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Abstract: Identifying patient posture while they are lying in bed is an important task in medical
applications such as monitoring a patient after a surgical intervention, sleep supervision to identify
behavioral and physiological markers, or for bedsore prevention. An acceptable strategy to identify
the patient’s position is the classification of images created from a grid of pressure sensors located
in the bed. These samples can be arranged based on supervised learning methods. Usually, image
conditioning is required before images are loaded into a learning method to increase classification
accuracy. However, continuous monitoring of a person requires large amounts of time and compu-
tational resources if complex pre-processing algorithms are used. So, the problem is to classify the
image posture of patients with different weights, heights, and positions by using minimal sample
conditioning for a specific supervised learning method. In this work, it is proposed to identify the pa-
tient posture from pressure sensor images by using well-known and simple conditioning techniques
and selecting the optimal texture descriptors for the Support Vector Machine (SVM) method. This is
in order to obtain the best classification and to avoid image over-processing in the conditioning stage
for the SVM. The experimental stages are performed with the color models Red, Green, and Blue
(RGB) and Hue, Saturation, and Value (HSV). The results show an increase in accuracy from 86.9% to
92.9% and in kappa value from 0.825 to 0.904 using image conditioning with histogram equalization
and a median filter, respectively.

Keywords: patient posture; gray-level co-occurrence matrix; feature extraction; texture descriptors;
support vector machine; color components

1. Introduction

Bed posture identification is an important topic for researchers due to its multiple
and recent medical applications. The prevention of Pressure Injury (PI) is one of the
most important problems, which affected over 2.5 million people in the US in 2020 [1].
Concerning sleep quality, a continuous posture identification system is required to detect
sleep disorders. In [2], it was reported that over 70% of chronic medical disorders are
correlated with sleep problems. Regardless of the application, the problem is reduced to
distinguish between patient postures in bed based on continuous posture tracking systems.
In addition, this issue can be complicated when an external object is located on the bed,
for example, a pillow, perturbing the measurements with noise.
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The ability to classify objects, textures, colors, and other features is an innate human
ability based on their senses. However, currently, researchers are trying to replicate this
process based on Machine Learning (ML) techniques in a wide variety of applications [3,4].
The main tasks of ML algorithms are to evaluate and compare different classes in data
groups based on characteristics obtained from mathematical models. Through these models,
a machine can learn those characteristics from the dataset [5]. Here, the sample description
is fundamental to differentiating between two or more classes. The classification model
selection is based on the analysis of the advantages and disadvantages of the training and
validation process [6]. Also, the performance indicators of each classification model are well-
founded statistical metrics; these evaluate the ability of a classifier to distinguish between
classes. Therefore, according to the classification model selected, different ML algorithms
have been proposed that stand out: artificial neural networks (ANN), Decision Trees, K-
means, K-nearest neighbors (KNN), and Support Vector Machines (SVMs). Specifically,
the SVM is one of the most known techniques for learning features of a dataset. The SVM
is a supervised learning model, which provides an efficient tool for data classification and
regression analysis [7]. In layman’s words, the SVM model is a representation of datasets as
points in a defined space, which can be separated by categories based on well-defined gaps.
So, the data can be divided into different classes based on two principal stages: training
and validation.

Several strategies have been applied to identify body postures in bed by using the
SVM technique. In [8], a system was implemented that uses Electrocardiogram (ECG) data
employing capacitively coupled electrodes and a conductive textile sheet. Here, an SVM
with Radial Basis Function (RBF) was implemented to estimate only four body postures on
the bed. In [9], the subject position was monitored by fiber-optic pressure sensor mats and
classified using an SVM and linear classifiers. This research reported the identification of
three positional states. The Received Signal Strength (RSS) measurements and the SVM
and K-nearest neighbor methods were employed to identify the position in the bed of two
different persons in [10].

Investigating another SVM application, ref. [11] proposed a method for detecting
animal sperm tracks in an automatic system for reproductive medicine. They used images
in which the sperm is shown in the first frame of all sequences, employing a bag-of-words
approach and an SVM classifier. The detected sperm cells were tracked in all sequences
using mean shift. Three videos were used as the experimental sample frames. The results
showed a precision of 0.94, 0.93, and 0.96 in terms of sperm detection. Regarding sperm
tracking, they calculated the root-mean-square error for assessment. In addition, knot
detection was automatically identified in an image processing pipeline by [12]. They im-
plemented contrast enhancement, thresholding, and mathematical morphology on images
with wood boards. The features were obtained using the Speeded-Up Robust Features
(SURF) descriptors on RGB images, which was followed by the creation of a dictionary
using the bag-of-words approach, which vectorizes text in terms of a matrix. Two different
datasets were implemented, with a total of 640 knots. The recall rate achieved was between
0.92 and 0.97, with a precision of 0.90 and 0.87. In addition, applications with images are
used in agricultural areas. A methodology for identification of the disease powdery mildew
using diseased leaf images was proposed by [13], in which the implementation of a Support
Vector Machine was used to identify the powdery mildew in cucurbit plants using RGB
images and color transformations. First, they used an image dataset from five growing
seasons in different locations in natural conditions of light. Twenty-two texture descriptors
using the gray-level co-occurrence matrix result were calculated as the main features, and
a statistical process [14] was used for the feature selection. The proposed damage levels
identified were healthy leaves, leaves in germination time of the fungal, leaves with first
symptoms, and diseased leaves. The implementation revealed that the accuracy in the
L*a*b* color space was higher, with a value of 94% and a kappa Cohen of 0.7638.

In [15], a system with a low-resolution pressure sensor array and an SVM classifier with
a linear kernel was presented to identify four basic positions. However, the implementation
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of this method requires advanced knowledge in signal processing, or the samples should
be conditioned according to the physical characteristics of the patient. Also, the pressure
array information is preferably exhibited in color images to be processed [16–18].

Patient posture identification based on images and ML techniques is considered a
feasible solution [19–21]. In [21], solutions were reviewed regarding the use of sensor-based
data with images as information derived from intelligent algorithms to provide healthcare
to patients at risk of developing pressure ulcers. The implications of this review and
our results are derived from a possible solution in medical care. Due to our proposed
postures, we achieved the identification of the pressure points. They selected 21 studies
about sensors and algorithms relevant to recommendations for patients, although this
review had the objective of obtaining a general architecture for a prevention system for
pressure ulcers. To classify posture images, it is required to extract their visual information
based on statistical operations [22]. These data are known as descriptors and can describe
form, color, or texture. The selection of a descriptor is conditioned to the origin and content
of the images. Also, the information obtained from descriptors is different according to the
color space of the image. So, the task of choosing the optimal color space and descriptor
becomes challenging for image classification. In particular, the pressure images have
a low resolution, and external objects hide the relevant information for ML algorithms.
Given the diversity of variables, several strategies have been proposed to classify the
postures based on image processing [23–26]. In these works, a pre-processing stage is
suggested that refers to the conditioning of the images before they are processed by the
ML algorithm. Nevertheless, these propose to use complex or computationally heavy
algorithms, which require advanced knowledge in signal processing, or avoid the use of
high physical resources of the computer equipment.

In this work, we propose a methodology to identify patient posture in bed based on an
SVM algorithm and low-resolution pressure images, selecting the best texture descriptors
and color space.For this study, it was crucial to find the most suitable texture descriptors to
obtain a high accuracy in posture identification. Based on sample processed images with a
median filter and histogram equalization, the feature extraction with texture descriptors
and feature selection with multivariate statistical characteristics are used to classify four
proposed bed postures. First, we introduce image pre-processing of the images based
on the histogram equalization and median filter. Then, a feature extraction process is
implemented with the calculus of the gray co-occurrence matrix to obtain the texture
descriptors. Multivariate statistical methods are proposed for the feature selection to choose
the best texture descriptors to avoid the over-pre-processing in the image samples. Finally,
a classification through Support Vector Machines and performance evaluation with the
confusion matrix are performed.

The rest of this manuscript is organized as follows. In Section 2, the theoretical
foundations of the Support Vector Machines are described. The methodology, including
the image pre-processing, the feature extraction, the feature selection, and classification, is
explained in detail in Section 3. Here, a performance evaluation with a confusion matrix
is shown with the percentages of the classified data of different postures. Consequently,
the results and discussion according to the identification of the postures and the comparison
between the results of the images in different conditions are presented in Section 4. Finally,
in Section 5, the conclusions are described in detail.

2. Theoretical Foundations
2.1. Support Vector Machine

Nowadays, the Support Vector Machine (SVM) is a well-known classification learning
method that allows data domain division [7]. According to the used model, SVMs can be
divided into linear and non-linear. A linear SVM divides the data domain linearly to divide
different group data. However, if the data domain requires a feature space transformation
to linearly separate the classes, the SVM is called non-linear.
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For the SVM algorithm, the elements to classify are represented with a point in an
n-dimensional space, where n corresponds to the number of features. Aiming to find the
best hyperplane to differentiate between any two classes, for a linear SVM, first a training
dataset was established as [27,28]:

(x⃗1, y⃗1), (x⃗2, y⃗2), . . . , (x⃗n, y⃗n). (1)

where x⃗ represent a vector with n features. Here, if yn = 1, the vector x⃗n is designated as
class one; in another way, if yk = −1, the vector x⃗k is categorized as class two. For this
work, four classes (M = 4) were defined for different patient postures, P1, P2, P3, and P4.

Now, the hyperplane, to distinguish between different classes, can be defined as:

⟨ω⃗, x⃗⟩+ b = 0 (2)

where w⃗ ∈ Rm, m denotes the features space dimension, and b ∈ R is the bias. So,
the decision function can be described with Equation (3):

f (x⃗n) = sgn(⟨ω⃗, x⃗n⟩+ b). (3)

The sign of function sgn locates the vector x⃗n on one side of the hyperplane. So, a group
of points can be picked along the boundary by minimizing the generalized error; these
points are the support points. The vectors x⃗n that describe an optimal straight line between
the objects and the boundary can be labeled as support vectors. These vectors satisfy the
condition ∥⟨ω⃗, x⃗i⟩+ b∥ = 1, and their optimal distance concerning the hyperplane can be
obtained as:

min
ω⃗∈Rm ,b∈R

τ(ω⃗) =
1
2
|ω⃗|2 | yi· (⟨ω⃗, x⃗⟩+ b) ≥ 1 ∀i = 1, . . . , n. (4)

This equation can lead to +1 or −1 for yi ∈ {+1} and −1 for yi ∈ {−1}, respectively.
Thus, the two classes can be separated correctly.

Sometimes, a linear separation is impossible, and an additional kernel must be intro-
duced and applied to all feature vectors. This function implies a feature space mapping
process based on a dot product to measure the similarity, which can be expressed with
Equation (5):

k(x⃗, x⃗i) = (ϕ(x⃗)· ϕ(x⃗i)). (5)

Among the most used kernels, when some classes are linearly inseparable, is the
Radial Basis Function (RBF), described as:

k(x⃗, x⃗i) = exp(
−|⃗x − x⃗i|2

2σ2 ), (6)

where σ is a smoothness control for a decision boundary in the feature space.

2.2. Gray-Level Co-Occurrence Matrix

The gray-level co-occurrence matrix (GLCM) is a feature extraction method based on
texture analysis. The GLCM evaluates the properties of the image according to the second-
order statistical operations [22], so this method can estimate the relationship between pixels
and then classify image texture [29]. The GLCM contains the number of the pixel pairs for
common brightness level bn, separated by a distance d with a relative inclination θ. For two
brightness levels, b2 and b2, the co-occurrence matrix can be defined as [29]:

Cb1,b2 =
N

∑
x=1

N

∑
y=1

(Px,y = b1) ∧ (Px′ ,y′ = b2) (7)

where the x coordinate x′ is the offset given by the specified distance d and inclination θ by
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x′ = x + d cos(θ)∀(d ∈ 1), max(d) ∧ (θ ∈ 0, 2π) (8)

and the y coordinate y′ is [29]

y′ = y + d sin(θ)∀(d ∈ 1), max(d) ∧ (θ ∈ 0, 2π). (9)

In Equation (7), P is the co-occurrence probability, and the angle θ can take four angles
at 0◦, 45◦, 90◦, or 135◦.

2.3. Texture Descriptors

Texture descriptors (TDs) are the features that reflect regular changes in the values of
a gray-scale image. TDs are frequently used to obtain relevant information about a specific
image; therefore, it is possible to achieve sample classification based on the TDs’ statistics.
Some features can contain details related to shadows, textures, shapes, and colors. Then, it
is possible to obtain additional statistical characteristics such as distribution, homogeneity,
contrast or constant color, intensity, and brightness, among others.

The equations used in this work to obtain the TDs are summarized in Table 1. These
descriptors are a set of texture measures based on the GLCM and were obtained by as-
suming that all the image texture information was contained in the spatial relationships
between the different gray levels.

Table 1. Texture descriptor (TD) equations. µx, µy, σx, and σy are the median, standard deviation
is px and py, HXY = ENTRO, where HX and HY are the entropies of px and py and HXY1 =

−∑i,j p(i, j)log{px(i)py(j)} and HXY2 = −∑i,j px(i)py(j)log{px(i)py(j)}.

Texture Descriptors (TDs) Equation

Autocorrelation (AUTOC) ∑i,j(i.j)p(i, j)

Contrast (CONTR) ∑i,j ∥i − j∥2 p(i, j)

Correlation (CORRM) ∑i,j
{i×j}×p(i,j)−{µx×µy}

σx×σy

Cluster Prominence (CPROM) ∑i,j{i + j − µx − µy}4 × p(i, j)

Cluster Shade (CSHAD) ∑i,j{i + j − µx − µy}3 × p(i, j)

Dissimilarity (DISSI) ∑i,j ∥i − j∥.p(i, j)

Energy (ENERG) ∑i,j p(i, j)2

Entropy (ENTRO) −∑i,j p(i, j)log2(p(i, j))

Homogeneity (HOMOM) ∑i,j
1

1−(i−j)2 p(i, j)

Maximum Probability (MAXPR) maxi,j p(i, j)

Sum of Squares (SOSVH) ∑i,j(i − µ)2 p(i, j)

Sum Average (SAVGH) ∑i,j ipx+y(i)

Sum Variance (SVARH) ∑i,j(i − j)2p(i, j)

Sum Entropy (SENTH) −∑i,j px+y(i)log(px+y(i))

Difference Variance (DVARH) ∑i,j(k − µxx − y)2 px−y(k)

Difference Entropy (DENTH) −∑i,j px+y(i)log2(px+y(i))

Information Measure of Correlation1 (INF1H) HXY−HXY1
max(HX,HY)

Information Measure of Correlation2 (INF2H)
√

1 − exp[−2(HXY2 − HXY)]

Inverse Difference Normalized (INDNC) ∑i,j{i − j}2 × p(i, j)

Inverse Difference Moment Normalized (IDMNC) ∑i,j
1

1+(i−j)2 p(i, j)
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2.4. Lilliefors Test

The Lilliefors test is a typical test to verify the normality of data. This method proposes
to evaluate the null hypothesis H0, which states that the data describe a normal distribution
with mean x̄ and standard deviation s [30]. So, the normalized sample values Zi can be
computed as:

Zi =
xi − x̄

s
, i = 1, 2, . . . , n. (10)

Then, the Lilliefors test statistic T can be computed as follows:

T = maxx|F∗(x)− S(x)|, (11)

where F∗ is the cumulative distribution function of a normal distribution, and S(x) is the
empirical distribution function of the values of Zi. If the value of T exceeds the critical
value for the test, the null hypothesis H0 is rejected at a specific significance level α.

2.5. Analysis of Variance

Analysis of variance (ANOVA) is a statistical method used to evaluate the variations
between data group means, dividing the total deviation into two components: regression
sum of squares (SSR) and error sum of squares (SSE) [31]. So, the total sum of squares (SST)
can be computed as:

Σi(Yi − Ȳ)2 = Σi(Ŷi − Ȳ)2 + Σi(Yi − Ŷi)
2 (12)

where Yi, Ŷi, and Ȳ are the observations, the fitted value, and the mean, respectively [32].
Therefore, this procedure can be used to test the null hypothesis H0 that the population

means are equal. If four different positions, P1, P2, P3, and P4, are analyzed, the null
hypothesis can be defined as:

H0 : µP1 = µP2 = µP3 = µP4 . (13)

Once this null hypothesis is rejected, it can be deduced that at least one position
of a patient has a mean that is different from at least one other mean. This means that
ANOVA does not reveal which means are different from which. However, a test statistic
compares the regression mean square (MSR) and the error mean square (MSE) to determine
whether the sample means are different from each other. This measurement, which has an
F distribution with (k − 1, n − k) degrees of freedom, can be obtained by:

F =
SSR
k−1
SSE
n−k

=
MSR
MSE

∼ Fk−1,n−k. (14)

Here, k is the number of groups, and n is the measurement number. Finally, a p-value
is required to compare the significance level; if the value obtained in Equation (14) is
smaller, the test rejects the null hypothesis.

2.6. Tukey Test

The Tukey test is used in ANOVA to create confidence intervals for all differences
in pairs between the mean values of the factor levels while controlling the error rate per
group at a specified level. It is important to consider the error rate per group when multiple
comparisons are made because the probability of making a type I error for a series of
comparisons is greater than the error rate for any individual comparison. To counter this
higher error rate, the Tukey test adjusts the confidence level of each interval so that the
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resulting simultaneous confidence level is equal to the value that it specifies. The test is
calculated using the following equation, which calculates the Tukey comparative value:

w = q ×
√

MSE
r

(15)

where q is the value obtained from the Tukey test for significance levels of 5% and 1%, MSE
is the mean squared error, and r is the number of repetitions. If the difference between
two means is greater than the comparative, then it is concluded that they are not equal.
The same comparative is used for all pairs of means that are compared. The formula is
valid for experiments with the same number of repetitions.

2.7. Performance Evaluation

Since it is required to select the best binary classifier option, the efficiency of each
SVM must be measured based on well-established metrics. To obtain the performance of a
specific classifier, the confusion matrix can be described in terms of the proportion of the
total number of classified data, including True-Positive (TP) cases correctly identified, False-
Positive (FP) cases incorrectly classified as positive, True-Negative (TN) cases correctly
classified, and False-Negative (FN) cases incorrectly classified [33–35]. According to the
confusion matrix, different parameters can be calculated such as the accuracy ACC (16),
sensitivity SN (17), specificity SP (18), and kappa Cohen’s kappa (19) [36,37].

ACC =
TP + TN

TP + TN + FN + FP
(16)

SN =
TP

TP + FN
=

TP
P

(17)

SP =
TN

TN + FP
=

TN
N

(18)

where P is the positive classified total, and N is the negative classified total. The Cohen
(19) kappa coefficient is a statistical measure of the inter-evaluator agreement for qualitative
data [38,39] calculated as:

kappa =
(d − q)
(n − q)

(19)

where d is the sum of data that were correctly classified, and q is the sum of each line and
column in the entire confusion matrix to be divided by the total number of samples n. This
coefficient is used to evaluate in the ranges of 0 to 1 with degrees of agreements: kappa ≥ 0
and kappa ≤ 0.2—negligible, kappa ≥ 0.21 and kappa ≤ 0.4—discreet, kappa ≥ 0.41 and
kappa ≤ 0.6—moderate, kappa ≥ 0.61 and kappa ≤ 0.8—substantial, kappa ≥ 0.81 and
kappa ≤ 1—perfect.

Finally, a receiver operator characteristic curve (ROC) can be used to present a graph-
ical plot that describes the classification ability of the Support Vector Machines. In this
curve, the True-Positive rate (TPR) is considered as the proportion of images that are
correctly predicted to be positive (20) versus the False-Positive rate (FPR) as the proportion
of samples that are incorrectly predicted (21) [40].

TPR =
TP

TP + FN
(20)

FPR =
FP

TN + FP
(21)

2.8. Image Database Description

The database used for the position identification was the PmatData [41], which is a
free-access repository of in-bed posture images available at https://archive.physionet.org

https://archive.physionet.org
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(accessed on 1 November 2023) [42]. Here, the measurements were collected by using a
sensor grid of 32 × 64 pressure sensors with a sampling of 1 Hz. This database contains the
measurements of 13 patients with three main postures: supine, left lateral, and right lateral.

The proposed methodology was applied to a structured database with a total of
208 images of thirteen different patients in sixteen bed positions. In a previous work [23],
three positions were identified; however, the pressure images showed different pres-
sure zones.

For this work, the database was grouped into four postures according to the maximum
pressure in different zones. These positions are dorsal decubitus, lateral decubitus, lateral
decubitus with an external object, and dorsal decubitus with crossed legs, which are labeled
as P1, P2, P3, and P4, respectively, in Figure 1. In P1, the pressure zones are identified in
the shoulder, elbow, lower back, and buttocks. Pressure zones in P2 are lateral with the
same pressure zones. For P3, the pressure zones are in the shoulder and lower back in
combination with heels in a semi-lateral position. The last position is P4, with pressure in
the lower back and shoulder in a supine position.

a) b)

c) d)

P1
P2

P4P3

Figure 1. Postures of patients are considered for the identification of the pressure position: (a) dorsal
decubitus, (b) lateral decubitus, (c) lateral decubitus with an external object, and (d) dorsal decubitus
with crossed legs.

One more position was added than in previous works to evaluate the robustness of
the proposed methodology. This is because increasing the number of positions directly
increases the error.

Sample Conditioning

Image processing is employed to highlight image characteristics, which includes tech-
niques for noise reduction and detail enhancement. In an image database, there are different
conditions in the sampled collection because the environment, illumination, and devices are
factors that could change an image. For this reason, pre-processing is necessary to set the
features according to the requirements of the systems. Thus, supervised learning methods
depend on acquired knowledge and the best conditions to define the region of interest for
the identification of objects. The impact of the pre-processing algorithms is, according to
the proposed methods, for the characterization of the images and mathematical calculations
that are basic and used to highlight the pressure points.

Once the images were grouped according to a specific patient position, the sample
conditioning stage was carried out, as shown in Figure 2. An image conditioning stage
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is proposed because some images in certain postures contain pixels where the pressure
condition and the posture body exhibit differences in gray levels, such as due to the
interference of an object not described in the general data collection. These images are
included in one posture (P3). Since the images of P3 contain an additional object, two
tests are proposed for this work. The first test generates an image set (S1) containing
equalized images, and only the images of P3 are filtered with a median filter with a window
size of n = 3, where n represents the order of the one-dimensional median filter with a
positive integer scalar. For the second test, a second image set (S2) is generated by applying
histogram equalization and the median filter to all the samples. Each image is divided into
component colors (CCs) according to the color space. RGB color space is separated into Red
(R), Green (G), and Blue (B) components, and HSV is separated into Hue (H), Saturation
(S), and Intensity or Value (V).

Figure 2. Methodology for patient posture identification.

The database was structured with 208 images in RGB color space and HSV transfor-
mation. A color component database image was created, resulting in a total of 1248 images.
Subsequently, the image sets S1 and S2 were created using equalization and the median
filter and divided into the two image sets. Therefore, a database with 3744 images based on
color components was obtained. It should be noted that the processed images maintained
the same size, 32 × 64 pixels. For the cases in which a class in a dataset contains fewer
data, data augmentation was proposed. Images can be rotated to capture the object of
interest from various angles, ensuring a comprehensive view. This approach maintains
consistency in the training and validation processes, effectively avoiding overtraining. It
is worth mentioning that the original database contained 26 images describing position
P4, so data augmentation was necessary to double the samples to 52 images using the
mirror image process. Therefore, the database and the position identification were divided
into the four proposed postures based on pressure points and the patients’ positions. Our
database was structured with 208 images representing different postures, and 52 images
were designated for pre-processing in each class.
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3. Methodology

The posture identification of patients in bed was based on a traditional SVM classifica-
tion procedure. This methodology is described in Figure 2. In this figure, three principal
blocks can be identified: sample conditioning, feature extraction, and classification.

The sample conditioning is a stage which improves the image qualities and separates
the image into different color components. First, histogram equalization is applied to the
samples, aiming to highlight pressure areas. Second, the sample images are converted into
Red, Green, and Blue (RGB) and Hue, Saturation, and Value (HSV) color spaces. In the
feature extraction phase, the images are processed to obtain their statistical properties, and
the best alternatives are selected for further categorization. Here, the equations of Table 1
are employed to compute the texture descriptors, and the Lilliefors, ANOVA, and Tukey
methods are used to determine the most relevant statistical characteristics. Finally, for the
classification stage, a Support Vector Machine (SVM) is applied to group the images by
position based on two tasks: training and validation. In the cases in which there are three or
more data groups, the original problem is divided into multiple binary problems in which
the outputs of each one are combined to classify a sample vector. For this, it is necessary to
use a set of binary classifiers according to the total number of classes. One known method is
one versus one (OVO), which is implemented according to the class numbers. To establish
each level, a voting scheme is constructed based on the binary classifiers that are formed of
blocks. Later, the fine-tuned classifier is tested, and the classification is multiple.

3.1. Feature Extraction

The next stage is the feature extraction, which is based on the gray-level co-occurrence
matrix and the texture descriptors listed in Sections 2.2 and 2.3, respectively. For this work,
a subscript R, G, B, H, S, or V is added to the acronyms of TDs according to the color
component matrix processed. GLCMs are computed with 128 gray levels for each color
component, IR, IG, IB, IH , IS, and IV , of 208 images. Next, the 20 TDs are calculated for
each GLCM, resulting in 24,960 feature data. Subsequently, the data normalization process
is carried out by normalizing the GLCM using the minimum and maximum values of
each row within a range of [−25, 25]. To achieve the best classification results, a feature
reduction is required based on different statistical analyses.

3.1.1. Feature Selection

The previously computed features can be classified according to their ability to differ-
entiate between two or more classes for an image position. The feature selection is carried
out according to three statistical evaluations, the Lilliefors test, the analysis of variance
(ANOVA), and the Tukey test, which are described in Sections 2.4, 2.5 and 2.6, respectively.

3.1.2. Lilliefors

In the Lilliefors test, the result of the h-value is obtained for each feature descriptor,
which is 1 if the null hypothesis is rejected at a significance level where α = 5%. Otherwise,
if h is equal to 0, the null hypothesis is accepted. Table 2 shows the measurements of the
h-value for the feature descriptors that obtained the best results in both cases of the image
sets S1 and S2.

Here, it can be appreciated that the CC Blue is unsuitable for the classification process
for posture P3 using the TDs CONTR, CPROM, DVARH, IDMNC, CORRM, and SOSVH.
In similar conditions, some matrices showed an inefficiency in distinguishing position P3
with the TDs CPROM and IDMNC for the CC Red (R) and with the TDs CPROM, DVARH,
and CORRM for the matrix CC Value (V). The best result, based on the Lilliefors metric,
was the component color Green, which rejected the null hypothesis for all positions.

3.1.3. ANOVA and Tukey Test

Once the Lilliefors test has been implemented, an analysis of variance and a Tukey
multi-comparison test is required. First, the ANOVA test, described in Section 2.5, was
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performed to find significant differences based on the mean value comparison [43,44].
For this experiment, the significance values as an F-statistic and a p-value < 0.000001
were obtained. Therefore, it was possible to differentiate between the mean of two patient
postures by using the ANOVA and Tukey metrics, and the feature selection process could
be employed.

Figure 3a,b show the ANOVA evaluation of two texture descriptors, CPROMS and
DVARHG, respectively, in boxplot representations. The symmetry of the features data
distribution, dispersion of the median, and the percentiles can be appreciated in this
graphic. Also, this analysis allows observation of the variability of the data and the
significant quantitative differences between classes.

Table 2. Results of the Lilliefors test. Each feature is shown with its four postures. If the h-value of “0”
appears for any posture, the feature is discarded for not complying with the normality condition.

Posture TDs R G B H S V TDs R G B H S V

P1 CONTR 1 1 1 1 1 1 CORRM 1 1 1 1 1 1

P2 1 1 1 1 1 1 1 1 1 1 1 1

P3 1 1 0 1 1 1 1 1 0 1 1 0

P4 1 1 1 1 1 1 1 1 0 0 1 1

P1 CPROM 1 1 1 1 1 1 SOSVH 1 1 1 1 1 1

P2 1 1 1 1 1 1 1 1 1 1 0 1

P3 0 1 0 1 1 0 1 1 0 1 1 1

P4 1 1 0 1 0 1 1 1 1 1 1 1

P1 DVARH 1 1 1 1 1 1 SAVGH 0 1 1 1 1 1

P2 0 1 1 0 1 1 1 1 1 1 1 1

P3 1 1 0 1 1 0 1 1 1 1 1 1

P4 1 1 0 1 1 1 1 1 1 1 1 1

P1 IDMNC 1 1 1 1 1 1 INF1H 1 1 1 1 1 1

P2 0 1 1 1 1 1 1 1 1 1 1 1

P3 0 1 0 1 1 1 1 1 1 1 1 1

P4 1 1 0 1 1 1 1 1 1 1 1 1

The Tukey test could be used as a complement to create confidence intervals for all
pairwise differences (P1 vs. P2, P1 vs. P3, P1 vs. P4, P2 vs. P3, P2 vs. P4, and P3 vs. P4) in the
mean value sense. Four different lowercase letters “a”, “b”, “c”, and “d” were assigned
when the mean value of each posture was different between two, three, or four postures.
If these letters were the same, it was concluded that there were no significant differences
among postures. According to the graphic in Figure 3, for features CPROMS and DVARHG,
there are outliers in postures P1, P2, and P4, which indicates that the features of some
samples are distant from the rest of the data and the mean value. Table 3 illustrates the
significant difference between classes by using distinct features and color components.
The DVARHS feature of the saturation matrix shows that the data for the four patient
postures are dissimilar. In other words, the four postures are labeled as P1-“a”, P2-“b”,
P3-“c”, and P4-“d”.

In the opposite case, the features CONTRR and CPROMH hide any difference between
the postures P1, P2, and P3. Other features obtained at least two identical letters. Addition-
ally, in Table 3, the F-statistics and the p-value are presented in the fifth and sixth columns.
The highest value of F-statistic is indicated with the symbol ↑, and the lowest value of the
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p-value is indicated with the symbol ↓, which is achieved by the feature DVARH by using
the component color Saturation.
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Figure 3. ANOVA of the features: (a) mean values of CPROMS, (b) mean values of DVARHG. The red
plus sign (+) in both figures indicates the outliers.

Table 3. Tukey test by the features listed in order according to the ability to separate between the
four postures.

Feature P1 P2 P3 P4 F-Statistic p-Value

CPROMH a a a d 11.40624603 5.04 × 10−7

CONTRH a b a d 12.97247983 6.89 × 10−8

CONTRR a a a d 14.49509639 1.02 × 10−8

CORRMR a a c d 17.80713242 1.76 × 10−10

SAVGHB a a b d 18.76422138 5.57 × 10−11

SOSVHG a b b d 23.39062124 2.46 × 10−13

DVARHG a b a d 27.64429746 2.04 × 10−15

SOSVHS a a c c 27.54944346 2.27 × 10−15

INF1HB a b c a 36.17356581 2.31 × 10−19

IDMNCV a b c b 44.63243464 5.18 × 10−23

SAVGHV a b a b 48.53745335 1.29 × 10−24

DVARHS a b c d 54.49858614 ↑ 5.65 × 10−27 ↓
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3.1.4. Feature Vector Generation

According to the results of the feature extraction and selection, two feature vectors,
V1 and V2, can be generated for the sets of images S1 and S2, respectively. These vec-
tors are used for the training, validation, and testing process in the classification stage.
Therefore, the four postures are labeled as classes corresponding to one combination of six
TD features supported on different color components. The feature vectors are defined as
V1 = {CONTRR, CORRMR, SOSVHG, DVARHG, SAVGHB, INF1HB} and V2 = {CONTRH ,
CPROMH , SOSVHS, DVARHS, SAVGHV , IDMNCV}. V1 considers the features in RGB
color components, and, for V2, the color components used are in HSV. Next, six datasets
of two classes were formed according to the color characteristics of the original posture
images. Then, the training and validation process of the binary classifiers could be applied.
For classifier selection, feature maps are required to identify whether the data are sepa-
rable and thus to determine the type of classifier to be used. The training and validation
are created by pairs of classes, as in the Tukey test. Two examples of feature maps are
illustrated in Figure 4. The features CONTRH and SAVGHB are plotted in Figure 4a to
differentiate between positions P1 and P4, and the features CORRMR and DVARHG are
plotted in Figure 4b to distinguish between positions P3 and P4. Based on these graphs,
it can be noted that separation by using a linear function is difficult. So, a classification
method that uses non-linear functions is required.

a)

b)

Figure 4. Features maps: (a) feature CONTRH versus SAVGHB of P1 and P4; and (b) feature CORRMR

versus DVARHG of P3 and P4.
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3.2. Classification

The feature maps and the data distribution suggest the Support Vector Machine (SVM)
as a binary classifier because a linear function is unable to separate the data without extra
conditioning. This classifier can be trained with different kernels such as polynomial,
sigmoidal, linear, and Gaussian functions with a radial basis [37]. For this work, Gaussian
Radial Basis Function (GRBF) kernels were used, which are widely applied in practice for
classification processes. The GRBF kernels of two samples, x ∈ R and x′, can be defined as:

kσ(x, x′) = exp
(
−|x − x′|2

2σ2

)
(22)

where || is the Euclidean (L2 norm) distance, and σ is the variance of our hyperparameter.
Then, an SVM could be implemented. Section 2.1 describes in detail the performance

of the SVM. In this phase, the objective was to construct a hyperplane that minimizes and
estimates h by using ĥ = R2||w||2 + 1, where R is the diameter of the smallest sphere and
||w|| is the Euclidean weight vector standard. Therefore, an SVM that correctly classifies
different classes minimizes the value of confidence intervals Γ and ĥ based on different
values of σ. For this study, where four positions were identified, different blocks of binary
classifiers SVMN , where N = 6, were built for both image sets S1 and S2. Therefore,
the SVMN classifiers compare the classes P1 vs. P2, P1 vs. P3, P1 vs. P4, P2 vs. P3, P2 vs. P4,
and P3 vs. P4, respectively.

The training and validation processes were developed by using different cores, and
the best result was obtained with the Gaussian Radial Basis Function. Table 4 presents the
measures of the training results. For the hyperplane, the minimum values of Γ reached
are shown with their respective values of σ. The maximum values of R2, ĥ, Γ, and ||w||2
are achieved by the SVM1 with σ = 1. Despite the values collected in Table 4 being the
minimum obtained by Γ, not all SVMs are suitable for classification, and an efficiency
evaluation is required.

Table 4. Support Vector Machines for the selection of the SVM.

SVMs σ R2 hest Γ ||w||2

SVM1 1 0.976 41.00 4.214 42.00

SVM1 7 0.9584 34.52 3.903 36.01

SVM2 5 0.9691 33.62 3.857 34.69

SVM2 3 0.9726 35.55 3.955 36.55

SVM3 3 0.9723 35.49 3.952 36.51

SVM3 6 0.9450 33.42 3.847 35.37

SVM4 4 0.9709 33.33 3.842 34.33

SVM4 7 0.9459 18.02 2.917 19.05

SVM5 8 0.9359 18.23 2.932 19.47

SVM5 4 0.9671 31.13 3.727 32.20

SVM6 10 0.8985 15.41 2.719 17.15

SVM6 9 0.9136 11.62 2.394 12.72

In Figure 5, the graphs of two 2D and 3D hyperplanes are shown with different features
in pairs of the features vectors. For illustration purposes, these figures present the binary
classification of data in position P1 versus P2. Features such as SOSVHS and IDMNCV for
data in P1 and P3 are described. Figure 5a contains the hyperplane in which the training
data are of P1 on the surface of the 3D hyperplane, and the underside of the 3D hyperplane
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in Figure 5b is the training data of P2. A 2D hyperplane is shown in Figure 5c to show the
separation between the training data in both classes.

a)

b)

c)

Figure 5. Training data in 2D and 3D hyperplanes, circles and asterisks are the class data of position
P1 and P2, respectively. (a) features SOSVHS and IDMNCV for data in P1, (b) features SOSVHS and
IDMNCV for data in P2, and (c) 2D hyperplane for both classes.

Evaluation performance of the proposed SVMs is required to compare the results of
the validation data and then select the optimal alternatives with the resulting confusion
matrix and ROC curve. The computed metrics were described in Section 2.7. Once the
training stage was carried out, the parameters ACC, SN, SP, and kappa for the optimal
hyperplanes were as presented in Table 5. Here, it can be appreciated that different SVMs
with several values of σ obtained a perfect validation with a set of test images. Some
cases are less accurate, such as SVM3, with values of σ = 3 and σ = 6, despite obtaining
good results.
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Table 5. Data validation of the Support Vector Machines with the results of accuracy, sensitivity,
specificity, and kappa values according to confusion matrices.

SVMs σ ACC SN SP kappa

SVM1 1 0.95 0.90 1 0.91

SVM1 7 1 1 1 1

SVM2 5 1 1 1 1

SVM2 3 1 1 1 1

SVM3 3 0.95 0.90 1 0.90

SVM3 6 0.95 0.91 1 0.91

SVM4 4 1 1 1 1

SVM4 7 1 1 1 1

SVM5 8 0.90 1 0.85 0.78

SVM5 4 1 1 1 1

SVM6 10 1 1 1 1

SVM6 9 1 1 1 1

In this work, four classes or postures were processed; therefore, there was a problem
with multiple classification. A set of binary classifiers is used according to the total number
of classes (k). Then, k(k − 1)/2 is the number of binary classifiers to determine each one of
the classes in blocks. To solve problems with multiple classification, class binarization is
recommended, and the results of the binary classifiers are combined to obtain a solution.
One of the methods is one versus one (OVO). This method was used for all class combina-
tions, P1 vs. P2, P1 vs. P3, P1 vs. P4, P2 vs. P3, P2 vs. P4, and P3 vs. P4 in pairs and a voting
scheme of blocks with three SVMs for each class, in which each block contains the pairs
structured for each class [45,46].

In terms of computational resources, the time for the training and validation process for
each SVM was approximately 3–4 ms. The formation of the block for multiple classifications
consisted of the set of SVMs; the time to define a class for each processing classification
block was approximately 3 ms. The algorithms were programmed in MATLAB 2018b
release. The used resources included a Core i7 processor from Intel running on Windows 10
with 16 GB of RAM and an Nvidia GTX1060 graphics card. The time for the testing process
for the final classification was 1–2 ms.

4. Results

In this study, feature extraction was used to identify four postures of different pa-
tients in bed with several trained SVMs. Once the multi-class problem was established
and the structure for a multi-classification was constructed, the identification process for
the four postures could be completed. Aiming to compare the results, two alternatives
were employed: the SVM based on Principal Component Analysis (PCA) and traditional
Convolutional Neural Networks (CNNs). The SVM with PCA was selected to compare
the same procedure with a different feature extraction method. Meanwhile, the CNNs are
highly appropriate for image classification tasks even though these can be considered a
standard option for such tasks due to their effectiveness [47].

The method of Principal Component Analysis (PCA) is incorporated into feature
extraction and classification with an SVM. PCA is one of the most important algorithms for
calculating the characteristics and reducing the dimension of data. Also, PCA is widely used
in image classification with different types of images [48–50]. This technique was employed
by using the image posture database without additional processing and normalizing the
results, in the same way as the texture descriptors, before incorporating it into the SVM.
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CNNs are a class of deep neural networks designed for processing structured grid
data, such as images. These techniques are particularly powerful for tasks like image
classification, object detection, image segmentation, and feature extraction from images.
Classification with CNNs is based on a hierarchical pattern of layers to automatically
and adaptively learn spatial hierarchies of features from the input data [51]. Three CNN
architectures were employed: VGG-16, MobileNet, and DenseNet121. As a CNN is a deep
learning framework, for the purpose of comparing our results, we decided to use VGG-16,
MobileNet, and DenseNet121, which are among the most commonly used CNN models.
VGG-16 is a 16-layer CNN model with 95 million parameters and was trained on over one
billion images divided into classes. This model uses input images of size 224 × 224 pixels
with 4096 convolutional features. It is efficient and widely used for various applications in
computer vision, including object detection. MobileNet is a model that can be used in a mo-
bile application to classify images or detect objects with small CNN architectures employed
in embedded devices. MobileNet contains 100–300 layers and can automatically identify
common objects in images. DenseNet121 is a model in which each convolutional layer,
except the first one, receives the output of the previous convolutional layer and produces
an output feature map that is passed on to the next convolutional layer. It allows for feature
reuse, as redundant feature maps are discarded from all preceding layers. The impact on the
execution of epochs in each CNN model depends on the task, the image datasets, and the
optimization process in the classification. They were implemented following the same
procedure, modifying only the execution epochs to 10, 15, and 15 for VGG-16, MobileNet,
and DenseNet121, respectively. In our implementation, the CNNs were constructed with a
specific architecture comprising two dense hidden layers, each consisting of 256 neurons,
followed by an output layer consisting of four neurons. The activation functions used
were Rectified Linear Units (ReLU) for the hidden layers and Softmax for the output layer.
Finally, we leveraged the power of transfer learning by freezing the pre-trained layers of
a specific model. For CNNs, the dataset was divided into 80% for training and 20% for
testing. Additionally, the images were resized to 150 × 150 pixels, and a batch size of 32
was selected.

After a series of tests, the results to classify each posture, P1, P2, P3, and P4, are
presented and analyzed through confusion matrices, accuracy, and the kappa coefficient
for the SVM method. The results based on the confusion matrix are presented in Figure 6;
this allows the number of classified images with a concordance agreement to be counted
to define data confidence. The best results of the classification are obtained with the
characterized images in set S1. These results describe that the postures P1 and P3 achieve
the best identification percentages, with 100% and 94.1%, while P2 and P4 obtain 90.5% and
88.5%, respectively. These percentages are achieved by using feature vector V1 in the space
color RGB, which are shown in Figure 6a. The classification percentages of feature vector
V2 are shown in Figure 6b; the highest accuracy is for P3, with 100%, while the posture P4 is
classified with 91.3%. The precision achieved by P1 and P2 is 80% and 85.7%, respectively,
with samples of color components in HSV. Therefore, set V1 describes the postures with
the best discrimination. The total positive percentage of the classification in V1 is 92.9%,
with an error of 7.1%, in comparison with V2 with 90.5%.

Following the same procedure, the confusion matrices were obtained for the classi-
fication based on the SVM by using the PCA components. The results are illustrated in
Figure 7. Here, the accuracy reached for the sample V1 in the RGB color component is 69%,
while, for the sample vector, V2 in the HSV color component is 70.2%. It can be noted that
the performance of the SVM based on PCA is lower than that of the SVM with the vectors
V1 and V2 previously structured. The accuracy difference to classify the postures based on
RGB and HSV color components is 23.9% and 20.3%, respectively.
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Figure 6. Confusion matrices obtained for the multiple classifications for characterized images in set
S1: (a) classified data in V1 samples in color components of RGB, and (b) classified data in V2 samples
in color components of HSV.

Figure 7. Confusion matrices obtained for the multiple classifications: (a) classified data with PCA
components in V1 samples in color components of RGB, and (b) classified data with PCA components
in V2 samples in color components of HSV.

Regarding the results obtained by the CNNs previously described, the architectures
MobileNet and DenseNet121 obtain the best classification results with a total accuracy
of 96% and 94%, respectively. The CNNs based on VGG-16 achieve a 92% effectiveness
for classifying the postures in bed. The three architectures proposed perfectly identified
the position P2 and P3, except for VGG-16, which obtained an accuracy of 80% in P3.
Here, the lowest results of CNNs identifying the posture P4 were obtained by VGG-16 with
86.67% and MobileNet with 92.86%. Meanwhile, the posture P1 was identified with different
percentages of 90% for the VGG-16, 94.74% for MobileNet, and 86.36% for DenseNet121.

The results of each classification method are summarized in Table 6, where the accuracy
percentages and the kappa values are presented. The worst results based on the kappa metric
are obtained by the SVM with PCA method. This method reaches kappa = 0.590 in the
RGB color component and kappa = 0.596 in the HSV color component. The best accuracy
is obtained by the CNNs based on the MobileNet architecture method, with a 96% total
accuracy and kappa = 0.944, followed by the CNNs with DenseNet, which obtain an
accuracy of 94% and kappa = 0.9154. Our proposed approach achieves higher precision
and kappa values, slightly outperforming the metrics achieved by the CNN based on
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VGG-16. These minimal differences are 0.9% in total accuracy and 0.074 for kappa values.
Despite our proposal being located in third place according to the results presented in
Table 6, the differences concerning the second and first place are 1.1% and 3.1% in total
accuracy and 0.0114 and 0.04 in kappa values. It should be noted that CNNs are more
complex methods, and are specialized in image classification. However, this comparison
was realized to show the grade of precision that can be achieved with a technique that more
simply selects the optimal texture descriptors, i.e., the descriptors to achieve the maximal
accuracy for the in-bed image classification.

Table 6. Comparison between the classification of the different feature vectors.

Data Vector ACC P1 P2 P3 P4 kappa

S1 V1 92.9% 94.1% 90.5% 100% 88.5% 0.904

V2 90.5% 80.0% 85.7% 100% 91.3% 0.871

S2 V1 86.9% 90.5% 95.0% 72.0% 94.4% 0.825

V2 82.1% 85.0% 81.8% 94.7% 69.6% 0.762

PCARGB 69.0% 76.9% 66.7% 54.8% 82.1% 0.590

PCAHSV 70.2% 66.7% 68.4% 57.1% 83.3% 0.596

CNNVGG-16 92% 90% 100% 80% 86.67% 0.83

CNNMobileNet 96% 94.74% 100% 100% 92.86% 0.944

CNNDenseNet121 94% 86.36% 100% 100% 100% 0.9154

It should be noted that CNNs are more complex, robust, and specialized methods for
image classification than an SVM. However, this comparison was conducted to showcase
the level of precision that can be achieved with a simpler technique by selecting optimal
texture descriptors, i.e., the descriptors for the SVM that yield the highest accuracy for
classifying in-bed posture images.

An ROC curve presents the concept of discrimination. The Y-axis of the ROC curve
graph represents the proportion of true positives over the total data belonging to one
position (sensitivity), and the X-axis represents the proportion of false positives over the
total data of another position (specificity). Therefore, an ROC curve plot illustrates the
’proportion of true positives’ (Y-axis) versus the ’proportion of false positives’ (X-axis) for
each cut-off point of a classification test whose measurement scale is continuous. A line
is drawn from point 0.0 to point 1.1, representing the diagonal or non-discrimination
line. This line describes what would be the ROC curve of a classification test unable to
discriminate [40], for example, one class 1 (P1) versus class 2 (P2), because each cut-off
point that composes it determines the same proportion of true positives and false positives.
A discrimination test will have a greater identification capacity to the extent that its cut-off
points plot an ROC curve as far as possible from the non-discrimination line, as close as
possible to the left and upper sides of the graph.

For a graphic comparison of performance, the ROC curves are plotted in Figure 8;
these graphs describe the relationship of TPR against the FPR results that show the scoring
classifier [40]. In Figure 8a,b, the posture P3 reaches the coordinate (0, 1), obtaining a perfect
classification by using both feature vectors V1 and V2 in RGB and HSV color components,
respectively. The postures P1, P2, and P4 are near to the perfect coordinate in Figure 8a,
almost closer than the numbers computed employing the feature vector V2 in the HSV
space color. In the same way, Figure 9 shows the ROC curve for the SVM and PCA methods.
In Figure 9a, a considerable distance from the perfect classification for the postures P1, P2,
and P3 can be noted, with an accuracy of 76.9%, 66.7%, and 54.8%, respectively, while the
best classification is for the samples for P4 with an accuracy of 82.1%. Figure 9b shows that
the scores of the SVM with PCA for the HSV and RGB color components are similar, with
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accuracy levels of P1, P2, and P3 being 66.7%, 68.4%, and 57.1%, respectively. The ROC
curve closest to perfect classification is the one for the posture P4, with 83.3%, in Figure 9b.

a) b)

Figure 8. ROC curves obtained for the multiple classifications: (a) classified data in V1 samples in
color components of RGB, and (b) classified data in V2 samples in color components of HSV.

a)

Figure 9. ROC curves obtained for the multiple classifications: (a) classified data with PCA compo-
nents in VRGB samples in color components of RGB, and (b) classified data with PCA components in
VHSV samples in color components of HSV.

In spite of the classification accuracy being less than that reported in [23], it is worth
highlighting that the principal purpose of this work was to simplify the stage of image
pre-processing. The results obtained employing the proposed methodology are considered
excellent based on established metrics. Additionally, it should be considered that the
number of patient positions to be identified was increased and that only basic techniques
were employed, such as a median filter and histogram equalization.

In the literature, different methodologies have been proposed in which image pre-
processing is used for feature extraction and the identification of objects, with different
algorithms presenting high accuracy. Additionally, for future researchers, applying the
utility of these results and using our proposal in monitoring medical patients with varying
characterized parameters would be beneficial. However, some of the processes are robust
and complex due to the implementation involving a series of intricate mathematical calcu-
lations. One purpose of differentiating between in-bed postures was to demonstrate that
such methods can indeed be simple and applicable to other areas.
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In this study, some limitations and considerations involve optical devices and experi-
mental issues that affect the quality of the sample image. Environmental and real conditions
in hospitals, such as changes in object hue due to luminosity, external objects, textures, cam-
era and sensor distance, and time, can influence image acquisition in patients. Regarding
limitations in the image processing area and the time consumed by computing limits, there
are two situations. Firstly, the time for image pre-processing and sample conditioning for
feature extraction. For this work, the raw images were in low resolution, aligning with
the image quality and the proposed feature extraction methodology. Secondly, the time
for the training and validation phases used for the classifiers. To select a binary classifier,
it is necessary to identify the behavior of the samples through a cross-validation process,
depending on the number of samples and the portion of training data to use. The approach
of this study was to use selected features of the images as the proposed optimal texture
descriptors for in-bed postures. According to the final results, high accuracy performances
were obtained with these features; therefore, they are considered useful for future studies
applied to medical uses. With these results, some characteristic color components converted
into texture descriptors have sufficient class separability.

5. Conclusions

In this work, we proposed the identification of a patient’s posture in bed based
on Support Vector Machine training with minimal sample preconditioning. The images
were analyzed based on three important stages: sample conditioning, feature extraction,
and classification. In the sample conditioning stage, the images are submitted to histogram
equalization and a median filter, aiming to avoid complex and computationally heavy
pre-processing for the images to be classified. Based on the database description, two
experiments were carried out by applying the median filter (MF) to all samples and by
using the same filter only for P3 because it presented an external object. From this phase, it
was corroborated that the position P3 required an additional treatment due to an obstacle
that made it difficult to appreciate the position of the patient. However, it was demonstrated
in the first experiment that an MF is enough to remove the disturbances in the images of
position P3 and thus improve their classification accuracy. The identification of samples P1,
P2, and P4 was affected if the MF was applied; this was corroborated with the accuracy and
kappa metrics in a second experiment.

Due to the characteristics of the images depicting patient positions, the selection of
texture descriptors was a challenging task. Twenty texture descriptors were employed,
and the optimal ones were chosen based on two well-known metrics: ANOVA and the
Tukey test. These parameters suggest that different texture descriptors can be utilized
based on the color component, whether RGB or HSV.

Nevertheless, in the classification stage, the results suggest that the RGB color com-
ponent is the most effective for classifying the pressure database of patients. It was also
confirmed that the best feature vector can be formed with the data of contrast, correlation,
sum of squares, difference of variance, sum average, and information measure of correla-
tion. The classification performance using these variables achieved an accuracy of 92.9%
and a kappa of 0.904. Specifically, position P3 could be perfectly classified as long as an MF
was applied beforehand. The positions P1, P2, and P4 obtained distinction percentages of
94.1%, 90.5%, and 88.5%, respectively. Despite the widespread use of an SVM with PCA
for image classification, this technique showed lower performance, as demonstrated by
confusion matrices, kappa values, and ROC curves.

Aiming to assess the performance of our proposal, Convolutional Neural Networks
were implemented with different architectures to serve as a reference point. Specifically,
CNNs based on MobileNet and DenseNet121 obtained the best results, although with
minimal differences of 1.1% and 3.1% in total accuracy and 0.0114 and 0.04 in kappa values,
respectively. Therefore, this comparison demonstrates and categorizes the precision that
can be achieved by using an SVM while selecting the optimal texture descriptors.
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This work proposes simplifying the image pre-processing phase to achieve the clas-
sification of a patient’s position in bed by adequately training a Support Vector Machine.
The conclusions drawn from this study can assist inexperienced researchers in classify-
ing pressure images and reducing sample preparation time and guide the selection of
appropriate color components and texture descriptors.
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