is given as

Γ(z) =
1

2i sin (πz)

∫
Ha−

eττz−1dτ, z /∈ Z

Here, Ha− denotes the Hankel contour in the complex ζ-plane with a cut along the negative real
semi-axis arg ζ = π and circulation in the positive direction. The contour is depicted in Figure 2.
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Arrows indicate the direction of propagation along the contour.

Figure 2. The Hankel contour Ha−.

The Heine’s complex representation of the reciprocal Gamma function is well known and is given
below [6] (p. 161):

1
Γ(z)

=
(−1)−z

2πi

∫
Ha+

e−τ

τz dτ =
1

2πi

∫
Ha−

eτ

τz dτ

Ha+ is the reflection of Ha− across the origin. The integrand has a simple pole at τ = 0.
The Hölder exponent at 0 can be computed in the closed interval [0, ε] as

lim
ε→0

log eεε−z

log ε
= −z + lim

ε→0

ε

log ε
= −z

Therefore, for k > [z], it holds that lim
ε→0

εkeεε−z = 0 and the order of the residue is the integer part

[z]. This observation is indicative of the statement of the main result of the paper.

2.3. Auxiliary Notation

Definition 1. For a real number z, the notation [z] will mean the integral part of the number, while
{z} := z− [z] will denote the non-integral remaining part.

Definition 2. The falling factorial is defined as

(z)n :=
n−1

∏
k=0

(z− k)



Fractal Fract. 2019, 3, 1 4 of 11

Definition 3. Let

en(x) :=
n

∑
k=0

xk

k!

be the truncated Taylor polynomial under the convention e−1(x) = 0.

3. Theoretical Results

Theorem 1 (Real Reciprocal Gamma Representation). Let z > 0, z /∈ Z and n = [z]. Then

1
Γ(z)

=
sin πz

π

∫ ∞

0

e−x − en−1(−x)
xz dx = Im

1
π

∫ 0

−∞

ex − en−1(x)
xz dx

where the integrals are over the real axis.

Proof. First, we establish two preliminary results. Consider the following limit of the form 0/0 and
apply n times l’Hôpital’s rule:

Lz = lim
x→0

ex − en(x)
xz =

1
(z)n

lim
x→0

ex − 1
xz−n

Another application of l’Hôpital’s rule leads to

Lz =
1

(z)n (z− n)
lim
x→0

exxn+1−z

Therefore,

Lz =


0, z < n + 1

1
Γ(n+1) , z = n + 1

∞, z > n + 1

Secondly, consider the limit

Mz = lim
x→−∞

ex − en(x)
xz = Mz = lim

x→−∞

ex

xz −
n

∑
k=0

lim
x→−∞

xk−z

Γ(k + 1)

Therefore,

Mz =


∞, z < n

1
Γ(n+1) , z = n
0, z > n

Therefore, in order for both limits to vanish simultaneously, n < z < n + 1. Therefore, n = [z].
Let {z} = z− [z].

In the following, we take xz as its principal value. Then,

In+1(z + 1) =
∫ 0
−∞

ex−en(x)
xz+1 dx = ex−en(x)

zxz

∣∣∣∞
0
+ 1

z
∫ 0
−∞

(ex−en(x))′

xz dx

= 1
z
∫ 0
−∞

ex−en−1(x)
xz dx = 1

z In(z)

by the above results. Therefore, by reduction,

In+1(z + 1) = 1
(z)n

I0(z− n) = 1
(z)n

I0({z}) = 1
(z)n

∫ 0
−∞

ex

x{z}
dx

= 1
(z)n

∫ ∞
0

e−x

(−x){z}
dx = e−iπ{z} Γ(1−{z})

(z)n
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Therefore,

Γ({z})In+1(z + 1) = e−iπ{z}

(z)n
Γ(1− {z})Γ({z})

= e−iπ{z} π
(z)n sin π{z} =

π
(z)n

(cot π{z} − i)

by Euler’s reflection formula. We take the imaginary part of the integral, since Γ({z}) is real and the
middle expression is imaginary. Therefore,

1
Γ(z + 1)

=
1

(z)nΓ({z}) = Im
1
π

In+1(z + 1)

Therefore,
1

Γ(z)
= Im

1
π

∫ 0

−∞

ex − en−1(x)
xz dx

Finally, by change of variables x 7→ −x,

1
Γ(z)

= −Im
1
π

∫ 0

∞

e−x − en−1(−x)
(−x)z dx =

sin πz
π

∫ ∞

0

e−x − en−1(−x)
xz dx

Corollary 1. By change of variables, it holds that

1
Γ(z)

=
sin πz

πz

∫ ∞

0
u

1
z−2

(
e−u

1
z −

n−1

∑
k=0

(−1)k u
k
z

k!

)
du

The latter result can be useful for computations with large arguments of Γ.

Corollary 2 (Modified Euler Integral of the Second Kind). By change of variables, it holds that, for z > 0,

1
Γ(z)

=
sin πz

π

∫ 1

0

1
u (log u)z

(
u−

n−1

∑
k=0

(log u)k

k!

)
du =

sin πz
π

∫ 1

0

1− en−1 (log u) /u
(log 1/u)z du

Finally, it is instructive to demonstrate the correspondence between the complex-analytical
representation and the hypersingular representation.

Theorem 2 (Regularized Complex Reciprocal Gamma Representation). For Re z > 0, z /∈ Z and
n = [Re z],

1
Γ(z)

=
1

2πi

∫
Ha−

eτ − en−1(τ)

τz dτ

where τ ∈ C .

Proof. The proof technique follows [8]. We evaluate the line integral along the Hankel contour:

In(z) =
1

2πi

∫
Ha−

eτ − en−1(τ)

τz dτ

with kernel

Ker(τ) =
eτ − en−1(τ)

τz , Re z > 0
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The contour is depicted in Figure 2. The integral can be split into three parts,∫
Ha

Ker(τ)dτ =
∫

AB
Ker(τ)dτ +

∫
BCD

Ker(τ)dτ +
∫

DE
Ker(τ)dτ

along the rays AB, DE, and the arc BCD, respectively. Along the ray AB, where τ = reiδ,
the kernel becomes

KerA =
1
rz

(
eeiδ−iδzr −

n−1

∑
k=0

eiδk−iδz rk

k!

)
Along the ray DE, where ξ = re−iδ, the kernel becomes

KerB =
1
rz

(
ee−iδ+iδzr −

n−1

∑
k=0

e−iδk+iδz rk

k!

)

Therefore, changing the direction of DE, the rays can be added as

Kδ = KerAeiπδ − KerBe−iπδ

= e−iδ

rz

(
−eiδz+e−iδr +

(
∑n−1

k=0
e−iδk rk

k!

)
eiδz − e2iδ−iδz

(
∑n−1

k=0
eiδk rk

k!

)
+ eeiδr+2iδ

)
For δ = π

Kπ =
2i sin (πz)

rz

(
e−r −

n−1

∑
k=0

(−r)k

k!

)
Therefore,

lim
δ→π

1
2πi

∫ ∞

0
Kπ dr =

sin(πz)
π

∫ ∞

0

e−r − en−1(−r)
rz dr

by Azrelá’s theorem.
The integral on the (closure of the) arc BCD is given by the Cauchy Residue Theorem. By the

above observation, the residue at τ = 0 is given by the limit

Res[Ker](τ) = lim
τ→0

τ1−z (eτ − en−1(τ)) = lim
τ→0

τLz = 0, z ≤ n + 1

since Lz = 0. Therefore, in the limit where the arc closes to a circle,∮
BCD

Ker(τ)dτ = 0

Furthermore, after integration by parts,

In(z) = −
eτ − en−1(τ)

τz−1

∣∣∣∣
Ha−

+
1

2πi(z− 1)

∫
Ha−

eτ − en−2(τ)

τz−1 dτ =
1

z− 1
In−1(z)

since Mz = 0. Therefore, the claim follows by reduction to n = 0.

Remark 1. These results demonstrate that the regularized complex contour integral can be collapsed to an
integral along the real line. The same principle can be used for the regularization of other nonlinear functions;
for example, the Beta function or the Wright function [8].

It is interesting to note a connection to the Mittag-Leffler function.

Definition 4 (Mittag-Leffler function). The two-parameter Mittag-Leffler function [9] under the present
convention is denoted by

Ea,b(z) :=
∞

∑
k=0

zk

Γ(ak + b)
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Notably, the regularizing kernel can be expressed in terms of the two-parameter Mittag-Leffler
function of integer arguments. The basis for the computation is the following auxiliary result:

Proposition 1.
ex − en−1(x) = xnE1,n+1(x)

Proof. By direct computation,

ex − en−1(x) =
∞

∑
k=n

xk

Γ(k + 1)
=

∞

∑
j=0

xj+n

Γ(j + n + 1)
= xnE1,n+1(x)

Therefore, it directly follows that

Corollary 3. For Re z > 0, z /∈ Z and n = [Re z],

1
Γ(z)

=
1

2πi

∫
Ha−

τn−z E1,n+1(τ) dτ =
sin πz

π

∫ ∞

0
xn−z E1,n+1(−x) dx

where τ ∈ C and x ∈ R in the last integral.

In a similar way, for an integer argument n, we have

Corollary 4. For n ∈ N

1
n!

=
1

Γ(n + 1)
=

1
2πi

∮ eτ − en−1(τ)

τn+1 dτ =
1

2πi

∮ E1,n+1(τ)

τ
dτ, τ ∈ C

where the circulation of the contour is counterclockwise around the origin.

Proof. The computation follows from the Cauchy formula for derivatives:

f (k)(a) =
k!

2πi

∮
Ca

f (τ)

(τ − a)k+1 dτ

Therefore, for a = 0 and substitution f (t) = et − en−1(t),

f (n)(0)
n!

=
1
n!

=
1

2πi

∮
C0

f (τ)
τn+1 dτ =

1
2πi

∮ eτ − en−1(τ)

τn+1 dτ

For n = 1, let τ = εeiφ. The integrand has the form Q = ieεeiφ
.

Therefore, in limit

lim
ε→0

∫ π

−π
ieεeiφ

dφ =
∫ π

−π
idφ = 2πi

Finally, we observe that
eτ − en−1(τ)

τn+1 =
E1,n+1(τ)

τ
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4. Applications

4.1. Laplace Transform Pairs

Consider the Laplace transform Ls : f (t)÷ F(s). As a concrete application of Theorem 2, consider
the pair

Ls : tk ÷ Γ(k + 1)
sk+1 , k > 0

The inverse Laplace transform can be calculated simply as

L−1
t : Γ(k+1)

sk+1 ÷ 1
2πi
∫

Ha− Γ(k + 1)
ets−e[k](ts)

sk+1 ds = sin π(k+1)
πi Γ(k + 1)

∫ 0
−∞

ets−e[k](ts)
sk+1 ds = tk

by change of variables. The latter result can be used for numerical inversion of Laplace transforms.

4.2. Ratios of Gamma Functions

Secondly, the ratio of two Gamma functions can be represented as

Proposition 2. Let A, B > 0. Then,

Γ(A)

Γ(B)
=

1
π

∫ 1

0

∫ 1

0

1− en−1 (log u) /u

(log u)B (− log v)A−1du dv

where n = [B].

Proof.
Γ(A+1)

Γ(B) = 1
π

∫ 1
0

1−en−1(log u)/u
(log u)B du

∫ 1
0 (− log v)Adv

= 1
π

∫ 1
0

∫ 1
0

1−en−1(log u)/u
(log u)B (− log v)Adu dv

4.3. The Cauchy–Saalschütz Integral

Finally, for negative arguments:

Proposition 3. For z > 0, it holds that

Γ(−z) = −1
z

∫ ∞

0

e−x − en−1(−x)
xz dx

Proof. By the reflection formula,

Γ(1− z)Γ(z) =
π

sin πz
= −zΓ(−z)Γ(z)

Therefore,

Γ(−z) = − π

z sin πz
1

Γ(z)
= −1

z

∫ ∞

0

e−x − en−1(−x)
xz dx
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Remark 2. The latter result is equivalent to the classical Cauchy–Saalschütz integral representation [6]
(p. 157), [7] (Chapter 3, p. 4). Indeed, by integration by parts,

Γ(−z) = − 1
z
∫ ∞

0
e−x−en−1(−x)

xz dx = 1
z
∫ ∞

0
d(e−x−en(−x))

xz

= e−x−en(−x)
xz

∣∣∣∞
0
− −z

z
∫ ∞

0
e−x−en(−x)

xz+1 dx =
∫ ∞

0
e−x−en(−x)

xz+1 dx

which is the Cauchy–Saalschütz integral.

4.4. The Grünwald–Letnikov Derivative

The Grünwald–Letnikov derivative is defined [10] as

Dq
∓ f (x) := lim

h→0

1
hq

[ x−a
h ]

∑
m=0

(±1)m Γ(q + 1)
Γ(m + 1)Γ(q−m + 1)

f (x±mh), h =
x− a

N
, q > 0

For numerical applications, the limit is approximated as the finite difference for some large N ∈ N .
Therefore, Theorem 1 can be directly applied to compute the approximation for small m. For large m,
on the other hand, the Stirling asymptotic formula can be used. Pursuing such application, however,
goes beyond the scope of the present paper.

5. Numerical Implementation

A reference implementation in the computer algebra system Maxima is given in Listings 1 and 2.
The numerical integration code uses the library Quadpack, distributed with Maxima. The reference
implementation given in this section uses a routine for semi-infinite interval integration with a tunable
relative error of approximation (i.e., the epsrel parameter). A plot of the reciprocal Γ function computed
from Listing 1 is presented in Figure 3.

Figure 3. 1/Γ(z) computed from Theorem 1.

Figure 4 represents a plot of Γ(−z) computed from Listing 1.
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Figure 4. Γ(−z) computed from Proposition 3.

Listing 1: The Maxima code corresponding to Theorem 1.

1

Kg( z ) : = block ( [ u , re t , k , n , f r : 1 , ss : 0 ] ,
i f not numberp ( z ) then return ( ’Kg( z ) ) ,
i f in tegerp ( z ) then i f z=0 then return ( 0 ) e l s e re turn ( 1/ ( z−1) ! )
e l s e (

6 f r : s i n (%pi∗z)/%pi ,
n : f i x ( z ) ,
ss : sum( (−u)^k/k ! , k , 0 , n−1) ,
r e t : f r ∗ f i r s t ( quad_qagi ( ( exp(−u)− ss )/ u^( z ) , u , 0 , in f , ’ e p s r e l =1d−8))
) ,

11 f l o a t ( r e t )
) ;

Listing 2: The Maxima code corresponding to Proposition 3.

Kgn( z ) : = block ( [ u , re t , k , n , f r : 1 , ss : 0 ] ,
3 i f not numberp ( z ) then return ( ’ Kgn( z ) ) ,

i f in tegerp ( z ) then return ( 0 )
e l s e (
i f z<0 then z:−z ,
f r :−1/z ,

8 n : f i x ( z ) ,
ss : sum( (−u)^k/k ! , k , 0 , n−1) ,
r e t : f r ∗ f i r s t ( quad_qagi ( ( exp(−u)− ss )/ u^( z ) , u , 0 , in f , ’ e p s r e l =1d−8))
) ,
f l o a t ( r e t )

13 ) ;
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