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Abstract: The highlight presented in this short article is about the power laws with respect to
fractional capacitance and fractional inductance in terms of frequency.
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1. Introduction

Let ic and uc be the current and voltage through and over a capacitor C, with the constant
capacitance denoted by C again. Then, one says that Cf stands for a pseudo-capacitance in the
sense that

ic = C f
dαuc(t)

dtα
= C

duc(t)
dt

for 0 < α < 1, (1)

where dαuc(t)
dtα = u(α)

c (t) denotes the fractional derivative of order α of uc [1]. One calls Cf the
pseudo-capacitance of a capacitor because its unit is Farad × s1−α instead of Farad [1]. In this
article, we call it fractional capacitance of order α of a capacitor. Similarly, the fractional inductance of
order β, denoted by Lf, is in the sense that

uL = L f
dβiL(t)

dtβ
= L

diL(t)
dt

for 0 < β < 1, (2)

where uL and iL are the voltage and current over and through an inductor L with the constant inductance
denoted again by L. The unit of Lf is Henry × s1−β. It is also called the pseudo-inductance [1,2].

Fractional elements, including a fractional capacitor and a fractional inductor, attract research
interests in engineering. The literature about their analysis and applications is rich, see References [1–10],
referring [11–14] to some recent work on fractional calculus. However, reports about power laws that
fractional elements follow are rarely seen. This short article aims at expounding the power laws that
fractional elements follow.

In the rest of this article, we present the results in Section 2, which is followed by
concluding remarks.

2. Results

Denoted by X(ω) the Fourier transform of x(t). Then, one has, for α > 0,

F
[

x(α)(t)
]
=

∞∫
−∞

x(α)(t)e−jωtdt = (jω)αX(ω), (3)

where j =
√
−1. Consequently,
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x(α)(t) = F−1[(jω)αX(ω)
]
=

1
2π

∞∫
−∞

(jω)αX(ω)ejωtdω, (4)

see Miller and Ross [15], Uchaikin [16] (Section 4.5.3) and Lavoie [17] (p. 246).
Following Miller and Ross [15], Raina and Koul [18], we explain our research in the domain of

generalized functions. Thus, any function considered in this article is differentiable of any times and
its Fourier transform exists (Gelfand and Vilenkin [19]).

Theorem 1. The fractional capacitance Cf may be expressed by

Cf = (jω)1−αC. (5)

Proof. The Fourier transform of C f
dαuc(t)

dtα in Equation (1) is given by

F
[

C f
dαuc(t)

dtα

]
= (jω)αC f Uc(ω), (6)

where Uc(ω) = F[uc(t)]. On the other hand, doing the Fourier transform of C duc(t)
dt in

Equation (1) produces

F
[

C
duc(t)

dt

]
= jωCUc(ω). (7)

Thus, according to Equation (1) and from Equations (6) and (7), we have (jω)αCfUc(ω) = jωCUc(ω).
Therefore, we have Cf = (jω)1−αC. Hence, Theorem 1 holds.

Note 1. Cf reduces to C if α → 1. We use the symbol Cf to represent either fractional capacitance or
fractional capacitor.

Corollary 1. Denote the capacitance ratio by

Rc = C/Cf. (8)

Then, Rc follows the power law in the form

Rc = Rc( f , α) = (j2π f )α−1. (9)

Proof. From Equation (2.3), we have Rc = C
C f

= (jω)α−1 = (j2π f )α−1. The proof completes.

Corollary 1 suggests a power law of Rc in terms of frequency with respect to the fractional
capacitor Cf. The unit of Rc is Hertzα−1. Figure 1 shows the plots of |Rc(f, α)| = (2πf )α−1.
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Theorem 2. The fractional inductance Lf may be in the form

Lf = (jω)1−βL. (10)

Proof. The Fourier transform of L f
dβiL(t)

dtβ in Equation (2) is in the form

F
[

L f i(β)
L (t)

]
= (jω)βL f IL(ω), (11)

where IL(ω) = F[iL(t)]. On the other side, in Equation (2), we have

F
[

L
iL(t)

dt

]
= (jω)LIL(ω). (12)

From Equation (2) and according to Equations (11) and (12), we have (jω)βL f IL(ω) = jωLIL(ω).
Thus, we have Lf = (jω)1−βL. This completes the proof.

Note 2. The fractional inductance Lf degenerates to L when β→ 1. The symbol Lf stands for both fractional
inductance and fractional inductor.

Corollary 2. Let Rl be the inductance ratio in the form

Rl = L/Lf. (13)

Then, it follows the power law in the form

Rl = Rl( f , β) = (j2π f )β−1. (14)

Proof. From Equation (10), we have Rl = L
L f

= (jω)β−1 = (j2π f )β−1. This completes the proof.

Corollary 2 exhibits a power law of Rl in terms of frequency with respect to Lf. The unit of Rl
is Hertzβ−1.

3. Concluding Remarks

We have presented Theorems 1 and 2 to express the fractional capacitance and fractional
inductance, respectively. In addition, power laws in terms of frequency with respect to fractional
capacitance and fractional inductance have been given in Corollaries 1 and 2. To be precise, for a
fractional capacitor (inductor) of order α, the ratio of C (L) to Cf (Lf) obeys (j2πf )α−1 with the unit
Hertzα−1. Specifically for a fractional capacitor, due to 0 < α < 1, the power law described by Corollary
1 reveals that Cf → ∞ when f → 0. Note that a key property of a supercapacitor or an ultracapacitor
utilized in batteries is that it has an infinitely large capacitance for f → 0 [20–22]. Therefore, the power
law presented in Corollary 1 provides a new explanation about that as an application in the case
of supercapacitors.
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