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Abstract: In the field of education, cognitive diagnosis is crucial for achieving personalized learning.
The widely adopted DINA (Deterministic Inputs, Noisy And gate) model uncovers students’ mastery
of essential skills necessary to answer questions correctly. However, existing DINA-based approaches
overlook the dependency between knowledge points, and their model training process is compu-
tationally inefficient for large datasets. In this paper, we propose a new cognitive diagnosis model
called BNMI-DINA, which stands for Bayesian Network-based Multiprocess Incremental DINA.
Our proposed model aims to enhance personalized learning by providing accurate and detailed
assessments of students’ cognitive abilities. By incorporating a Bayesian network, BNMI-DINA
establishes the dependency relationship between knowledge points, enabling more accurate evalua-
tions of students’ mastery levels. To enhance model convergence speed, key steps of our proposed
algorithm are parallelized. We also provide theoretical proof of the convergence of BNMI-DINA.
Extensive experiments demonstrate that our approach effectively enhances model accuracy and
reduces computational time compared to state-of-the-art cognitive diagnosis models.

Keywords: cognitive diagnosis; DINA model; bayesian networks

1. Introduction

The emergence of the online education industry has revolutionized traditional educa-
tional approaches. Leveraging information technology, online education offers students
convenient access to a vast array of courses and learning materials, thus promoting re-
source sharing and ensuring educational equity. However, with the exponential growth of
available learning resources, accurately assessing a student’s mastery level of specific skills
and knowledge has become a pressing challenge. Cognitive diagnosis models (CDMs),
initially introduced by [1], have been developed to quantify the latent abilities that signifi-
cantly impact students’ performance. CDMs [2,3] have gained widespread recognition and
interest from both academic and industry domains by providing insights into the cognitive
skills underlying students’ overall scores [4].

The DINA (Deterministic Inputs, Noisy And gate) model [5] is recognized as a promi-
nent cognitive diagnosis approach, which effectively integrates the Q-matrix and students’
response patterns to assess their mastery level and identify potential error patterns within
each knowledge point. By employing statistical techniques such as maximum likelihood es-
timation [6], the DINA model equips educators with a comprehensive cognitive diagnostic
tool, enabling the formulation of personalized teaching strategies that cater to individuals’
performance across diverse knowledge points.

However, the DINA model faces various challenges in practical applications. Firstly,
it employs discrete variables to indicate whether a student has mastered a particular
knowledge point, with 1 representing mastery and 0 representing non-mastery. This
approach becomes problematic in subject areas that require continuous assessment, such as

Big Data Cogn. Comput. 2024, 8, 4. https://doi.org/10.3390/bdcc8010004 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc8010004
https://doi.org/10.3390/bdcc8010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0009-0005-8849-4432
https://doi.org/10.3390/bdcc8010004
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc8010004?type=check_update&version=2


Big Data Cogn. Comput. 2024, 8, 4 2 of 19

art evaluation in domains like painting and music. Secondly, the DINA model is unable to
account for the interrelatedness between knowledge points within questions, which limits
its effectiveness in capturing the comprehensive cognitive skills of students. Thirdly, the
training of traditional DINA models becomes computationally expensive due to the use
of large datasets, which may contain millions of student records and question items from
online education platforms.

In this paper, to address these aforementioned challenges, we propose a precise and
efficient cognitive diagnosis approach called BNMI-DINA (Bayesian Network-based Multi-
process Incremental DINA). By incorporating the probabilistic inference and uncertainty
modeling capabilities of Bayesian networks, we can more accurately assess the mastery
level of students’ knowledge points. Additionally, we expedite the training process through
parallel computation for parameter estimation. The key contributions of this paper are
outlined as follows:

• To the best of our knowledge, we are the first to integrate Bayesian networks into the
DINA model to obtain continuous mastery levels for knowledge points and account
for their interdependence. Our proposed model overcomes the limitation of the DINA
model by considering the dependencies between knowledge points, enabling a more
comprehensive evaluation of students’ cognitive skills.

• We propose a parallelization method that effectively parallelizes the key steps of
our BNMI-DINA model, thereby significantly reducing the computational burden
associated with model training. This parallelization enables the application of BNMI-
DINA to large datasets. Additionally, we provide theoretical proof of the convergence
of BNMI-DINA, establishing its validity and ensuring reliable results.

• We conduct extensive experiments using real datasets to validate the performance of
BNMI-DINA. The results of our experiments demonstrate the superiority of BNMI-
DINA when compared to other baseline models. Specifically, BNMI-DINA outper-
forms the alternatives in terms of both model accuracy and training efficiency, solidi-
fying its position as a highly effective and efficient cognitive diagnosis approach.

The remainder of this paper is organized as follows: in Section 2, we conduct a
comprehensive review of commonly used approaches in cognitive diagnosis and Bayesian
networks. In Section 3, we present a detailed overview of the DINA model and provide
necessary background knowledge. Next, in Sections 4 and 5, we propose our novel
approach and provide a proof of its convergence, respectively. Section 6 showcases the
experimental results, which demonstrate the effectiveness of our approach. Finally, in
Section 7, we conclude the paper by summarizing the key findings and discussing avenues
for future research.

2. Related Work

Cognitive diagnosis, initially proposed by educational psychologists for psycholog-
ical measurement, has its roots in the 1990s. Frederiksen et al. [7] were credited with
formally introducing the theories and concepts related to cognitive diagnosis in 1993, while
Nichols et al. [8] further provided a comprehensive summary and categorization of these
theories and concepts in 1995. Leighton et al. [9] considered CDM as a promising evaluation
model that can delve into the underlying structure of a field and identify problems and
areas that need improvement in 2007. Lee et al. [10] proposed that tests informed by the
Cognitive Diagnosis Algorithm (CDA) can specify the underlying knowledge structure
behind the overall test score, and this specification can serve as feedback to meet individual
and group needs through remedial instruction and improve instruction to enhance learning
and competency in 2009. As a diagnostic approach to assessment, CDA needs statistical
and mathematical models to operationalize the assumptions. CDMs are psychometric
models that make use of an item response pattern in order to determine test-takers’ cog-
nitive abilities [11]. In all CDA studies, the selection of statistical models is a critical step
and requires close attention and consideration of model selection criteria. However, in
most CDA studies, tests applying a predetermined CDM are chosen based on the char-
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acteristics of the model and the practicality issue. So Li et al. [12] carefully studied the
considerations required for CDM selection for reading comprehension tests and found that
when the relationship between cognitive skills is not completely clear, it is safe to use a
saturated (more complex) CDM, which can flexibly adapt to different types of relationships
between skills in 2016. Currently, cognitive diagnosis can be defined in both broad and
narrow terms. Broadly speaking, cognitive diagnosis leverages modern technologies such
as computer-based testing and statistical methods to assess users’ cognitive abilities and
structures [13,14]. On the other hand, in a narrower sense, cognitive diagnosis classifies
users based on their mastery level of specific knowledge points, with the classification
results used for personalized educational interventions.

The application of cognitive diagnosis in the education industry has led to a shift
towards personalized education in traditional online classrooms [15,16]. Cognitive diag-
nosis models can be differentiated from two perspectives. Firstly, they can be classified
as continuous diagnosis models or discrete diagnosis models, depending on their ability
to diagnose continuous scores. Secondly, cognitive diagnosis models can be classified
based on their approach to handling dimensions of students’ cognitive abilities. This
categorization results in one-dimensional skill diagnosis models and multidimensional
skill diagnosis models. Currently, there are more than 60 cognitive diagnosis models avail-
able. These models include the rule-based model, attribute hierarchy model, Deterministic
Inputs, Noisy And gate (DINA) model, as well as various variations [17,18] such as the
Fuzzy CDF model [19]. Improved versions of the DINA model, such as the HO-DINA [20],
P-DINA [21], G-DINA [22], and Incremental DINA (I-DINA) model [23], are also among
the existing models used in cognitive diagnosis research.

The history of Bayesian networks dates back to the early 1980s. In 1988, Pearl et al. [24]
first introduced the fundamental concepts and inference methods of Bayesian networks
in their seminal paper. Notably, Pearl’s work also introduced the concept of the “causal
graph”, which expanded probabilistic graph models to incorporate causal relationships,
thereby establishing the groundwork for further development. In the 1990s, research in
the field expanded from representation issues to encompass inference and learning [25],
making Bayesian networks more practical in various applications. With the advancement
of computational power and the exponential growth of data in the 21st century, Bayesian
networks have found widespread application in diverse domains such as medicine [26],
finance [27], and natural language processing [28]. Research in the field has also made
significant progress in reasoning, learning, and the application of Bayesian networks [29].

In recent research, the integration of Bayesian networks and the DINA model has
gained attention, with notable applications in student modeling, knowledge tracing, and
skill topology. For instance, Conati et al. [30] applied Bayesian networks to the Andes
project [31], an intelligent educational system focused on Newtonian physics, to model
uncertainty within students’ reasoning and learning processes. In the domain of knowledge
tracing [32], Pelánek [33] introduced Bayesian Knowledge Tracing (BKT), which employed
Bayesian networks to infer latent student variables within knowledge-tracing models.
Furthermore, Käser et al. [32] utilized dynamic Bayesian networks (DBN) to model skill
topology in knowledge tracking. While these works have made significant contributions to
the application of Bayesian networks, their main focus lies in student modeling, knowledge
tracing, and skill topology. In parallel, recent breakthroughs in asynchronous federated
meta-learning, exemplified by AFMeta, have effectively addressed issues such as straggler
and over-fitting, resulting in a substantial improvement in model performance and a
notable reduction in learning time [34]. In the field of education-based information analysis,
the examination of student learning assessment methods based on text data has emerged as
a crucial research area. Liu et al. [35] introduced an innovative learning evaluation method
based on real-time text data attributes, overcoming the limitations of traditional evaluation
methods. The outcomes highlight the superior effectiveness of utilizing real-time attribute
text data in measuring students’ learning outcomes.
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Table 1 provides a concise overview of the key aspects explored in order to clearly
demonstrate the scope of the related work.

Table 1. Overview of key aspects of related work.

Aspect Summary

Cognitive Diagnosis Over 60 cognitive diagnosis models have been developed, including the rule-based model, attribute
hierarchy model, DINA model, and various variations such as the Fuzzy CDF model.

Bayesian Networks Bayesian Networks were introduced in 1988 and further expanded in the 1990s, leading to their widespread
application in various domains.

DINA Model The DINA model has recently been a focus of exploration in education for student modeling, knowledge
tracing, and skill topology.

Our Work Our work not only incorporates a Bayesian network to capture the dependency relationship between
knowledge points, but also enhances computational efficiency, particularly for large datasets.

In contrast, our work delves deeper into cognitive diagnosis problems. We not only
incorporate a Bayesian network to capture the dependency relationship between knowledge
points but also enhance computational efficiency, especially for large datasets.

3. Preliminaries

In this section, we will provide a detailed description of the DINA model and its
corresponding symbolic representation.

As shown in Figure 1, the DINA model diagnoses students’ cognitive abilities by utiliz-
ing the question-knowledge matrix Q and the user-question response matrix R. Compared
to other cognitive diagnosis models, DINA is characterized by its simplicity, flexibility, and
ease of implementation and understanding.
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Figure 1. An overview of the DINA model. The rectangle represents the matrix, the circle represents
a variable and the arrow refers to the computational dependencies between different variables.
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In this model, the variable qυk represents the assessment of knowledge point k by
question v, ruv represents the score of student u on question v, and ηuv represents the
latent response of student u on question v. Additionally, the mastery level of the assessed
knowledge points by students is described as a multi-dimensional [36] knowledge point
mastery vector

αu =
[
αu1, αu2, · · · , αuK

]
, (1)

where αuk = 1 represents that student u has mastered knowledge point k. Otherwise,
αuk = 0. The main notions are summarized in Table 2.

The core formula of the model is

ηuv =
K

∏
k=1

α
qυk
uk , (2)

where the exponential structure represents the logical “AND” relationship among the
knowledge points being assessed. The model introduces the slip parameter sv and the
guess parameter gv to more accurately estimate the students’ mastery status. The slip
parameter sv represents the probability of giving a wrong response due to error, given that
the student has mastered the knowledge point. The guess parameter gv represents the
probability of giving a correct response through guessing or luck when the student has not
mastered the knowledge point. The definitions of the above two parameters are as follows:

gv = P(ruv = 1|ηuv = 0), (3)

sv = P(ruv = 0|ηuv = 1). (4)

By combining the slip factor and guess factor, it is possible to estimate the probability
of a student answering a question correctly. Given the multi-dimensional knowledge point
mastery vector αu, the probability of student u answering question v correctly is as follows:

P(ruυ = 1 | αu) = g1−ηuυ
υ (1− sυ)

ηuυ . (5)

Through derivation, the DINA model can determine the joint probability of a stu-
dent’s response pattern for all questions. In cases where the student’s multi-dimensional
knowledge point mastery vector is known, the model further seeks to estimate the values
of the slip parameter sv and guess parameter gv. However, in practical scenarios, the
student’s multi-dimensional knowledge point mastery vector is often unknown. Therefore,
the marginal likelihood function and the maximum likelihood estimation algorithm are
introduced to estimate the values of sv and gv.

Finally, by maximizing the posterior probability of the student’s question responses
and incorporating the estimated slip and guess parameters, the DINA model can derive
the estimated values of the student’s multi-dimensional knowledge point mastery vec-
tor. This data-driven and probabilistic approach offered by the DINA model enables
accurate assessment of students’ knowledge mastery and provides valuable support for
personalized learning.

However, the DINA model encounters several challenges in practical applications.
Firstly, it uses discrete variables to denote whether a student has mastered the related
knowledge points with 1 as acquired and 0 as not acquired [37]. This approach poses
difficulties when dealing with subject areas that demand continuous assessment, such
as art evaluation in domains like painting and music. Secondly, questions may contain
knowledge points that are related to each other, and the DINA model fails to handle this
case. Thirdly, millions of student records and question items are collected from online
education platforms, which brings significant computational costs for the training of
traditional DINA models.
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Table 2. Summary of major notations.

Symbol Description

Q Question-Knowledge point matrix
R Student-Question score matrix
U Set of student blocks
i Student number

Ri Question score of student i
Ra Computed question scores of student block Ua

zl(αl) Probability mass function (joint probability distribution function)
o Initial knowledge point mastery probability
γ Posterior probability of knowledge point mastery
η Hidden mastery status matrix
r Student’s score
k Sub-knowledge point
K Total number of knowledge points
x Parent knowledge point
u Student user
t Iteration number
l Combination of knowledge point mastery
D Number of combinations of knowledge point mastery
α Matrix of knowledge point mastery for all students

αu Matrix of knowledge point mastery for student user u
αl Matrix of knowledge point mastery for combination l
α̂ Estimated matrix of knowledge point mastery for student
s Slip parameter
g Guess parameter
v Question
V Total number of questions
n Number of parent knowledge points
N Total number of student blocks

4. Design of BNMI-DINA Model

This section presents a comprehensive outline of our proposed BNMI-DINA model,
which aims to address the limitations of the traditional DINA model mentioned earlier.

4.1. Framework Overview

As shown in Figure 2, BNMI-DINA mainly contains two modules, namely, a Bayesian
network module and an MI-DINA module. Initially, the student’s knowledge point mastery
is represented by the α matrix, which serves as the input for the Bayesian network. Through
Bayesian network modeling, the hierarchical relationships among knowledge points are
revealed. By computing the mastery probability for each knowledge point using the
posterior probabilities, a vector of knowledge point mastery probabilities is generated.
Subsequently, this vector is combined with the student’s score matrix R and input into
the DINA model. By taking into account the slip factor and guess factor, the DINA
model estimates the matrix of the student’s knowledge point mastery. This integrated
methodology provides educators with a more precise understanding of students’ mastery
levels across different knowledge points, enabling them to deliver targeted instruction and
guidance effectively.

4.2. Bayesian Network Module

We first introduce the Bayesian network module of the model. In the Bayesian network
module, each node represents a knowledge point, and the directed arrows represent the
dependency relationships between knowledge points [38]. In Figure 2, for example, node
b represents a knowledge point b, and node b is a successor of node a, indicating that
knowledge point a is a prerequisite for knowledge point b. Based on the obtained matrix of
knowledge point mastery, the number of students who scored 1 on each knowledge point is
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counted and then divided by the total number of students to estimate the prior probability
ouk of student u mastering knowledge point k. The calculation formula of ouk is as follows:

ouk =
β(k, sc = 1)

U
, (6)

where sc is the student’s score on a certain knowledge point, and the β function is defined
as the count of students with a score of 1 (i.e., sc = 1) for knowledge point k.
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Figure 2. The framework of BNMI-DINA. Nodes a–e represent knowledge points.

Next, through the established Bayesian network, the individual knowledge level
γuk = P(αuk = 1) of student u on knowledge point k is obtained by analyzing the number
of parent nodes for each node [39]. Different scenarios are discussed below, based on the
number of parent nodes for each node.

No parent nodes: when a node has no parent nodes, such as node a in Figure 2, it
means that the knowledge point represented by node a has no predecessors. Thus, students
are able to begin learning this particular knowledge point without any prior knowledge.
Consequently, the mastery of this attribute by students is unaffected by any other attributes.
Therefore, the calculation formula for the probability of mastering this knowledge point
attribute is as follows:

γuk = ouk. (7)

One parent node: when a node has one parent node, such as node x = c in Figure 2,
to calculate the posterior probability more accurately, we introduce positive factor m+

uk|x
and negative factor m−uk|x, defined as follows:

m+
uk|x = P(αuk = 1|αux = 1)

m−uk|x = P(αuk = 1|αux = 0)
(8)



Big Data Cogn. Comput. 2024, 8, 4 8 of 19

If the value of m−uk|x is higher, even if knowledge point x is not mastered, it is more
likely to consider that the student has mastered knowledge point k. Therefore, in the
student’s learning process, the dependency of mastering k on mastering x is lower. If the
value of m+

uk|x is lower, even if the parent x is mastered, there is a tendency not to master
attribute k. Therefore, for students, attribute k is considered to be more difficult. In simpler
terms, the better a student masters the parent attribute, the better they will master the child
attribute. Therefore, the probability calculation formula for the mastery of this knowledge
point attribute is as follows:

γuk = m+
uk|xγux + m−uk|x(1− γux). (9)

Multiple parent nodes: when a node has multiple parent nodes, such as node e in
Figure 2, we can analyze it as follows. Firstly, if the mastery level of one of the parent
nodes is higher, then the mastery level of its child node should also be higher. In other
words, for a knowledge point P(αuk = 1|αux1 , · · · , αuxn), if the mastery level of parent node
xj(1 ≤ j ≤ n) is higher, then P is larger. Secondly, if one of the parent nodes is not mastered
or has a very low mastery level, then we should assume that the child node is also not
mastered or has a low mastery level. If one of the parent nodes is not mastered, then we
tend to believe that the child node has also not been mastered. Considering these properties,
it is found that the geometric mean can well describe the above properties. Therefore, the
following formula can be obtained as follows:

P(αuk = 1|αux1 , . . . , αuxn) =
n

∏
z=1

n
√

muk|xz(αuxz). (10)

For each joint probability of parent nodes x1, x2, · · · , xn, we have:

P(αux1 , · · · , αuxn) =
n

∏
z=1

((1− αuxz)(1− γuxz) + αuxz γuxz). (11)

Finally, γuk can be inferred as the expectation of P(αuk = αuxz). Therefore, we can
derive the probability calculation formula for the mastery of knowledge point attribute
as follows:

γuk = ∑
αux∈{0,1}

P(αux1 , · · · , αuxn)
n

∏
z=1

n
√

muk|xz(αuxz). (12)

4.3. MI-DINA Module

We proceed to introduce the MI-DINA module, which is designed to address the limi-
tations of traditional DINA models in terms of parameter estimation and training efficiency,
especially when dealing with educational assessments that involve large datasets and
complex models. MI-DINA is an innovative parallel cognitive diagnosis model that builds
upon the incremental DINA framework. This algorithm leverages the convergence and
maximum likelihood estimation properties of the EM algorithm [40] to address parameter
estimation issues associated with latent variables [41] and to partition data. The likelihood
function for the MI-DINA model is represented by Equation (13). Given the presence of un-
observable latent variables within the equation, the EM algorithm is introduced to estimate
unknown parameters effectively. The process of the EM algorithm can be summarized into
the following four steps:

1. Perform initialization operations for parameters that cannot be directly observed and
estimate model parameter values.

2. Based on the estimated model parameter values, estimation operations are performed
on parameters that cannot be directly observed.

3. Re-estimate the model parameters based on the parameter values estimated in step 2
that cannot be directly observed.
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4. Repeat steps 2–3 until the parameters converge.

Specifically, in the EM loop iteration process, the main role of E-stepis to use data and
existing models to perform estimation operations on parameters, and then use parameter
estimates to solve the expected value of the likelihood function.

L(R) =
U

∏
u=1

L(ru) =
U

∏
u=1

D

∑
l=1

L(ru | αl)P(αl), (13)

where L(ru) represents the marginal likelihood of the multidimensional knowledge state
vector αu for student u, D = 2K represents the total number of possible combinations for
the multidimensional knowledge state vector αu under the condition that the total number
of examined knowledge points is K, i.e., there are 2K combinations that are mutually
independent and do not influence each other. Similarly, P(αl) represents the probability of
the l-th combination, and its value is 1

2K , because in the DINA model, it is assumed that
these 2K combinations occur with equal probability. L(ru|αl) is defined as follows:

L(ru | αl) = L(ru1, ru2, · · · , ruV | αu = αl)

=
V

∏
v=1

Pv(αu)
ruv(1− Pv(αu))

(1−ruv),
(14)

where Pv(αu) is a shorthand for Equation (5). The procedure is decribed in Algorithm 1,
which mainly contains three steps as follows:

Initialization: in this step, we randomly initialize a set of data

Θ = {(s1, g1), (s2, g2), (s3, g3), · · · , (sV , gV)} (15)

followed by conducting the E-step and M-step in the EM algorithm.
E-step: in the DINA model, with the help of the estimated values of sv and gv obtained

from the previous iteration, the value of the matrix P(R | α) = [P(ru | αl)]U×2K is calcu-
lated, and at the same time, the value of the target matrix [P(αl | ru)]U×2K is calculated
using P(R | α). Here, u = 1, 2, · · · , U, l = 1, 2, · · · , 2K. However, when dealing with large
datasets, the computational time required for the E-step becomes extensive, resulting in
slow convergence and low computational efficiency. To address this issue, the MI-DINA
model incorporates the concept of the incremental DINA model: the user student popula-
tion U is divided into multiple disjoint blocks of student populations {U1, U2, · · · , UN},
and in each iteration of the E-step, the MI-DINA model selects only one of the blocks of
student populations to update the target likelihood function for calculating the estimated
values of the matrices. Meanwhile, the calculations for the other blocks are skipped, and
the likelihood function values obtained from the previous iteration are retained. This
ensures computational efficiency by reducing the number of calculations required for
parameter estimation.



Big Data Cogn. Comput. 2024, 8, 4 10 of 19

Algorithm 1 Pseudo-code of MI-DINA cognitive diagnostic process

Input:
Student-Question score matrix R;
Question-Knowledge point matrix Q;

Output:
Estimate of the multidimensional knowledge mastery vector for a student user α̂u;

1: Randomly initialize parameters Θ = {(s1, g1), (s2, g2), (s3, g3), . . . , (sV , gV)};
2: Divide the population of student users U in the dataset into multiple disjoint blocks of

student user groups {U1, U2, . . . , UN};
3: t = 1;
4: while Θ{(s1, g1), (s2, g2), (s3, g3), . . . , (sV , gV)} do not converge do
5: /* E-step */.
6: Random Select n;
7: if Ui ∈ Un then
8: Compute P(ru|αl)

t based on (st−1, gt−1);
9: else

10: P(ru|αl)
t ← P(ru|αl)

t−1;
11: end if
12: Compute P(α|R)t based on P(R|α)t;
13: /* M-step */
14: /* Perform parallel computation of 4 key parameters using multi-processing. */
15: for each l ∈ 2K do
16: I(0)vl ← ∑{αl :α′lqv<q′vq′v} ∑U

u=1 P(αl | ru);

17: I(1)vl ← ∑{αl :α′lqv=q′vqv} ∑U
u=1 P(αl | ru);

18: R(0)
vl ← ∑{αl :α′lqv<q′vqv} ∑U

u=1 P(αl | ru)riv;

19: R(1)
vl ← ∑{αl :α′lqv=q′vqv} ∑U

u=1 P(αl | ru)riv;
20: end for

21: ŝv ←
I(1)vl −R(1)

vl

I(1)vl

;

22: ĝv ←
R(0)

vl

I(0)vl

;

23: t← t + 1;
24: end while
25: α̂u = arg maxa P(α|ru);
26: return α̂u;

M-step: let ∂ log L(R)
∂sv

= 0 and ∂ log L(R)
∂gv

= 0 to obtain the following expressions for
estimating the guessing parameter and slip parameter:

ŝv =
I(1)vl − R(1)

vl

I(1)vl

, (16)

ĝv =
R(0)

vl

I(0)vl

, (17)

where I(0)vl represents the expected number of students in a population who have the same
level of mastery for the l-th knowledge point as the partially-mastery group being tested on
the v-th question among the 2K possible mastery configurations of the knowledge points;
R(0)

vl represents the expected number of students in I(0)vl who answer the v-th question

correctly; I(1)vl and R(1)
vl have similar meanings to I(0)vl and R(0)

vl , with the difference being

that I(1)vl and R(1)
vl correspond to the expected number of students in the population under
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the condition that they have fully mastered all knowledge points being tested on the v-th
question. Therefore, in M-step, the estimated values ∑U

u=1 P(αl | ru)ruv and ∑U
u=1 P(αl | ru)

calculated in E-step can be used to calculate the four key parameters. The calculation
formulas of the four key parameters are as follows:

I(0)vl = ∑
{αl :α′l qv<q′vq′v}

U

∑
u=1

P(αl | ru), (18)

I(1)vl = ∑
{αl :α′l qv=q′vqv}

U

∑
u=1

P(αl | ru), (19)

R(0)
vl = ∑

{αl :α′l qv<q′vqv}

U

∑
u=1

P(αl | ru)riv, (20)

R(1)
vl = ∑

{αl :α′l qv=q′vqv}

U

∑
u=1

P(αl | ru)riv. (21)

In addition to replacing the complete expectation step with the partial expectation
step in the incremental DINA model, the maximization step in MI-DINA model considers
the solution process of each key parameter as a subtask and executes multiple subtasks
in parallel. The main process waits for all the subprocesses to complete before integrating
the results to solve the key parameters. Compared to the incremental DINA model, the
MI-DINA model retains its original parameters, ensuring interpretability. Furthermore, the
EM algorithm is improved to not only guarantee parameter estimation through iterative
methods but also accelerate the overall diagnostic speed of the algorithm.

5. Convergence of BNMI-DINA Model

In this section, we will prove the convergence of our proposed BNMI-DINA model.
As previously mentioned, the BNMI-DINA model consists of two modules. In the Bayesian
network module, the mastery of the child nodes is determined based on the mastery of
the parent node, and samples are generated using a sampling method. This sampling
method follows a directed generative process, which does not affect the convergence of the
model [42]. Hence, it is only necessary to prove the convergence of the MI-DINA module.

The MI-DINA module employs a partial E-step, as suggested by [43], in order to
reduce computation time. In this approach, the entire group of student users, denoted as U,
is divided into multiple disjoint student blocks denoted as {U1, U2, . . . , UN}. During each
E-step computation, only one student block, Ua ∈ U, is processed to update the likelihood
function, while the likelihood function values for the remaining blocks are retained from the
previous iteration. This partial E-step strategy effectively reduces computational time and
enhances the algorithm’s efficiency. Moreover, the M-step is divided into multiple subtasks
that can be solved concurrently using parallel computing. Each subtask independently
handles key parameters, such as I(0)vl , I(1)vl , R(0)

vl and R(1)
vl . By utilizing parallel computing,

these subtasks can be executed simultaneously without any interference or mutual impact
on their computations. The main process waits for all subprocesses to complete and
then integrates their results. Importantly, this parallelized computing approach does not
compromise the convergence of the MI-DINA model. Even when incorporating parallel
computing, the algorithm is still capable of achieving convergence.

To ensure the validity of the proposed MI-DINA model, it is crucial to demonstrate its
convergence to a stable state. Here, we provide a proof of convergence for the MI-DINA
model using the EM algorithm.
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We aim to prove whether the MI-DINA model can achieve the maximization of the
logarithmic likelihood function l(R)t through iteration, given the question-knowledge
matrix Q and the user-question and score matrix R.

l(R) = lnL(R) = ln
u

∏
i=1

L(Ri)

=
u

∑
i=1

ln
D

∑
l=1

P(Ri | αl)P(αl)

=
u

∑
i=1

ln
D

∑
l=1

zl(αl)
P(Ri | αl)P(αl)

zl(αl)
.

(22)

The probability mass function of αl is denoted as zl(αl), so zl(αl) also satisfies the con-
straints 0 ≤ zl(αl) ≤ 1, ∑l zl(αl) = 1. Therefore, ∑D

l=1 zl(αl)
P(Ri |αl)P(αl)

zl(αl)
can be considered

as the expectation of P(Ri |αl)P(αl)
zl(αl)

with respect to zl(αl). By applying Jensen’s inequality,
we have:

ln
D

∑
l=1

zl(αl)
P(Ri | αl)P(αl)

zl(αl)
≥

D

∑
l=1

zl(αl)ln
P(Ri | αl)P(αl)

zl(αl)
. (23)

After substituting the formula into l(R), we obtain:

l(R) =
u

∑
i=1

ln
D

∑
l=1

zl(αl)
P(Ri | αl)P(αl)

zl(αl)

≥
u

∑
i=1

D

∑
l=1

zl(αl)ln
P(Ri | αl)P(αl)

zl(αl)
.

(24)

If we let

B(R) =
u

∑
i=1

D

∑
l=1

zl(αl)ln
P(Ri | αl)P(αl)

zl(αl),
(25)

then B(R) becomes the lower bound function for l(R). If we can derive B(R) = l(R), B(R)
achieves its maximum value.

According to the properties of Jensen’s inequality, it can be observed that if we set
P(Ri |αl)P(αl)

zl(αl)
as a constant value, i.e., P(Ri |αl)P(αl)

zl(αl)
= c, the inequality in Equation (24) can

be replaced by equality. In this case, B(R) reaches its maximum value. Therefore, the
maximum value of the lower bound function B(R), denoted as maxB(R), is equivalent to
maximizing the log-likelihood function l(R). Hence, in order to maximize l(R), we can
maximize B(R). Additionally, let l(R)t represent the log-likelihood function at the t-th
iteration. To prove the convergence of the algorithm, it is sufficient to demonstrate that
l(R)t+1 > l(R)t as follows:

l(R)t+1 = maxB(R)t+1

=
u

∑
i=1

D

∑
l=1

zl(αl)
t+1 ln

P(Ri | αl)
t+1P(αl)

zl(αl)t+1

≥
u

∑
i=1

D

∑
l=1

zl(αl)
t ln

P(Ri | αl)
t+1P(αl)

zl(αl)t

≥
u

∑
i=1

D

∑
l=1

zl(αl)
t ln

P(Ri | αl)
tP(αl)

zl(αl)t

= l(R)t.

(26)



Big Data Cogn. Comput. 2024, 8, 4 13 of 19

It is important to note that in Equation (26), as long as P(Ri|αl)
t and P(Ri|αl)

t+1 are
not exactly equal, the first inequality holds. For the model, although in the E-step, the
student-user blocks are partitioned, when Ri /∈ Ra, thenP(Ri|αl)

t = P(Ri|αl)
t+1. However,

for Ri ∈ Ra, then P(Ri | αl)
t will be updated unless the overall likelihood function has been

maximized and the iteration stops. Therefore, unless the iteration has already stopped due
to the maximization of the overall likelihood function, P(Ri|αl)

t and P(Ri|αl)
t+1 cannot

be exactly equal, and thus the first inequality holds. The second inequality is guaranteed
by the maximization process in the M-step. In conclusion, the MI-DINA model ensures
the convergence of the EM step and we also complete the proof of the convergence of the
BNMI-DINA model.

6. Experiments

In this section, we evaluate the performance of our approach, BNMI-DINA, in com-
parison to traditional cognitive diagnosis methods in terms of model accuracy and train-
ing efficiency.

6.1. Datasets

The Junyi dataset [44] is obtained from the Junyi Academy Math Practicing Log (Junyi),
which includes learning behavior data such as student responses, learning activities, and
other learning-related information. To assess the models’ performance on datasets of
varying sizes, we split the Junyi dataset and create a new dataset called Junyi-scaled by
selecting a small subset.

Dataset Characteristics: Table 3 presents comprehensive statistics for both the original
Junyi dataset and the scaled-down Junyi-scaled dataset. The Junyi dataset comprises
problem logs and exercise-related data from 10,000 students of the Junyi Academy, with
734 attributes, 734 question items, and 408,057 response logs. On the other hand, Junyi-
scaled, which is a subset specifically created for controlled experiments, consists of data
from 2400 students, featuring 10 attributes, 10 question items, and 6100 response logs.

Table 3. The statistics of datasets.

Dataset #Students #Attributes #Question Items #Response Logs

Junyi 10,000 734 734 408,057
Junyi-scaled 2400 10 10 6100

Pre-processing: pre-processing the Junyi dataset is a crucial step in ensuring the
quality and relevance of the data for training and evaluation purposes. In order to capture
the relationships within the educational contents, a knowledge graph is generated using
the Junyi dataset. To accomplish this, the edudata tool [1] is employed to extract relations
and store the resulting graph data. Additionally, we allocate 80% of the data to the training
set and reserve the remaining 20% for the test set.

6.2. Visualizing the Relationship of Knowledge Points

To illustrate the relationship between knowledge points, we utilize specific knowledge
points to depict the tree structure within the dataset. We have extracted a small portion of
the tree structure from the Junyi dataset, as depicted in Figure 3a. The nodes are numbered
from 0 to 5, and the corresponding relationships between the knowledge points are shown
in Figure 3b.

In the process of learning mathematics, students typically follow a step-by-step ap-
proach to acquire knowledge of predecessor and successor concepts. They start by mas-
tering basic mathematical concepts (node 0). Then, they can directly move on to study linear
equations and inequalities (node 1) , or master basics of geometry (node 5) for better learning
quadratic equations (node 2). Building on the foundation laid in the earlier stages, students
then advance to the study of polynomials and factorization (node 3). Finally, students can
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explore more advanced topics such as differentiation and calculus (node 4). This sequential
learning order ensures that students progressively build upon their existing knowledge,
allowing for a coherent and structured development of mathematical proficiency.

0

1 2

3

4

5

…
…

(a)

Node Knowledge Point

0 Basic Mathematical Concepts

1 Linear Equations and Inequalities

2 Quadratic Equations

3 Polynomials and Factorization

4 Differentiation and Calculus

5 Basics of Geometry

(b)

0

1 2

3

4

5

…
…

(a)

Node Knowledge Point

0 Basic Mathematical Concepts

1 Linear Equations and Inequalities

2 Quadratic Equations

3 Polynomials and Factorization

4 Differentiation and Calculus

5 Basics of Geometry

(b)

Figure 3. Examples of hierarchical relationship between knowledge points on Junyi dataset. (a) Junyi
dataset visual knowledge point attribute relationship. (b) Correspondence between nodes and
knowledge points.

6.3. Evaluation Metrics

To evaluate the performance of the models, we utilize three key evaluation metrics:
accuracy, time, and F1 score [45].

• Accuracy is calculated as the ratio of successful predictions to the total number of
instances in the test set. It quantifies the proportion of correct predictions in relation
to the entire test set size.

• Time refers to the duration of a particular process, measured in seconds. It provides
insights into the efficiency of the model in terms of computation time.

• The F1 score combines precision and recall, offering a comprehensive assessment of
the model’s predictions. Precision evaluates the ratio of correct positive predictions,
while recall assesses the ratio of correctly predicted positive instances.

The F1 score is calculated as below:

F1 =
2× Precision× Recall

Precision + Recall
, (27)

where precision is defined as

Precision =
TP

TP + FP
, (28)

representing the proportion of correct recommendations, and recall is defined as:

Recall =
TP

TP + FN
, (29)

representing the proportion of correctly predicted positive instances. Here, TP is the count
of correctly answered recommendations, FP is the count of incorrect recommendations,
and FN is the count of correctly answered instances not included in the recommendations.
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6.4. Experimental Settings

To assess the effectiveness and feasibility of the proposed BNMI-DINA model and its
non-parallel version, we compared them against six alternative algorithms in our study. The
first three algorithms chosen for comparison do not incorporate Bayesian networks, while
the remaining three algorithms do incorporate Bayesian networks. This approach allows
us to evaluate the performance and advantages of the proposed models in comparison to
both non-Bayesian and Bayesian network-based approaches.

We compare our model against the following six algorithms: IRT, MF [46], Neu-
ralCD [47], HierIRT [48], HierMF [48], and HierNeuralCD [48]. For score prediction, we
set the threshold at 0.5. In the multidimensional latent factor model, we set the hidden
dimension n to 3. The dimensions of the fully connected layers in NeuralCD are set to
512, 256, and 1, respectively, as described in [47]. All experiments are conducted on a
Linux Ubuntu 20.04.6 server, equipped with two 2.60 GHz Intel Xeon E5-2650v2 CPUs
and 252 GB of RAM. This server configuration ensured the reliability and efficiency of the
experimental setup.

6.5. Experimental Results

We conducted evaluations on two datasets and present the experimental results in
Table 4. The key observations are as follows:

1. The accuracy of BNMI-DINA significantly outperforms other traditional cognitive
diagnosis models. On the Junyi dataset, BNMI-DINA enhances model accuracy by an
average of 5.72%. This gap becomes even more obvious on the Junyi-scaled dataset
with an improvement of the accuracy by up to 9.21%.

2. BNMI-DINA has proven to be more computationally efficient than other baselines.
The training time is reduced by 26.3% on average while achieving comparable
model accuracy.

This observation validates the rationale behind incorporating Bayesian networks for
several reasons: (a) Bayesian networks are constructed based on probabilistic graphical
models, allowing them to handle the inherent uncertainty in the data. (b) Bayesian net-
works enable the modeling of interdependencies between variables, providing a better
understanding of the data structure and an accurate representation of the relationships
between variables. This capability holds true even when working with small datasets.

We also include the comparison results of BNMI-DINA, BNI-DINA (the non-parallel
version of BNMI-DINA), and other baseline algorithms in Figures 4 and 5. Our observations
from these figures confirm that BNMI-DINA consistently outperforms the other algorithms
in all evaluation metrics, regardless of whether they incorporate Bayesian networks or not,
and regardless of the dataset used. Additionally, we note that the computation efficiency of
the Bayesian network-integrated I-DINA initially appears lower without parallel processing.
However, when parallel processing is incorporated, the model demonstrates significantly
improved efficiency while maintaining similar levels of accuracy and F1 scores. The reasons
are multi-fold:

• Improvement in estimation process: MI-DINA breaks down the estimation process into
smaller subtasks and runs them in parallel. The main process then combines the
results, which speeds up the overall diagnostic process. This improvement enhances
the efficiency and effectiveness of the model.

• Enhancements in E-step and M-step: the MI-DINA model enhances the E-step and M-
step without affecting the convergence of parameters. Key parameter estimation can
still occur iteratively. This enhancement ensures that the estimation process is accurate
and reliable.

• Fusion of Bayesian networks: incorporating Bayesian networks in the approach focuses
on estimating students’ mastery probabilities for each knowledge point. This allows
for the capture of complex dependencies between variables in cognitive diagnosis,
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resulting in more accurate understanding of the relationships between students’ cog-
nition and knowledge attributes.

Table 4. Experimental results on student performance prediction.

Datasets Metrics
IRT MF Neural CD DINA

Original Hier Original Hier Original Hier BNI-DINA BNMI-DINA

Junyi
ACC 0.7218 0.6951 0.7221 0.7348 0.6821 0.6860 0.7516 0.7517

F1 0.8125 0.8177 0.8143 0.8210 0.8214 0.8210 0.8289 0.8290
Time 366 372 478 493 479 488 493 320

Junyi-scaled
ACC 0.6874 0.6889 0.7044 0.7228 0.6517 0.6771 0.7503 0.7503

F1 0.8079 0.8150 0.8171 0.8234 0.8266 0.8270 0.8303 0.8303
Time 174 201 213 227 229 241 258 158
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Figure 4. Comparison results of BNMI-DINA and BNI-DINA with other baseline models that do not
incorporate Bayesian networks.
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Figure 5. Comparison results of BNMI-DINA and BNI-DINA with other baseline models that
incorporate Bayesian networks.
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7. Conclusions

In this work, we proposed a novel approach called BNMI-DINA, which is a paral-
lelized incremental DINA model integrated with Bayesian networks. Our proposed model
leverages Bayesian networks to establish the dependency relationships between knowledge
points. By calculating the posterior probabilities of each node based on the mastery levels
of its parent nodes, we obtain an estimation vector that represents students’ mastery levels.
Subsequently, we apply the MI-DINA framework, utilizing the students’ response matrix,
to estimate the final mastery level estimation matrix. This combined approach significantly
enhances both the accuracy and computational speed of the DINA model. Furthermore,
we provided theoretical guarantees for the effectiveness of our model. To validate the
efficacy of our proposed model, we conducted experiments using real-world datasets. The
experimental results demonstrate the superior performance and utility of BNMI-DINA
in cognitive diagnosis tasks. In our future work, we plan to explore the extension of
BNMI-DINA to adapt to dynamic and adaptive testing scenarios, so as to better improve
the accuracy of cognitive diagnosis models in scenarios with a large number of users and
rich inspection knowledge points.

Author Contributions: Conceptualization, Y.C. and S.L.; Methodology, Y.C. and S.L.; Validation,
Y.C.; Investigation, Y.C. and S.L.; Data curation, Y.C.; Writing original draft preparation: Y.C. and
S.L.; Writing review and editing: Y.C. and S.L.; Project administration, Y.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: https://github.com/CSLiJT/HCD-code/tree/main/data, accessed on
16 November 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Templin, J.L.; Henson, R.A. Measurement of psychological disorders using cognitive diagnosis models. Psychol. Methods 2006,

11, 287. [CrossRef] [PubMed]
2. Wang, F.; Huang, Z.; Liu, Q.; Chen, E.; Yin, Y.; Ma, J.; Wang, S. Dynamic Cognitive Diagnosis: An Educational Priors-Enhanced

Deep Knowledge Tracing Perspective. IEEE Trans. Learn. Technol. 2023, 16, 306-323. [CrossRef]
3. Liu, Y.; Zhang, T.; Wang, X.; Yu, G.; Li, T. New development of cognitive diagnosis models. Front. Comput. Sci. 2023, 17, 171604.

[CrossRef]
4. Luo, J.; Hubaux, J.P. A survey of research in inter-vehicle communications. In Embedded Security in Cars: Securing Current and

Future Automotive IT Applications; Springer: Berlin/Heidelberg, Germany, 2006; pp. 111–122.
5. De La Torre, J. DINA model and parameter estimation: A didactic. J. Educ. Behav. Stat. 2009, 34, 115–130. [CrossRef]
6. Wafa, M.N.; Zia, Z.; Frozan, F. Consistency and Ability of Students Using DINA and DINO Models. Eur. J. Math. Stat. 2023,

4, 7–13. [CrossRef]
7. Frederiksen, N.; Mislevy, R.J.; Bejar, I.I. Test Theory for a New Generation of Tests; Routledge: London, UK, 2012.
8. Nichols, P.D.; Chipman, S.F.; Brennan, R.L. Cognitively Diagnostic Assessment; Routledge: London, UK, 2012.
9. Leighton, J.; Gierl, M. Cognitive Diagnostic Assessment for Education: Theory and Applications; Cambridge University Press:

Cambridge, UK, 2007.
10. Lee, Y.W.; Sawaki, Y. Cognitive diagnosis approaches to language assessment: An overview. Lang. Assess. Q. 2009, 6, 172–189.

[CrossRef]
11. Gu, Z. Maximizing the Potential of Multiple-Choice Items for Cognitive Diagnostic Assessment; University of Toronto Canada: Toronto,

ON, Canada, 2011.
12. Li, H.; Hunter, C.V.; Lei, P.W. The selection of cognitive diagnostic models for a reading comprehension test. Lang. Test. 2016,

33, 391–409. [CrossRef]
13. Yang, Y. Modeling Nonignorable Missingness with Response Times Using Tree-Based Framework in Cognitive Diagnostic Models; Columbia

University: New York, NY, USA, 2023.
14. Yang, S.; Wei, H.; Ma, H.; Tian, Y.; Zhang, X.; Cao, Y.; Jin, Y. Cognitive diagnosis-based personalized exercise group assembly via

a multi-objective evolutionary algorithm. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 7, 829–844. [CrossRef]
15. Qi, T.; Ren, M.; Guo, L.; Li, X.; Li, J.; Zhang, L. ICD: A new interpretable cognitive diagnosis model for intelligent tutor systems.

Expert Syst. Appl. 2023, 215, 119309. [CrossRef]
16. Ma, H.; Huang, Z.; Tang, W.; Zhu, H.; Zhang, H.; Li, J. Predicting Student Performance in Future Exams via Neutrosophic

Cognitive Diagnosis in Personalized E-learning Environment. IEEE Trans. Learn. Technol. 2023, 16, 680–693. [CrossRef]

https://github.com/CSLiJT/HCD-code/tree/main/data
http://doi.org/10.1037/1082-989X.11.3.287
http://www.ncbi.nlm.nih.gov/pubmed/16953706
http://dx.doi.org/10.1109/TLT.2023.3254544
http://dx.doi.org/10.1007/s11704-022-1128-3
http://dx.doi.org/10.3102/1076998607309474
http://dx.doi.org/10.24018/ejmath.2023.4.4.230
http://dx.doi.org/10.1080/15434300902985108
http://dx.doi.org/10.1177/0265532215590848
http://dx.doi.org/10.1109/TETCI.2022.3220812
http://dx.doi.org/10.1016/j.eswa.2022.119309
http://dx.doi.org/10.1109/TLT.2023.3240931


Big Data Cogn. Comput. 2024, 8, 4 18 of 19

17. Gao, W.; Wang, H.; Liu, Q.; Wang, F.; Lin, X.; Yue, L.; Zhang, Z.; Lv, R.; Wang, S. Leveraging Transferable Knowledge Concept
Graph Embedding for Cold-Start Cognitive Diagnosis. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval, Taipei, Taiwan, 23–27 July 2023; pp. 983–992.

18. Wang, S.; Zeng, Z.; Yang, X.; Zhang, X. Self-supervised graph learning for long-tailed cognitive diagnosis. In Proceedings of the
AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 110–118.

19. Wu, R.; Liu, Q.; Liu, Y.; Chen, E.; Su, Y.; Chen, Z.; Hu, G. Cognitive modelling for predicting examinee performance. In
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31
July 2015.

20. De La Torre, J.; Douglas, J.A. Higher-order latent trait models for cognitive diagnosis. Psychometrika 2004, 69, 333–353. [CrossRef]
21. Tu, D.B.; Cai, Y.; Dai Hai-Qi, D. A polytomous cognitive diagnosis model: P-DINA model. Acta Psychol. Sin. 2010, 42, 1011.

[CrossRef]
22. Aryadoust, V. A cognitive diagnostic assessment study of the listening test of the Singapore–Cambridge general certificate of

education O-level: Application of DINA, DINO, G-DINA, HO-DINA, and RRUM. Int. J. List. 2021, 35, 29–52. [CrossRef]
23. Wang, C.; Liu, Q.; Chen, E.H.; Huang, Z.Y.; Zhu, T.Y.; Su, Y.; Hu, G.P. The rapid calculation method of DINA model for large scale

cognitive diagnosis. Acta Electonica Sin. 2018, 46, 1047.
24. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: Burlington, MA, USA, 1988.
25. Murphy, K.P. Inference and Learning in Hybrid Bayesian Networks; Citeseer: Berkeley, CA, USA, 1998.
26. Tang, J.; Liu, X.; Wang, W. COVID-19 medical waste transportation risk evaluation integrating type-2 fuzzy total interpretive

structural modeling and Bayesian network. Expert Syst. Appl. 2023, 213, 118885. [CrossRef] [PubMed]
27. Chan, L.S.; Chu, A.M.; So, M.K. A moving-window bayesian network model for assessing systemic risk in financial markets.

PLoS ONE 2023, 18, e0279888. [CrossRef] [PubMed]
28. Kamil, M.Z.; Taleb-Berrouane, M.; Khan, F.; Amyotte, P.; Ahmed, S. Textual data transformations using natural language

processing for risk assessment. Risk Anal. 2023, 43, 2033–2052. [CrossRef]
29. Yang, H.; Qi, T.; Li, J.; Guo, L.; Ren, M.; Zhang, L.; Wang, X. A novel quantitative relationship neural network for explainable

cognitive diagnosis model. Knowl. Based Syst. 2022, 250, 109156. [CrossRef]
30. Conati, C.; Gertner, A.; Vanlehn, K. Using Bayesian networks to manage uncertainty in student modeling. User Model. User Adapt.

Interact. 2002, 12, 371–417. [CrossRef]
31. VanLehn, K.; Lynch, C.; Schulze, K.; Shapiro, J.A.; Shelby, R.; Taylor, L.; Treacy, D.; Weinstein, A.; Wintersgill, M. The Andes

physics tutoring system: Lessons learned. Int. J. Artif. Intell. Educ. 2005, 15, 147–204.
32. Käser, T.; Klingler, S.; Schwing, A.G.; Gross, M. Beyond knowledge tracing: Modeling skill topologies with bayesian networks.

In Proceedings of the Intelligent Tutoring Systems: 12th International Conference, ITS 2014, Honolulu, HI, USA, 5–9 June 2014;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 188–198.

33. Pelánek, R. Bayesian knowledge tracing, logistic models, and beyond: An overview of learner modeling techniques. User Model.
User Adapt. Interact. 2017, 27, 313–350. [CrossRef]

34. Liu, S.; Qu, H.; Chen, Q.; Jian, W.; Liu, R.; You, L. AFMeta: Asynchronous Federated Meta-learning with Temporally
Weighted Aggregation. In Proceedings of the 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable
Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (Smart-
World/UIC/ScalCom/DigitalTwin/PriComp/Meta), Haikou, China, 15–18 December 2022; IEEE: Piscataway, NJ, USA, 2022;
pp. 641–648.

35. Liu, S.; He, T.; Li, J.; Li, Y.; Kumar, A. An effective learning evaluation method based on text data with real-time attribution-a case
study for mathematical class with students of junior middle school in China. ACM Trans. Asian Low Resour. Lang. Inf. Process.
2023, 22, 1–22. [CrossRef]

36. Liu, S.; Yu, X.; Ma, H.; Wang, Z.; Qin, C.; Zhang, X. Homogeneous Cohort-Aware Group Cognitive Diagnosis: A Multi-grained
Modeling Perspective. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management,
Birmingham, UK, 21–25 October 2023; pp. 4094–4098.

37. Zhang, S.; Huang, S.; Yu, X.; Chen, E.; Wang, F.; Huang, Z. A generalized multi-skill aggregation method for cognitive diagnosis.
World Wide Web 2023, 26, 585–614. [CrossRef] [PubMed]

38. Zhang, Z.; Zhang, J.; Lu, J.; Tao, J. Bayesian estimation of the dina model with Pólya-gamma Gibbs sampling. Front. Psychol. 2020,
11, 384. [CrossRef] [PubMed]

39. Bi, H.; Chen, E.; He, W.; Wu, H.; Zhao, W.; Wang, S.; Wu, J. BETA-CD: A Bayesian meta-learned cognitive diagnosis framework
for personalized learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February
2023; Volume 37, pp. 5018–5026.

40. McLachlan, G. On Aitken’s method and other approaches for accelerating convergence of the EM algorithm. In Proceedings of
the AC Aitken Centenary Conference, Dunedin, New Zealand, 28 August–1 September 1995; pp. 201–209.

41. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B
(Methodol.) 1977, 39, 1–22. [CrossRef]

42. Geiger, D.; Pearl, J. Logical and algorithmic properties of independence and their application to Bayesian networks. Ann. Math.
Artif. Intell. 1990, 2, 165–178. [CrossRef]

43. Thiesson, B.; Meek, C.; Heckerman, D. Accelerating EM for large databases. Mach. Learn. 2001, 45, 279–299. [CrossRef]

http://dx.doi.org/10.1007/BF02295640
http://dx.doi.org/10.3724/SP.J.1041.2010.01011
http://dx.doi.org/10.1080/10904018.2018.1500915
http://dx.doi.org/10.1016/j.eswa.2022.118885
http://www.ncbi.nlm.nih.gov/pubmed/36188673
http://dx.doi.org/10.1371/journal.pone.0279888
http://www.ncbi.nlm.nih.gov/pubmed/36662719
http://dx.doi.org/10.1111/risa.14100
http://dx.doi.org/10.1016/j.knosys.2022.109156
http://dx.doi.org/10.1023/A:1021258506583
http://dx.doi.org/10.1007/s11257-017-9193-2
http://dx.doi.org/10.1145/3474367
http://dx.doi.org/10.1007/s11280-021-00990-4
http://www.ncbi.nlm.nih.gov/pubmed/35599959
http://dx.doi.org/10.3389/fpsyg.2020.00384
http://www.ncbi.nlm.nih.gov/pubmed/32210894
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1007/BF01531004
http://dx.doi.org/10.1023/A:1017986506241


Big Data Cogn. Comput. 2024, 8, 4 19 of 19

44. Chang, H.S.; Hsu, H.J.; Chen, K.T. Modeling Exercise Relationships in E-Learning: A Unified Approach. In Proceedings of the
EDM, Madrid, Spain, 26–29 June 2015; pp. 532–535.

45. Hadi, M.A.; Fard, F.H. Evaluating pre-trained models for user feedback analysis in software engineering: A study on classification
of app-reviews. Empir. Softw. Eng. 2023, 28, 88. [CrossRef]

46. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]
47. Wang, F.; Liu, Q.; Chen, E.; Huang, Z.; Yin, Y.; Wang, S.; Su, Y. NeuralCD: A general framework for cognitive diagnosis. IEEE

Trans. Knowl. Data Eng. 2022, 35, 8312–8327. [CrossRef]
48. Li, J.; Wang, F.; Liu, Q.; Zhu, M.; Huang, W.; Huang, Z.; Chen, E.; Su, Y.; Wang, S. HierCDF: A Bayesian Network-based

Hierarchical Cognitive Diagnosis Framework. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 904–913.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10664-023-10314-x
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/TKDE.2022.3201037

	Introduction
	Related Work
	Preliminaries
	Design of BNMI-DINA Model
	Framework Overview
	Bayesian Network Module
	MI-DINA Module

	Convergence of BNMI-DINA Model
	Experiments
	Datasets
	Visualizing the Relationship of Knowledge Points
	Evaluation Metrics
	Experimental Settings
	Experimental Results

	Conclusions
	References

