# A Fractional-Order Infectivity and Recovery SIR Model

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Derivation

## 3. Fractional Infectivity and Recovery SIR

## 4. Reduction to Classic and Fractional Recovery SIR Models

## 5. Equilibrium State Analysis

#### Basic Reproduction Number

## 6. Summary and Discussion

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
**1927**, 115, 700–721. [Google Scholar] [CrossRef] - Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
**1932**, 138, 55–83. [Google Scholar] [CrossRef] - Kermack, W.O.; McKendrick, A.G. Contributions to the mathematical theory of epidemics. III. Further studies of the problem of endemicity. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character
**1933**, 141, 94–122. [Google Scholar] [CrossRef] - Hethcote, H.W. The mathematics of infectious diseases. SIAM Rev.
**2000**, 42, 599–653. [Google Scholar] [CrossRef] - Diekmann, O.; Heesterbeek, J. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Arafa, A.A.M.; Rida, S.Z.; Khalil, M. Solutions of fractional order model of childhood diseases with constant vaccination strategy. Math. Sci. Lett.
**2012**, 1, 17–23. [Google Scholar] [CrossRef] - Arqub, O.A.; El-Ajou, A. Solution of the fractional epidemic model by homotopy analysis method. J. King Saud Univ. Sci.
**2013**, 25, 73–81. [Google Scholar] [CrossRef] - Diethelm, K. A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn.
**2013**, 71, 613–619. [Google Scholar] [CrossRef] - Sardar, T.; Rana, S.; Chattopadhyay, J. A mathematical model of dengue transmission with memory. Commun. Nonlinear Sci. Numer. Simul.
**2015**, 22, 511–525. [Google Scholar] [CrossRef] - Angstmann, C.; Henry, B.; McGann, A. A fractional order recovery SIR model from a stochastic process. Bull. Math. Biol.
**2016**, 78, 468–499. [Google Scholar] [CrossRef] [PubMed] - Angstmann, C.N.; Henry, B.I.; McGann, A.V. A fractional-order infectivity SIR model. Phys. A Stat. Mech. Appl.
**2016**, 452, 86–93. [Google Scholar] [CrossRef] - Sardar, T.; Saha, B. Mathematical analysis of a power-law form time dependent vector-borne disease transmission model. Math. Biosci.
**2017**, 288, 109–123. [Google Scholar] [CrossRef] [PubMed] - Angstmann, C.N.; Erickson, A.M.; Henry, B.I.; McGann, A.V.; Murray, J.M.; Nichols, J.A. Fractional Order Compartment Models. SIAM J. Appl. Math.
**2017**, 77, 430–446. [Google Scholar] [CrossRef] - Rositch, A.F.; Koshiol, J.; Hudgens, M.G.; Razzaghi, H.; Backes, D.M.; Pimenta, J.M.; Franco, E.L.; Poole, C.; Smith, J.S. Patterns of persistent genital human papillomavirus infection among women worldwide: A literature review and meta-analysis. Int. J. Cancer
**2013**, 133, 1271–1285. [Google Scholar] [CrossRef] [PubMed] - Li, C.; Deng, W. Remarks on fractional derivatives. Appl. Math. Comput.
**2007**, 187, 777–784. [Google Scholar] [CrossRef] - Dokoumetzidis, A.; Magin, R.; Macheras, P. Fractional kinetics in multi-compartmental systems. J. Pharmacokinet. Pharmacodyn.
**2010**, 37, 507–524. [Google Scholar] [CrossRef] [PubMed] - Dokoumetzidis, A.; Magin, R.; Macheras, P. A commentary on fractionalization of multi-compartmental models. J. Pharmacokinet. Pharmacodyn.
**2010**, 37, 203–207. [Google Scholar] [CrossRef] [PubMed] - Hilfer, R.; Anton, L. Fractional master equations and fractal time random walks. Phys. Rev. E
**1995**, 51, R848–R851. [Google Scholar] [CrossRef] - Podlubny, I. Fractional Differential Equations. In Mathematics in Science and Engineering; Academic Press: Cambridge, MA, USA, 1999; Volume 198. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler Functions and Their Applications. J. Appl. Math.
**2011**, 2011, 298628. [Google Scholar] [CrossRef] - Luchko, Y.F.; Rivero, M.; Trujillo, J.J.; Velasco, M.P. Fractional models, non-locality, and complex systems. Comput. Math. Appl.
**2010**, 59, 1048–1056. [Google Scholar] [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Angstmann, C.N.; Henry, B.I.; McGann, A.V.
A Fractional-Order Infectivity and Recovery SIR Model. *Fractal Fract.* **2017**, *1*, 11.
https://doi.org/10.3390/fractalfract1010011

**AMA Style**

Angstmann CN, Henry BI, McGann AV.
A Fractional-Order Infectivity and Recovery SIR Model. *Fractal and Fractional*. 2017; 1(1):11.
https://doi.org/10.3390/fractalfract1010011

**Chicago/Turabian Style**

Angstmann, Christopher N., Bruce I. Henry, and Anna V. McGann.
2017. "A Fractional-Order Infectivity and Recovery SIR Model" *Fractal and Fractional* 1, no. 1: 11.
https://doi.org/10.3390/fractalfract1010011