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Abstract: Short-term load forecasting (STLF) plays a crucial role in the planning, management, and
stability of a country’s power system operation. In this study, we have developed a novel approach
that can simultaneously predict the load demand of different regions in Bangladesh. When making
predictions for loads from multiple locations simultaneously, the overall accuracy of the forecast
can be improved by incorporating features from the various areas while reducing the complexity
of using multiple models. Accurate and timely load predictions for specific regions with distinct
demographics and economic characteristics can assist transmission and distribution companies
in properly allocating their resources. Bangladesh, being a relatively small country, is divided
into nine distinct power zones for electricity transmission across the nation. In this study, we have
proposed a hybrid model, combining the Convolutional Neural Network (CNN) and Gated Recurrent
Unit (GRU), designed to forecast load demand seven days ahead for each of the nine power zones
simultaneously. For our study, nine years of data from a historical electricity demand dataset (from
January 2014 to April 2023) are collected from the Power Grid Company of Bangladesh (PGCB)
website. Considering the nonstationary characteristics of the dataset, the Interquartile Range (IQR)
method and load averaging are employed to deal effectively with the outliers. Then, for more
granularity, this data set has been augmented with interpolation at every 1 h interval. The proposed
CNN-GRU model, trained on this augmented and refined dataset, is evaluated against established
algorithms in the literature, including Long Short-Term Memory Networks (LSTM), GRU, CNN-
LSTM, CNN-GRU, and Transformer-based algorithms. Compared to other approaches, the proposed
technique demonstrated superior forecasting accuracy in terms of mean absolute performance error
(MAPE) and root mean squared error (RMSE). The dataset and the source code are openly accessible
to motivate further research.

Keywords: short-term load forecasting; CNN-GRU hybrid model; deep learning; bangladesh power
system

1. Introduction

The significant growth of the population, economic activities, and living standards
has led to an increase in electricity demand, creating the need for greater electricity produc-
tion [1]. Load forecasting (LF) is a critical component of power system management due to
the unpredictable and inconsistent nature of load demand [2]. LF aims to predict future
load demands based on current and historical data [3]. LF is commonly classified into three
distinct types. The initial category, short-term load forecasting (STLF), involves predict-
ing energy demand within a timeframe spanning from a few hours to several days [4,5].
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The second category, known as midterm load forecasting, anticipates energy demand from
one week to several months and occasionally extends to a year [6]. Long-term load fore-
casting focuses on predicting energy consumption over a timeframe exceeding a year [7].
While short- and mid-term forecasting are instrumental for efficient system operation man-
agement, long-term electricity demand forecasting facilitates the development of power
system infrastructure [8]. Accurate load forecasting enables more effective planning for
constructing distribution and transmission networks, leading to substantial reductions
in investment costs [9]. The power grid system is becoming more complex and unstable
due to the penetration of distributed renewable energy sources (DRES). Addressing this
challenge necessitates dynamic operation and control. STLF plays a pivotal role in the
context of advanced power grid systems. Leveraging the vast amount of data generated by
smart grid infrastructure allows for the precise estimation of energy demand, contributing
to enhanced management of energy distribution, economy, and security. Furthermore,
STLF also aids in the balancing of energy supply and demand, helping grid operators avert
issues such as system imbalances and power outages.

First-generation LF algorithms encompass statistical and machine learning (ML) meth-
ods such as regression, wavelet transform (WT), support vector machine (SVM), Random
Forest (RF), autoregressive-moving average (ARMA), autoregressive-integrated moving
average (ARIMA), among others [10]. In a study [11] for the Greek Electric Network Grid,
the authors proposed an STLF model utilizing SVM, ensemble XGBoost, RF, k-nearest
neighbours (KNN), neural networks (NN), and decision trees (DT) based on historical
meteorological parameters. This model demonstrated a 4.74% decrease in prediction error
compared to industry predictions in Greece, using mean absolute percentage error (MAPE)
as a performance metric. The study by Srivastava et al. [12] aims to improve accuracy
in short-term load forecasting (STLF) for the Australian electricity market. It proposes a
novel hybrid feature selection (HFS) algorithm that combines an elitist genetic algorithm
(EGA) with a random forest method to select the most relevant features, and then uses
the M5P forecaster for prediction. The study found that HFS-selected features consistently
outperformed those with larger feature sets and M5P forecaster with HFS was more ac-
curate compared to other Bagging approaches. Phyo et al. [13] introduced an advanced
ML-based bagging ensemble model that integrates linear regression (LR) and support
vector regression (SVR). Their training utilized a two-year dataset from five distinct regions.
In contrast to our approach, they focused on predicting the net load demand for these
regions. The ensemble model they proposed exhibited performance closely aligned with
baseline DL methods. The study underscored that temperature might not consistently
serve as a reliable feature for load prediction, as their findings indicated that incorporating
temperature did not contribute to increased accuracy. Another study by Yao et al. [14]
employed the maximal information coefficient (MIC) to screen and select feature sets,
including climate and delayed load data, for load prediction using LightGBM and XGBoost
models. The proposed MOEC-LGB-XGb model outperformed RF, ARIMA, and SVR mod-
els on two years of historical demand dataset from Northwest China. ML models exhibit
superior performance with linear data but face challenges with highly non-linear datasets,
such as real-world power system demand data. To address non-linearities, Ribeiro et al. [15]
separated trend, seasonality, and residual components using locally weighted regression
and applied variational mode decomposition (VMD) to the residual data. They employed
an ensemble of ML algorithms to optimize XGBoost model hyperparameters. In a compara-
tive study by Tarmanini et al. [10], load forecasting was performed using both ARIMA and
artificial neural network (ANN). The ANN method demonstrated lower error (MAPE) and
a regression factor (R) closer to 1, indicating superior performance compared to ARIMA.
Ibrahim et al. [16] utilized various ML and deep learning (DL) algorithms, including XG-
Boost, AdaBoost, SVR, and ANN, for 24 h ahead predictions, with ANN exhibiting superior
performance in terms of MAPE, RMSE, and R2, despite longer training times and higher
computational expenses for DL algorithms.
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Although the first-generation methods were successful in the past, researchers con-
tinue to utilize them for feature extraction purposes [17,18]. In recent years, ANN-based
models have been widely adopted, primarily due to their proficiency in processing non-
linear data. Recurrent neural network (RNN) and convolutional neural network (CNN)
have proven particularly effective in handling time series data. Notably, RNN, unlike
traditional ANN, possesses the capability to remember and manage temporal sequences.
The use of attention-based RNN for electrical load prediction, as discussed in [19], is
noteworthy; however, the model’s precision diminishes with an extended prediction in-
terval. The development of a long short-term memory (LSTM) model, which permits
the network to maintain long-term dependencies, has resolved the vanishing gradient
problem in RNN [20]. The study in [21] introduces an LSTM-based model for STLF, using
both single and multi-step predictions. However, an increase in the size of the look-back
window results in decreased prediction accuracy. Another alternative for time series
forecasting is the Gated Recurrent Unit network (GRU), which exhibits shorter execution
times than LSTM by consolidating forget and input gates into a single update gate [22].
In [23], Ijaz et al. propose an ANN-LSTM model for predicting hour-ahead load demand,
where the ANN functions as a temporal feature extractor. The proposed model, evaluated
against CNN-LSTM, outperforms the latter. The dataset comprises two years of hourly
demand data for a city region, considering various features such as temperature, humidity,
and holidays. Wang et al. in [17] suggested using variational mode decomposition (VMD),
empirical mode decomposition (EMD), and empirical wavelet transform (EWT) to convert
time-domain demand data into the frequency domain. The processed data are then passed
to a Bi-LSTM layer before signal reconstruction at the output. However, this method comes
with a more extended training period due to extensive preprocessing and challenges in
optimizing hyperparameters. In their study, Abumohsen et al. [24] employed RNN, LSTM,
and GRU models to conduct STLF using a real-world power system dataset from Palestine.
The electrical load dataset was collected from SCADA at one-minute intervals over the
course of a year. The research highlighted the superior performance of the GRU model
compared to other RNN variants. It also illustrated that datasets with fewer intervals
resulted in higher accuracy.

CNN, on the other hand, can learn spatial pattern hierarchies that are translation-
invariant. The time series models alone cannot effectively handle various types of high-
dimensional data in the power system, including spatiotemporal matrices and image
information. Still, the CNN is considered the optimal choice for processing such high-
dimensional data [25]. In a study by Amarasinghe et al. [26], the effectiveness of CNNs for
load forecasting in individual buildings was explored, yielding outcomes comparable to
LSTM. While CNNs are proficient in extracting spatial information, they are less effective
at capturing temporal information. In contrast, RNNs specialize in learning temporal
patterns. Recognizing the strengths of both architectures, researchers have introduced
hybrid approaches combining CNNs and RNNs to enhance Short-Term Load Forecast-
ing (STLF) accuracy [27,28]. To predict the performance of a smart grid system located
in Saudi, different hybrid DL models were used in [29], with CNN-GRU achieving the
highest forecasting accuracy. Haque et al. [27] used 1D CNN as a preprocessing step before
LSTM to predict week-ahead load data, demonstrating the efficiency of CNN as a feature
extractor for sequence learning. This hybrid model outperformed the LSTM and GRU
models when they are used directly. Sekhar et al. [30] utilized a combination of bidirec-
tional LSTM and CNN to forecast short-term building energy demand. They employed
Grey Wolf Optimization (GWO) to optimize the parameters for their proposed method.
The research revealed that their approach demonstrated superior performance compared
to unidirectional LSTM, CNN, and the CNN-LSTM hybrid method. However, the study
did not investigate the impact of additional features, such as temperature and weekday,
on the predictive performance. Similarly, in [7], the combination of genetic algorithm (GA)
and bidirectional gated recurrent unit (Bi-GRU) was proposed for STLF in Bangladesh, out-
performing other techniques with only a minimal decrease of 18.13% and 19.82% in RMSE
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and MAPE, respectively. Another hybrid method, proposed by Chen et al. [31], combines
Residual Neural Network (ResNet) and LSTM to accurately forecast short-term load for
Queensland, Australia. However, the proposed model architecture is more computationally
expensive and requires a larger training and inference period.

Despite the success of mainstream algorithms like CNNs and RNNs, they face chal-
lenges in completely overcoming gradient vanishing limitations, making it difficult to
capture very long-term dependencies. Transformer-based algorithms, initially developed
for machine translations, are gaining prominence as state-of-the-art solutions in sequence
learning tasks. Qu et al. [32] proposed a day-ahead load forecasting method using Forward-
former, a Transformer architecture variant incorporating multi-scale forward self-attention
(MSFSA). Their model, adopting an encoder–dual decoder architecture instead of the con-
ventional encoder–decoder model, outperforms other transformers, Facebook Prophet,
and sequence models [32]. In a hybrid architecture introduced by Ran et al. [18], Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEDMAN), sample
entropy (SE), and Transformer are combined. The decomposition algorithm reduces the
non-stationary components of the data, while SE minimizes the complexity of each decom-
posed element. This hybrid transformer architecture demonstrated excellent performance
in predictions ranging from 4 to 24 h. Transfer learning has also recently gained a lot of
interest in LF. Yuan et al. [33] presented a pre-trained model based on CNN-LSTM with
attention to predicting buildings’ peak energy demand and total energy consumption.
Comparisons with direct learning algorithms such as ANN, RF, and LSTM showed the
proposed model to outperform them. However, due to the dependence of large-scale power
systems on geographic and demographic information, utilizing a source domain dataset
for the target domain proves challenging.

Table 1 provides a brief overview of recent studies in STLF along with their limitations.
Most previous research on STLF has focused on predicting electricity demand at minute-
long, hourly, or daily intervals. While this approach is advantageous for real-time scenarios
with rapid fluctuations in demand, weekly forecasting presents certain benefits, including
improved maintenance planning, enhanced system operation, and more effective resource
management [1]. Moreover, after reviewing the existing literature, we have identified that
the majority of the past studies focused on predicting load demand in particular regions.
A study is yet to be done to forecast loads from different locations simultaneously that
can cover a country’s total load demand. Bangladesh has an installed power capacity
of 25 GW with a maximum demand of 21 GW. The country is divided into nine power
zones—Barishal, Chattogram, Dhaka, Khulna, Rajshahi, Rangpur, Mymensingh, Cumilla,
and Sylhet—each having unique demographic and economic characteristics, resulting in
varying load demands. The National Load Dispatch Centre (NLDC) manages power distri-
bution and generation throughout the country. However, they use traditional statistical
methods to estimate load demand. The economic stakes of even minor STLF errors are
high in developing nations, driving the need for further research. In this study, we propose
a novel STLF method based on CNN-GRU to predict the week-ahead load demand of
different power zones that cover the entire country simultaneously. Our system offers im-
proved accuracy, enhanced reliability, effective resource allocation, better planning, and cost
savings. Our proposal is also compared with other state-of-the-art techniques, including
LSTM, GRU, CNN-LSTM, Transformer, CNN-Transformer, and LSTM-Transformer. Our
contributions are as follows:

• We have developed a novel STLF model based on CNN-GRU hybrid model that can
simultaneously forecast the week-ahead load demand of nine different power zones
of Bangladesh. The proposed model can be trained to make predictions for all of the
locations at the same time instead of having to build separate models for each one,
which can take a lot of time and computational power.

• The performance of the proposed model is compared with six other DL approaches
including three Transformer-based models.
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Table 1. Review and limitations of recent studies.

Authors Objectives Dataset Model Used Limitations

Ribeiro et al. [34] 12 and 24 h ahead LF Electricity demand for five Aus-
tralian regions in 2019 (not open)

Ensemble ML • Lacking comparison of the proposed ensemble model with other
state-of-the-art models
• Different regions are forecasted separately

Yuan et al. [33] STLF based on transfer learning
with attention

Two years of load data from a
large-scale shopping mall

Pretrained CNN-LSTM
with attention

• The proposed approach may not be applicable to large power
systems
• Limited dataset

Haque et al. [27] Weekly LF with hybrid DL model PGCB electricity demand dataset
from Mymensingh, Bangladesh
(open)

CNN-LSTM • No outlier and noise reduction method

Inteha et al. [7] Day-ahead LF PGCB total demand dataset of
Bangladesh, not open

GA-BiGRU • Bidirectional should not be appropriate
• No noise and outlier detection method applied

Tarmanini et al. [10] Household STLF Hourly demand dataset of
709 households in Ireland (not
open)

ARIMA, ANN • No comparison with state-of-the-art models
• No outlier detection
• Visualization and details of the dataset missing

Wang et al. [17] STLF based on wavelet transform
and NN

Household-level smart meter
data

VMD, EMD, EWT, LSTM • Longer training and inference time.
• Hyperparameter optimization is challenging.

Ran et al. [18] STLF based on CEEDMAN and
Transformer

New York City demand dataset
(open)

CEEDMAN-SE-
Transformer

• High time complexity

Srivastava et al. [12] Day-ahead load forecast Half-hourly dataset of New
South Wales, Australia from Aus-
tralian Energy Market Operator
(AEMO)

M5P + HFS (EGA and RF) • Lacking comparison with other state-of-the-art models

Chen et al. [31] STLF with weather paramater
forecasting

Four-year historical demand
dataset from Queens, Australia
(open)

Resnet + LSTM • High computational cost
• The models are considered as blackboxes (lacking explanation of
why Resnet architecture performs better compared to CNN in the
context of time series).

Abumohsen et al. [24] STLF One-year minute-wise electrical
load demand dataset from Pales-
tine

RNN, LSTM, GRU • The justification for the choices of the simulated models is missing
• Relying on training and evaluating with data from just a single
year may not adequately capture the increasing demand trend for
future years
• Lacks specification of the forecast horizon

Proposed Week-ahead LF in multiple zones
simultaneously

PGCB daily load demand of
Bangladesh (Open)

CNN-GRU -
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• We have prepared our historical demand dataset from the PGCB website and, based
on these data, we have created our own interpolated data. The raw collected dataset
along with the clean and interpolated demand data are made publicly available, which
is missing in most research works (https://github.com/gcsarker/Multiple-Regions-
STLF, accessed on 20 October 2023).

2. ML Models
2.1. GRU

GRU is a modified version of Recurrent Neural Network (RNN). GRU has two gates:
an update gate and a reset gate. There are no memory cells inside. Less operating time is
required compared to other variants of RNN, such as LSTM, since the gating mechanism in
GRU is more straightforward than in LSTM. The update gate establishes the proportion
of prior state data that must be sent to the following step. Using this feature reduces the
fundamental RNN’s vanishing gradient problem. The operations of a GRU cell are depicted
by Equations (1)–(4) and a diagram of a GRU cell is shown in Figure 1. Table 2 provides
a brief overview of each paramter presented in the equations. We derived the figure and
equations from the study in [35].

Zt = σ(Wu[C(t−1), x(t)] + bu) (1)

Rt = σ(Wr[C(t−1), x(t)] + br) (2)

Ĉ(t) = tanh(Wc[Rt × C(t−1), x(t)] + bc) (3)

C(t) = (1− Zt)× C(t−1) + Zt × Ĉ(t) (4)

Table 2. Parameters of an unit GRU block.

Variable Meaning

x(t) Input from training dataset
c(t−1) Hidden state from previous timestep

c(t) Output hidden state of the unit cell
σ and tanh Activation function

Rt Reset gate (Outputs [−1, 1])
Zt Update gate (Outputs [0, 1])

Wu, Wr, Wc Learnable parameters
bu, br, bc Bias values

Figure 1. An unit GRU block. Here X(t) = input variable at time t; C(t), C(t−1) = hidden state output
at time t and (t− 1).

https://github.com/gcsarker/Multiple-Regions-STLF
https://github.com/gcsarker/Multiple-Regions-STLF
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2.2. CNN

Unlike conventional neural networks, convolutional deep neural networks can rec-
ognize the specific pattern inside an input sequence. The 1D CNN model’s input consists
of n input sequences, each comprising multivariate features. A collection of 1D kernels,
commonly called filters with fixed window sizes, is selected. The convolution process
between the kernels and the input sequence creates the output features. Kernels with
window sizes of k slide over the sequence in this procedure with fixed strides. These
feature maps encode the response of a filter pattern at various points in the input sequence.
Equation (5) illustrates the initial convolution operation close to the multivariate input
sequence S if we consider the L convolutional layer [35].

C1,i = ReLU(S ∗ w1,i + b1,i) (5)

where C1,i is the output feature map of the first convolutional layer. The convolution
operation is denoted by (*). w1,i represents the ith kernel and b1,i represents the bias term.
The rectified linear unit (ReLU) is utilized to introduce non-linearity. So, the ith feature
space of the Jth convolutional layer CJ,i can be written as

CJ,i = ReLU(CJ−1,i ∗ wJ,i + bJ,i) (6)

We require the earlier feature maps and kernels to create the feature map of the Jth
convolutional layer. The pooling procedure is used to reduce the dimensionality of the
input and, at the same time, make the computation efficient. Max pooling includes finding
the maximum value using sliding windows over the feature maps. A CNN structure is
shown in Figure 2.

Figure 2. A CNN architecture.

3. Methodology

The workflow of this study is depicted in Figure 3. After collecting the historical
demand dataset, we eliminated duplicate values and addressed any missing demands. Sub-
sequently, an outlier detection technique was applied to detect outlier indices. Upon iden-
tifying outlier samples, we corrected them using a straightforward averaging technique.
Finally, the dataset underwent normalization and was partitioned into training, testing,
and validation sets before being fed into the forecasting models to predict load demand
across multiple regions. The approach taken in this research can be seen as the combination
of the following key steps.
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Figure 3. Flow chart representing the workflow of this study.

3.1. Data Preprocessing

This section outlines the collection of raw data from scratch and the subsequent
preparation of these data for deep learning models. Initially, the data are preprocessed to
eliminate outliers, missing values, and redundant information. The training utilizes input
datasets that have been standardized by employing standard min–max scalar techniques to
normalize them within a specific range.

1. Data Collection: The Power Grid Company of Bangladesh (PGCB) website openly
provides daily records of the country’s power system, encompassing details like load
demand, energy consumption, and load curves for various regions. Our dataset was
compiled by retrieving these records from January 2014 to April 2023, resulting in
3407 data points. Bangladesh, being a subtropical monsoon country, is divided into
eight major divisions. However, the power demand of the population is managed
through nine distinct power zones that cover the entire country. We collected individ-
ual area loads to cover the load demand of the whole country. Subsequently, these
data are organized in an Excel spreadsheet for closer examination. The nine different
zones’ load patterns are presented in Figure 4. It is apparent from the figure that the
load demand has increased over the years. Notably, the dataset exhibits significant
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noise, reflecting the complexities of real-world data. The total yearly demand in
Bangladesh is displayed in the box plot in Figure 5, which outlines each year’s mean,
standard deviations, and interquartile range. Compared to the earlier years in the
observation period, there has been more variation in demand in recent years. This
overall upward trend underscores the increasing need for electricity each year.

Figure 4. Load demand of nine regions from 2014 to 2022.

Figure 5. Box plot of the total load demand from 2014 to 2022.

2. Outlier Detection: The initially collected dataset includes a considerable amount of
outlier observations. Due to the non-stationary characteristics present in our dataset,
it is challenging to adopt traditional outlier detection mechanisms. Hence, we have
implemented a simple yet efficient mechanism to detect problematic measurements ef-
fectively. We have divided our dataset into K subsections for this technique. Then, we
calculated the interquartile range (IQR) in each subsection. A sample is considered an



Big Data Cogn. Comput. 2024, 8, 12 10 of 21

outlier if the value is less than (Q1− 1.5IQR) and greater than (Q3 + 1.5IQR). Many
studies consider removing the outlier values. However, we uniquely fix the outliers
in this research. Since the electrical demand dataset also has weekly seasonality, we
consider the average of 4 days, which is the value of two weeks in the past and future,
instead of the previous outlier value as shown in Equation (7). Here, D(i) represents
the electricity demand of ith index for any segment. The pseudocode for the outlier
detection is presented in Algorithm 1. For simplicity of illustration, we focused on two
cities, Cumilla and Khulna, in Figure 6. These figures illustrate the demand of these
two regions before and after handling outlier measurements. Evidently, the proposed
technique in this study can successfully identify and fix the outliers.

Dnew(i) =
D(i− 14) + D(i− 7) + D(i + 7) + D(i + 14)

4
(7)

Algorithm 1: Proposed outlier detection method

1 Data D (x1, x2, x3, . . . xN) ▷ N observations for each region
2 S← int(N

K ) ▷ K segments of length S
3 for i = 0, . . . , K− 1 do
4 Dk ← (xi, xi+1, . . . xi+S)
5 IQR = Q3−Q1
6 min← (Q1− 1.5IQR)
7 max ← (Q3 + 1.5IQR)
8 for s = 0, . . . , S− 1 do
9 if (Dk(s) > max) | (Dk(s) < min) then

10
sum← Dk(i + s− 14) + Dk(i + s− 7) + Dk(i + s + 7)

+Dk(i + s + 14)
11 Dk,new(s)← sum

4
12 Dk(s)← Dk,new(s)
13 else
14 continue
15 end
16 end
17 i← i + S
18 end

(a) (b)

Figure 6. Handling outlier measurements with IQR and load averaging. (a) Before and after handling
outliers of load demand in Cumilla region. (b) Before and after handling outliers of load demand in
Khulna region.
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3. Feature Selection: Choosing the right features is essential for building a load fore-
casting model. Too few features may lead to inaccurate predictions, while having too
many may increase the computational burden. Figure 4 reveals that the load changes
periodically throughout nine years. At first, the demand of different areas, time
lags, temperature, relative humidity, and month are considered the feature vectors
following the convention of existing studies [1]. This research leverages the Pearson
correlation matrix of features to determine and assess the correlation between load
demand and other relevant factors. We begin by visualizing the relationships between
individual load values from nine different locations in a correlation matrix, shown
here in Figure 7a, which reveals a strong relationship with values between 1.00 and
0.80 and indicates that the demand of one region may also be dependent on the load
dynamics from other areas. Various time delay (TD) variables are constructed by
concatenating load data from earlier instances to select the appropriate lookback
window for the DL models. In other words, we must determine how much we have
to look into the past to predict the future. The dataset contains various time delay
(TD) variables that incorporate past load values like the previous (5–40)th days’ load,
which is represented by (TD5, TD10, TD15, . . . , TD40) These variables are generated
by stacking previous values of the dataset’s load. For simplicity, we focus on just
two regions here, Dhaka and Chittagong, when showing the correlation matrix in
Figure 7b,c. The correlation values of the time delays for Dhaka and Chittagong
are 0.87–0.73 and 0.91–0.84, respectively, which is very impressive. However for the
sake of computational efficiency, we have selected 20 as the lookback window. From
Figure 7b,c, low correlation values for variables like temperature and humidity sug-
gest a poor or nonexistent linear relationship with the load. Thus, only the demands
of individual areas and months are considered fit for use as features in deep learning
(DL) model construction. In total, we have 3407 samples with ten features; nine are
electrical loads of nine different areas, and the rest one is month.

4. Data Augmentation: We have augmented the primary clean dataset, which offers
finer granularity than the initial one. This augmentation is achieved through linear
Interpolation, as illustrated in the Equation (8). Interpolation is a technique for
estimating or forecasting new values from known or existing values. The main
dataset is filled with interpolated measurement data at every one-hour interval,
giving 81,768 samples. In the equation, Y1 and Y2 represent measurement data at any
two adjacent days X1 and X2. For any hour xϵ(x1, x2, . . . , x24) between X1 and X2,
the demand data are denoted by y.

y = Y1 + (x−X1)
(Y2 − Y1)

(X2 −X1)
(8)

5. Normalization: Electric load is recorded on a large scale, commonly in megawatts
(MW). However, DL models are more effective when working with smaller value
ranges. To ensure optimal performance, the load features have been reduced to the
range [0, 1] using the min–max scaling method in Equation (9). Here, x is the real
value of some feature that is to be transformed, xnew is the post-normalization value,
xmax and xmin represents the highest and lowest value in the feature measurements.

xnew =
(x− xmin)

(xmax − xmin)
(9)

6. Data Framing: After scaling the load data, they are separated into three sets: training,
validation, and test sets. The test dataset included data from July 2022 to April 2023,
while the training period spanned from January 2014 to June 2022. Validation data
are taken from the training data (last 10%), yielding an 90:10 training-to-validation
data ratio. Our model is trained on the augmented data and tested on the original
historical data. Each set is converted into (samples, time sequence, features) format.
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(a)

(b) (c)

Figure 7. Correlation matrix of the features. (a) Correlation matrix among different power zones.
(b) Correlation matrix of load demand with time delay (TD) and weather parameters in Chittagong.
(c) Correlation matrix of load demand with time delay (TD) and weather parameters in Dhaka.

3.2. Development Environment

All DL models in this study are trained and tested using the Python-based Keras
Tensorflow Module, an open-source ML framework. Our modeling was conducted on a
MacBook Pro (13-inch, model M1, 2020) with 16 GB of RAM and two core processors. We
have selected the platform due to its high computational capacity and energy efficiency
compared to widely used alternative platforms such as Google Colab and NVIDIA GPUs
for training DL models. The unique hardware features of the MacBook Pro, coupled with a
focus on leveraging existing resources, not only make it a viable option but also empower
researchers to conduct impactful and environmentally conscious academic work while
maintaining financial prudence.

3.3. Model Architecture

Existing studies demonstrated the effectiveness of DL-based models such as ANN,
CNN, and LSTM compared to conventional ML-based algorithms [10,16]. RNN is a type of
DL algorithm that utilizes feedback connection, enabling it to transfer information from
one timestep to another. Thus, it allows the learning of a power system’s load dynamic over
time. To address the gradient vanishing problem, variants of RNN, such as GRU and LSTM
that utilize cell state to carry information across many timesteps, are developed. Thus,
as shown in the existing literature, they successfully analyze time sequence data, such as
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historical load demand. On the other hand, CNN can learn temporal and spatial patterns
in load data. Hence, they can extract meaningful features that enable hybrid approaches
combined with other techniques. So, we have selected several deep learning and hybrid
models, such as LSTM, GRU, CNN-LSTM, and CNN-GRU to compare their performance
in this study. Transformer, a state-of-the-art DL algorithm that has a multiheaded self-
attention mechanism, was first introduced for machine translation [36]. It removes the
sequential information processing limitation of RNNs, allowing parallel computations.
In recent years, Transformer and its variant algorithms have been widely used in many time
series forecasting, outperforming LSTMs. So, we have also experimented with Transformer,
CNN-Transformer, and Transformer-LSTM to compare their performance with other DL-
based models. A naive predictor is also chosen as a baseline to evaluate the experimented
algorithms. This simple baseline model predicts the load demand equal to the demand of
the day one week ago. Our study found that the CNN-GRU model outperformed the other
models, achieving the lowest error score. A block diagram representation of the proposed
model’s architecture is illustrated in Figure 8.

Figure 8. Structure of the proposed CNN-GRU model.

Properly selecting hyperparameters, such as the number of hidden layers, the size of
each layer, the activation function, and the learning rate, holds significant importance in
designing the architecture of DL-based models. Large values for these hyperparameters can
lead to overfitting, while small values may result in a lack of convergence during training.
Finding the optimum set of hyperparameters is a challenging task that is inherently non-
deterministic and polynomial. In this study, the hyperparameters of the proposed model
were chosen using a trial and error method while experimenting with different ranges of
values. In the proposed model architecture, a 1D-CNN is employed to extract features from
the historical load dataset, where the number of filters and kernel size are crucial parameters.
Various experiments were conducted with different numbers of filters (32, 64, 128) and
different kernel sizes (3, 5, 7). It was observed that 128 filters with a window size of
3 generate the lowest validation loss. The CNN layer is followed by a max-pooling layer
to downsample the number of parameters. The features extracted by the ConvNet and
max-pooling layer are then passed on to a GRU layer, the role of which is to learn the
temporal characteristics of the inputs. Various experiments were conducted with different
numbers of hidden units for the GRU layer, with the optimum value of 64 units.

We have employed the rectified linear unit (ReLU) as the activation function for each
hidden layer in the CNN module within our model. ReLU’s simple yet effective non-
linearity facilitates modeling complex patterns in time series data by enabling the network
to learn quickly and avoid saturation. Compared to traditional activation functions such
as sigmoid or hyperbolic tangent (tanh), ReLU does not suffer from vanishing gradients,
which is crucial for capturing long-term dependencies in sequential data. On the other hand,
we have adopted tanh activation in the GRU layer. Because GRU is internally designed
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with gating mechanisms to regulate the flow of information through the network, the tanh
activation function is often chosen because its output range aligns well with the gating
logic, allowing the gates to control the information flow more effectively. Dropout is a regu-
larization technique that randomly deactivates neurons in the Neural Network. We have
incorporated dropout as a regularization technique, which randomly deactivates neurons
in the Neural Network to mitigate overfitting and enhance generalization. A dropout rate
of 0.1 was chosen for this study, as excessively large dropout rates can hinder convergence,
leading to underfitting. The Adam optimizer was selected for training the model weights
due to its adaptability to sparse and noisy gradients, efficient memory usage, and robust-
ness to initial learning rate selection. A dense layer follows the GRU layer, and the output
is obtained from nine heads with linear activation for regression, each corresponding to
the demand output for different regions. Integrating CNN and GRU in a hybrid approach
aims to leverage the strengths of both models to enhance accuracy. In Table 3, the details
of parameters are depicted. In our study, all models were trained over 100 epochs with
Keras’s early stopping callback. The proposed model is trained and validated on interpo-
lated data, and the test is performed on the real data set. The models’ ability to forecast a
seven-day-ahead load was assessed using the test set, which represented unobserved data
for the models.

Table 3. Hyperparameters of the proposed hybrid CNN-GRU model.

Parameter Setting

Optimizer Adam
Activation function Relu (CNN), tanh(GRU)

Loss function Mean squared error (MSE)
Learning rate 10−5

Batch size 64
Epoch 100

Time lag 20 days look back
Train function gradient descent

Dropout 0.1
Number of hidden units 128 (CNN), 64 (GRU)

4. Results

In this section, we discuss the model performances on the test observations. The pro-
posed technique in this study simultaneously predicts week-ahead demand in all divi-
sions in Bangladesh. To evaluate the performance of our forecasting model, we have
used root mean squared error (RMSE) and mean absolute percentage error (MAPE).
Equations (10) and (11) demonstrate the mathematical formulation for RMSE and MAPE
respectively, where yi and ŷi are the actual and predicted values of N samples. These
metrics have become widely used for their effectiveness in assessing the accuracy of fore-
casting results.

RMSE =

√
∑N

i=1(yi − ŷ)2

N
(10)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣ (yi − ŷi)

yi

∣∣∣∣ (11)

The real-world power system is massive and very complex. The power system’s
highly non-linear properties and randomness introduce prediction challenges. This can
be observed in the figures where the actual data consist of sudden variations. To keep the
illustrations clear and concise, we showcase the prediction outcomes of only the three top-
scoring models: CNN-GRU, GRU, and CNN-Transformer. The figures verify that the CNN-
GRU model can follow the demand trend more closely than other models. Table 4 compares
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the MAPE of several models over a seven-day forecasting period in nine distinct zones for
the time period between July and December 2022. The RMSE error obtained from different
models for the same time period is listed in Table 5. The MAPE scores of the naive predictor
for nine different zones are 0.0539, 0.0641, 0.0845, 0.0729, 0.1227, 0.0689, 0.0583, 0.0977,
and 0.0774, respectively, and for the corresponding areas, the RMSE scores are 310.9725,
100.9114, 132.3682, 94.7536, 76.7995, 135.4886, 98.0518, 43.4898, and 74.0442. Evidently,
the proposed CNN-GRU model is more effective than the naive baseline as well as other DL
approaches, achieving the least MAPE of 0.0544 in the Chittagong Region and the highest
score of 0.0905 in Sylhet. Similarly, the lowest and highest RMSE scores of the proposed
model are 33.5080 and 378.2723, respectively, for Barishal and Dhaka. In comparison,
the second best model, namely GRU, achieved MAPE score ranging from 0.0602 to 0.0931
across all division on test data. The proposed model significantly outperforms GRU in all
of the regions. We have investigated the outcome of famous transformer architecture on
our task. Among the transformer models, only the CNN-Transformer hybrid approach
performed better, obtaining the least RMSE of 33.1362 in Barishal and the highest of 434.7402
in Dhaka. In comparison, the proposed technique performed 15.98% and 25.37% better in
these two regions, respectively. Although CNN-Transformer performed better than the
proposed method in Barishal Division, both RMSE and MAPE scores are close for both
models. The graphical representation in Figure 9 illustrates the forecast results for the nine
regions spanning from July 2022 to April 2023. The figures validate the seasonal variations
as shown in our prediction curve during the summer, winter, spring, and autumn months.
It is worth noting that, in certain regions, as the prediction timeframe extends further from
the training period, the models exhibit suboptimal performance. This can be attributed to
the limitation of traditional DL models, as these algorithms require complete retraining
with new observations. MAPE error rates for all the weeks from July to December 2022 are
illustrated in Figure 10 concerning the three best-performing models. Similarly, the RMSE
scores for the same observation periods are depicted in Figure 11. Overall, CNN-GRU
achieved the lowest MAPE error across the observation periods for all regions.

Table 4. Week-ahead forecasting MAPE scores on the test dataset for various models spanning from
July to December 2022.

Model Dhaka Chittagong Comilla Mymensingh Sylhet khulna Rajshahi Barishal Rangpur

Naive Predictor 0.0539 0.0641 0.0845 0.0729 0.1227 0.0689 0.0583 0.0977 0.0774
Transformer 0.0939 0.0681 0.0761 0.0922 0.0933 0.0619 0.0648 0.0749 0.1092

Transformer-LSTM 0.1117 0.0871 0.0814 0.0832 0.1007 0.0797 0.0876 0.1088 0.1041
CNN-Transformer 0.0870 0.0716 0.0716 0.0801 0.0911 0.0549 0.0619 0.0762 0.0882

LSTM 0.1094 0.0766 0.0820 0.1031 0.0986 0.0792 0.0680 0.0876 0.1085
CNN-LSTM 0.1072 0.0683 0.0994 0.1042 0.1046 0.0762 0.0780 0.0856 0.0894

GRU 0.0897 0.0602 0.0763 0.0627 0.0931 0.0696 0.0795 0.0878 0.0908
CNN-GRU 0.0749 0.0544 0.0704 0.0623 0.0905 0.0567 0.0647 0.0757 0.0782

Table 5. Week-ahead forecasting RMSE scores on the test dataset for various models spanning from
July to December 2022.

Model Dhaka Chittagong Cumilla Mymensingh Sylhet khulna Rajshahi Barishal Rangpur

Naive Predictor 310.9725 100.9114 132.3682 94.7536 76.7995 135.4886 98.0518 43.4898 74.0442
Transformer 469.0362 107.0261 108.3956 105.5932 59.3066 114.3125 104.3048 32.6714 99.9648

CNN-Transformer 434.7402 113.7197 107.6980 93.5999 58.4233 108.5053 101.6621 33.1362 79.0824
Transformer-LSTM 539.9371 132.2475 115.1292 102.6253 65.5684 138.2863 133.7166 42.8296 95.3580

LSTM 533.1599 120.9533 120.9803 127.3223 63.6375 146.2571 111.7225 36.6356 104.2182
CNN-LSTM 523.2939 106.9882 141.4147 127.6597 66.5430 135.7652 124.2045 35.2644 84.1895

GRU 459.5618 95.2821 109.6743 80.2239 59.3868 125.3311 131.5452 37.9310 89.2588
CNN-GRU 378.2729 87.3899 105.8668 74.8767 57.9106 108.7530 98.7994 33.5080 71.7949
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(a) Dhaka (b) Chittagong (c) Cumilla

(d) Mymensingh (e) Sylhet (f) Khulna

(g) Rajshahi (h) Barishal (i) Rangpur

Figure 9. Load demand prediction for nine regions from July 2022 to April 2023 using GRU, CNN-
Transformer, and the proposed CNN-GRU method.
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(a) Dhaka (b) Chittagong (c) Cumilla

(d) Mymensingh (e) Sylhet (f) Khulna

(g) Rajshahi (h) Barishal (i) Rangpur

Figure 10. MAPE loss of different weeks in nine regions for October, November, and December.
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(a) Dhaka (b) Chittagong (c) Cumilla

(d) Mymensingh (e) Sylhet (f) Khulna

(g) Rajshahi (h) Barishal (i) Rangpur

Figure 11. RMSE for different weeks in nine regions for October, November, and December.

5. Conclusions

STLF significantly contributes to the planning and control of modern smart grid
systems. While research in STLF mainly focuses on predicting load demand in particular
regions, our study revealed that learning the load dynamic in the different areas also
increases forecasting accuracy. This study proposes CNN-GRU, a hybrid deep learning
approach that simultaneously predicts the week-ahead load demand of nine different
power zones. This hybrid approach allows the CNN to be used as a feature extractor while
GRU learns the temporal dynamics of the load demand. The historical demand dataset
of this study is developed from the daily records of PGCB from 2014 to 2023. Due to the
uncertain nature of the power demand, it consists of many noise and outlier components.
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We have adopted IQR and load-averaging techniques to fix the outliers. Moreover, we
have employed data augmentation by employing linear interpolation to increase model
performance. The proposed model is compared with other widely used DL approaches such
as LSTM, GRU, CNN-LSTM, and Transformer using MAPE and RMSE. Achieving better
forecasting accuracy in all regions is challenging, but overall, CNN-GRU outperformed
the other models, reaching the lowest error score in most of the nine areas. Although we
augmented the daily demand data, using hourly or half-hourly data could further improve
the accuracy of our model by providing more precise information on the trends and patterns
in the data. We did not consider weather parameters such as temperature and humidity
as they lack a strong correlation with the other parameters in our dataset. This finding
is inconsistent with the previous literature, suggesting that weather-related features may
not significantly impact the accuracy of electrical load forecasting for countries with a
relatively stable climate, such as subtropical regions like Bangladesh. The dataset and the
developed system are fully accessible to motivate further research. Despite being successful
in many sequence learning tasks, the Transformer fails to perform better than CNN-GRU.
This may be due to the higher complexity of its structure. However, it might demonstrate
superior performance for longer intervals. Thus, in the future, we aim to investigate the
performance of Transformer-based models for mid-term and long-term load forecasting.
We also plan to explore strategies for decomposing time series and leverage the trend,
seasonality, and residual data as features in combination with hybrid machine learning
approaches to develop a powerful load forecasting system.
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