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Abstract: Pre-conceptual schemas are a straightforward way to represent knowledge using controlled
language regardless of context. Despite the benefits of using pre-conceptual schemas by humans, they
present challenges when interpreted by computers. We propose an approach to making computers
able to interpret the basic pre-conceptual schemas made by humans. To do that, the construction of a
linguistic corpus is required to work with large language models—LLM. The linguistic corpus was
mainly fed using Master’s and doctoral theses from the digital repository of the University of Nariño
to produce a training dataset for re-training the BERT model; in addition, we complement this by
explaining the elicited sentences in triads from the pre-conceptual schemas using one of the cutting-
edge large language models in natural language processing: Llama 2-Chat by Meta AI. The diverse
topics covered in these theses allowed us to expand the spectrum of linguistic use in the BERT model
and empower the generative capabilities using the fine-tuned Llama 2-Chat model and the proposed
solution. As a result, the first version of a computational solution was built to consume the language
models based on BERT and Llama 2-Chat and thus automatically interpret pre-conceptual schemas
by computers via natural language processing, adding, at the same time, generative capabilities. The
validation of the computational solution was performed in two phases: the first one for detecting
sentences and interacting with pre-conceptual schemas with students in the Formal Languages and
Automata Theory course—the seventh semester of the systems engineering undergraduate program
at the University of Nariño’s Tumaco campus. The second phase was for exploring the generative
capabilities based on pre-conceptual schemas; this second phase was performed with students in
the Object-oriented Design course—the second semester of the systems engineering undergraduate
program at the University of Nariño’s Tumaco campus. This validation yielded favorable results in
implementing natural language processing using the BERT and Llama 2-Chat models. In this way,
some bases were laid for future developments related to this research topic.

Keywords: pre-conceptual schema; computational linguistics; linguistic corpus; language models

1. Introduction

Pre-conceptual schemas are a straightforward method for presenting knowledge in
a consistent language independent of context. Using pre-conceptual schemas benefits
humans, as they help to communicate ideas more effectively, especially in software engi-
neering endeavors. Pre-conceptual schemas are formed with the combination of visual
symbols whose connections create a graph to represent knowledge regardless of the do-
main. Visual symbols represent actors who perform actions, concepts, classes, values,
conditionals, implications and static and dynamic relationships, among others. However,
while pre-conceptual schemas work seamlessly for humans, computers struggle to inter-
pret them accurately, presenting a challenge for data analysis, which relies heavily on the
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accurate interpretation of information. Despite this limitation, pre-conceptual schemas
remain essential for communication and information sharing.

Some previous works were found to be related to automatically processing pre-
conceptual schemas. Few publications have worked on pre-conceptual schemas in a
computationally executable version; however, there is no history of using natural language
processing based on artificial intelligence in pre-conceptual schemes so far.

Facing this situation, this research focuses on constructing a linguistic corpus to
re-train the Bidirectional Encoder Representations from Transformers (BERT) model to
enable computers to interpret pre-conceptual schemas. To achieve this objective, we built a
linguistic corpus using Master’s and doctoral theses available from the digital repository
of the University of Nariño. This corpus produced a training dataset for a specific BERT
model. The diversity of topics covered in these theses allowed for a broad spectrum of
linguistic use in the model, essential to interpreting pre-conceptual schemas accurately.

As the linguistic corpus was mainly constructed from the Master’s and doctoral theses
of the University of Nariño, the linguistic corpus produced a training dataset for a specific
BERT model called customPCS. Additionally, we used the Llama 2-Chat model to gener-
ate explanations for the elicited triads from the pre-conceptual schema using fine-tuning
techniques via the customPCS dataset. The research presents a promising approach to de-
veloping a computational solution for natural language processing (NLP) in pre-conceptual
schemas to use large language models. This makes interpreting the pre-conceptual schemas
possible by computers, adding generative features in complementation. This computational
solution was validated in two phases. The first validation involved 25 students in the For-
mal Languages and Automata Theory course at the University of Nariño, and it produced
highly favorable results in implementing NLP. The second validation involved 15 students
in the Object-oriented Design course at the same academic program and university focusing
on the generative capabilities of the computational solution using the Llama 2-Chat model.
This research has the potential to provide a foundation for future developments in this area,
and it presents a promising approach to developing a computational solution for NLP in
pre-conceptual schemas.

This article has seven sections. The second section presents a literature review of the
research topic. Section 3 describes the materials and methods used in this research. The
fourth section provides information on the construction of the proposed solution with
the results. A discussion of the findings is presented in Section 5. The conclusions of
the research are listed in Section 6. Finally, the last section provides guidelines for future
developments.

2. Literature Review

Before explaining the models that were selected, we presented a comparative table of
existing models which helped us select those that in our opinion best fit the characteristics
of the objectives of our research. Such a comparison is depicted in Table 1.

2.1. Pre-Conceptual Schemas

Pre-conceptual schemas serve as visual models that encapsulate and depict knowledge,
offering a concise overview of the core attributes of a specific problem domain [1]. They
incorporate a domain’s structural and dynamic facets through a controlled natural language,
facilitating easier comprehension. Pre-conceptual schemas comprise distinct concepts and
static relationships representing their connections as the structure. In contrast, dynamic
relationships capture the operations within the representation [2]. The key components of a
pre-conceptual schema include concepts, linkages, structural ties and dynamic interactions,
which are illustrated in detail in Figure 1.
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Table 1. Comparison of some models.

Model Year Main Objective Key Features Use Cases

BERT 2018
Pre-training bidirectional
transformers for language

understanding

- Uses Transformer architecture
- Bidirectional context
- Masked Language Model

Text classification,
Q&A, NER

GPT 2018
Improving language
understanding with

unsupervised learning

- Transformer-based
- Unidirectional (left-to-right) context
- Generative pre-training

Text generation,
fine-tuning tasks

T5 2019
Exploring transfer learning
with a unified text-to-text

framework

- Treats every NLP problem as a
text-to-text problem
- Unified framework

Translation,
summarization, Q&A

RoBERTa 2019 Optimizing BERT
pre-training

- Variations in model size, training data,
and training time
- Removes NSP, trains with more data
and longer

Like BERT’s use-cases

DistilBERT 2019 Creating a lighter version
of BERT

- 40% smaller, retains 95% of BERT’s
performance
- Knowledge distillation

Where BERT is too
large or slow

ELECTRA 2020 Proposing a new
pre-training method

- Replaces masked tokens and tries to
detect these replacements
- More efficient than MLM-based methods

Text classification,
Q&A

Llama 2 2023 Advanced Natural
Language Understanding

- Size and Scalability
- Advanced Algorithms
- Free philosophy for research and
general use
- Multilingual capabilities

Conversational AI,
Content generation,

Language translation,
Information extraction

& Analysis, and
Educational Tools.

Considering the above, we opted for using the BERT model and the Llama 2 models due to the nature of
our research.
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In the academic setting of the National University of Colombia, pre-conceptual
schemas have been used in 65 theses—16 doctorate theses and 49 Master’s theses—to rep-
resent knowledge; similarly, in Scopus, 69 published articles used pre-conceptual schemas.
Considering the significant usage of pre-conceptual schemas by researchers worldwide,
the leading role such schemas play in research processes to represent knowledge using
controlled language is highlighted regardless of the context where such knowledge is
produced. An example of the representation of complex knowledge using pre-conceptual
schemas is depicted in Figure 2.
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In Figure 2, there are four animated entities—actors—which are: the producer, the
seller, the customer, and the cow. It should be considered that milk is expressed in quantities
that can range between 30, 50, and 100 L. Following the sequence of the pre-conceptual
schema, the cow has an ID and a name. In the same way, the producer collects the milk if
the cow has produced it—this is where a relationship of implication stands out. A seller
is also involved, who appears just when a customer arrives (an event is triggered in the
system), but there is a restriction to make the sale if the amount of milk to be purchased is
greater than or equal to 30 L.

The description above is expressed by using a pre-conceptual schema. In this case, we
are dealing with a specific situation about milk production. This is just an example of how
pre-conceptual schemas can represent knowledge regardless of the domain. Pre-conceptual
schemas are based in controlled language with the representation of actors, concepts, values,
conditionals, implications, and static and dynamic relationships, among others, in this way,
any knowledge structure can be represented with pre-conceptual schemas [1].

Triads—word structures in the form: noun, verb, noun—can be elicited from any pre-
conceptual schema. We counted the following triads in the example depicted in Figure 2:
COW HAS ID, COW HAS NAME, COW PRODUCES MILK, PRODUCER COLLECTS
MILK, MILK HAS AMOUNT, and SELLER SELLS MILK.

Several elements of the notation of pre-conceptual schema are used. When developing
a systematic literature review on the elements used the most in pre-conceptual schemas,
highlighting the use of concepts, static relationships, dynamic relationships and connections
is vital. Although humans have widely used pre-conceptual schemas, their automatic
interpretation by computers is still a nascent field.
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Three Master’s theses worked in creating executable pre-conceptual schemas in com-
puters. The first one worked with a set of heuristic rules to automatically generate the
MySQL database manager’s entity-relationship diagram and DDL statements based on
pre-conceptual schemas [5]. The second thesis worked on constructing an executable model
for enhanced oil recovery (EOR) process simulation [6]. The third thesis worked on knowl-
edge representation using pre-conceptual schemas and their executable pre-conceptual
schemas [7]. Although there were these three Master’s theses that related pre-conceptual
schemas with computational implementations in software, there is so far no published
solution that relates pre-conceptual schemas with artificial intelligence to be automatically
interpreted by computers, so this research is pioneering in this regard.

2.2. BERT Model

BERT emerged as a transformative development in NLP, unveiled by Google AI
researchers in 2018 [8]. This model distinguishes itself by its capability to pre-train vast
text corpora, such as BookCorpus and Wikipedia, using a technique involving predicting
missing words in a sentence [9]. This approach effectively aids BERT in learning the context
of words and the relationships between words [10].

One hallmark feature of the BERT model is its bidirectional context analysis, which
departs from previous models that read text unidirectionally [11]. By processing text
both ways, BERT garners a more nuanced understanding of the context, enhancing its
performance in various NLP tasks [12]. It is built on the transformer architecture, renowned
for employing self-attention mechanisms to understand the influence of different words on
each other in a provided text [13].

After the pre-training phase, BERT can be fine-tuned with additional task-specific
layers to cater to specialized NLP tasks, ranging from sentiment analysis and named
entity recognition to question answering [14]. Its versatility and efficiency have given rise
to various variants, including RoBERTa, ALBERT, and DistilBERT, each offering unique
optimizations and efficiencies for diverse applications [15].

However, the utilization of BERT is not without its challenges. For instance, the model
is resource intensive, requiring substantial computational power and memory, mainly
GPU (Graphics Processing Unit) resources, for training [16]. The training process can
also be time-consuming, especially with larger datasets [17]. Despite these challenges, the
advent of BERT marked a significant milestone in NLP. It facilitates a richer context-aware
representation of text and paves the way for future advancements in this rapidly evolving
field [18].

During this research, a conscious decision was made to utilize the BERT for specialized
training, tailored specifically to the dataset derived from our linguistic corpus. This decision
was influenced by the unique requirements of our regional context, necessitating a model
capable of generating responses that are not only contextually accurate but also culturally
and linguistically resonant with our specific demographic.

While acknowledging the existence of pre-trained BERT models adept at handling
scientific texts, such as those detailed in [19,20], our research objectives required a more
nuanced approach. These existing models, though highly efficient in their domains, are
primarily oriented towards general or scientific contexts, lacking the specific adaptations
necessary for our regional and contextual intricacies. Therefore, to ensure that the generated
responses align closely with the unique linguistic and cultural characteristics of our region,
re-training the BERT model using our corpus was deemed essential. This approach enables
the model to grasp and replicate the subtle nuances and specificities inherent in our regional
discourse, thereby producing more relevant and accurate contextualized responses.

In the pursuit of developing a computational solution for interpreting pre-conceptual
schemas, we are motivated to employ the BERT model due to its proven efficacy across a
range of natural language processing tasks in social sciences [21], from sentiment analysis
to question answering, which makes it a favorable choice for enhancing the linguistic
intelligence of our solution. Moreover, some of BERT’s open-source resources available
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at the Hugging Face repository aligns with our commitment to integrate the most used
technology in research [22]. By integrating BERT, we aim to significantly elevate the solu-
tion’s language processing capabilities, ensuring a more natural, accurate, and contextually
relevant interaction with pre-conceptual schemas.

2.3. Llama 2-Chat Model

LLaMA (Large Language Model Meta AI) is a collection of foundation language
models with parameters ranging from 7 B to 70 B produced by Meta AI [23]. As this large
language model is one of the most recent in 2023, some companies are taking advantage of
the public release of such a model for their developments in artificial intelligence; such is
the case of IBM’s Watsonx AI and Data Platform [24].

Large Language Models (LLMs), using vast amounts of data and computing power,
have the potential to enhance our engagement with the digital domain significantly. With
LLMs’ accelerated deployment and evolution, they are anticipated to cater to more sophis-
ticated and complicated applications [25]. These include scrutinizing detailed, information-
packed documents, offering more authentic and interactive chatbot communications, and
assisting individuals in repetitive creative tasks like programming and designing.

Now, the most recent development is focused on Llama 2. In this study, the authors
developed some fine-tuned versions, termed Llama 2-Chat, specifically enhanced for
dialogue applications [26]. These models surpass the performance of open-source chat
models on most of the benchmarks tested. Based on human evaluations regarding their
helpfulness and safety, they could potentially replace closed-source models. The authors
offer an in-depth explanation of their methodology for fine-tuning and enhancing the safety
features of Llama 2-Chat. This is done to empower the broader community to expand upon
their research and contribute to the ethical advancement of LLMs.

This year, some applications have already been developed using the Llama2-Chat
model in different knowledge domains. An interesting way of detecting online sexually
predatory chats was proposed by [27]. In financial analysis, the Llama 2 model is also
useful [28], and so on. The release of the Llama 2 model has caused an overflow of research
whose first results have been published on preprint servers, most of which are still working
papers. The existence of the datasets and even the codes of the notebooks used in this topic
is evident.

Recently, the idea of centaurs has gained prominence in analytics science due to its
effectiveness in areas such as freestyle chess. Notably, renowned supporters of freestyle
chess, including Gary Kasparov, have consistently contended that the collaboration of
humans and algorithms outperforms the capabilities of even the most advanced stan-
dalone computer chess programs. A centaur combines symbiotic learning with human
intuition [29].

In the rapidly evolving landscape of artificial intelligence, the Llama 2-Chat model
stands out as one of the most recent tools, particularly for generative tasks in computational
solutions. Its advanced architecture, which builds upon the foundational principles of
machine learning and natural language processing, offers notorious efficiency and accuracy.
This model is particularly adept at understanding and generating human-like text, making
it an invaluable asset for applications requiring sophisticated language capabilities. Its
versatility extends to various domains, including customer service, content creation, and
even complex problem-solving. The Llama 2-Chat model’s ability to learn from vast
datasets and adapt to new information ensures that it remains at the cutting edge of
AI technology. This adaptability, coupled with its robust processing power, makes it a
favorable choice for our computational solution, where nuanced language understanding
and dynamic response generation are crucial. By leveraging the Llama 2-Chat model, we
aim to not only enhance the effectiveness of our solution but also to push the boundaries
of what is possible in the realm of AI-driven communication and data interpretation.
Additionally, one of the advantages of the Llama 2-Chat model is the liberation of its use
and free access to the associated resources by whoever produced the model: Meta AI.
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This represents great advantages in promoting research activities without the associated
economic costs. Considering the above, we opted for using the Llama 2-Chat model in our
computational solution for empowering generative features on it.

3. Materials and Methods
3.1. Retraining the BERT Model

Researchers in [30] demonstrated an effective methodology for fine-tuning BERT
models to enhance their performance in domain-specific tasks, highlighting the importance
of careful dataset preparation, model selection, and evaluation criteria.

Retraining a BERT model offers numerous advantages; pivotal among them is the
customization of distinct tasks and applications. By fine-tuning the model, practitioners
can optimize its performance in specific tasks, such as sentiment analysis or named entity
recognition, so that the model’s outputs are highly aligned with each application’s unique
requirements and nuances [31].

Another significant advantage arises in the context of domain-specific applications.
BERT can be adeptly re-trained to grasp the complex jargon and terminologies intrinsic
to specialized fields, such as finance, healthcare, and law. This adaptation results in the
model’s interpretations and predictions as contextually and technically accurate, thus
enhancing its utility and reliability in professional settings [32].

The aspect of performance enhancement is also pivotal [33]. Retraining facilitates the
optimization of the model parameters, improving accuracy, precision, and recall. As a
result, the model is not only generically proficient but also distinctly tuned to the specific
characteristics and patterns of the target data, thus offering outputs of superior quality and
relevance [34].

Furthermore, ethical and bias considerations are integral to re-training [35]. Using
balanced and representative datasets, we can identify and mitigate the inherent biases in
the pre-trained model, leading to more equitable outputs. This process is vital to yield AI
applications that are ethical and fair, reducing the risk of unintended consequences arising
from biased predictions [36].

Incorporating updated information is another notable advantage [37]. In the dynamic
landscape of information and data, new insights emerge rapidly. Retraining helps BERT
to attune to the most current information, such that its predictions and interpretations are
contemporary and relevant [38]. This continuous adaptation is fundamental in sectors
where the timeliness and currency of the information are essential [39].

Retraining a BERT model underscores the multi-faceted enhancement of its capabilities,
including task-specific customization, domain adaptation, performance optimization, and
bias mitigation. Each of these facets contributes to transforming BERT into a tool of
heightened efficacy, versatility, and ethical alignment poised to deliver optimal results
across diverse contexts and applications [40].

3.2. Fine-Tuning the Llama 2-Chat Model

To have knowledge of our custom data, we decided to fine-tune the Llama 2-Chat
model. We used the following available model: llama-2-7b-chat.ggmlv3.q4_0.bin, New
LLaMA2 model from Meta AI, which was fine-tuned for dialogue. Static model was trained
on an offline RLHF dataset. It was licensed for commercial use.

We used the Autotrain Advanced tool from Hugging Face for fine-tuning the Llama
2-Chat model. The parameters used in this training process are depicted in the following
excerpt of the script:

!autotrain llm --train --project_name ‘generative-PCS-AI’
--model meta-llama/Llama-2-7b-chat-hf
--data_path MyContent/customPCS
--text_column text
--learning_rate 2e-4
--train_bath_size 4
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--num_train_epochs 5
--trainer sft
--model_max_length 4096
--block_size 4096 > trining.log &

3.3. Creating a Linguistic Corpus

Creating a linguistic corpus entails a systematic and meticulous process to compile a
structured set of texts representative of a particular language or linguistic phenomenon [41].
The genesis of this process is the identification of the corpus’s purpose, dictating the
nature and type of texts to be included [42]. Texts are then sourced from various domains,
achieving diversity and comprehensiveness. Rigorous text selection and categorization
criteria are employed, fostering consistency and relevance [43].

Each text is annotated and processed, with metadata and linguistic features metic-
ulously documented to facilitate nuanced analyses and interpretations. The resulting
linguistic corpus, a rich reservoir of curated texts, becomes instrumental for linguistic
research, NLP, and machine-learning applications, offering insights into language patterns,
usage, and evolution [44].

For this research, a set of Master’s and doctoral theses from the digital repository of
the University of Nariño was used. The University of Nariño, located in Pasto, Colombia,
has 11 faculties with 142 academic programs, which include 2 doctorates and 37 Master’s
degrees. Developing a linguistic corpus from Master’s and doctoral theses offers unique
and significant value to the academic and research communities [45]. These theses represent
comprehensive, in-depth research in various areas and contain rich, specialized language
and complex concepts meticulously explored and articulated in several knowledge fields.
Our linguistic corpus comprised 47 doctoral theses (12,130 pages with 4,163,628 words)
and 523 Master’s theses (128,251 pages with 44,965,984 words). We focused on finding the
sentences with the triads depicted in Table 2.

Table 2. Triads identified in the linguistic corpus.

Triad Meaning Examples
Elicited Triads in the Linguistic

Corpus for Training and
Fine-Tuning Purposes

<CONCEPT> <IS|HAS>
<CONCEPT> Structural triad Computer is machine.

University has campus. 5,191,883

<ACTOR> <VERB>
<CONCEPT> Dynamic triad

Professor designs syllabus.
Programmer

produces software.
1,297,974

Researchers can access a concentrated source of expert knowledge, innovative ideas,
and diverse perspectives by compiling these academic works into a structured linguistic
corpus. This corpus aids in studying the linguistic trends, terminology evolution, and
discourse structures prevalent in advanced academic writings. Moreover, it can enhance
NLP algorithms significantly by training them on complex domain-specific linguistic
constructs, leading to more sophisticated and accurate AI models capable of understanding
and generating text at an advanced academic level [46].

4. Results
4.1. Building the Computational Solution

Our dataset, called customPCS (customized pre-conceptual schemas), was produced
from the linguistic corpus for the re-training process of a BERT model and the fine-tuning
of the Llama 2-Chat model. We used a pre-trained model available from the Hugging Face
repository and the model available in the META AI, also available from Hugging Face. The
details of this process are presented in Table 3.
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Table 3. Customized dataset produced from the linguistic corpus for training the models.

Dataset Model Training/Fine-Tuning Accuracy Time Spent

customPCS bert-base-multi-lingual-cased 1 20 epochs 91.3% 5 h, 37 min
customPCS llama-2-7b-chat.ggmlv3.q4_0 2 5 epochs 90.1% 1 h, 43 min

1 Model from the Hugging Face repository. 2 Meta AI released model.

The BERT-based multi-lingual-cased model was re-trained according to our dataset;
the AdamW optimizer, cross-entropy loss function, learning rate of 2.5 × 10−5, batch size
of 32, and 20 epochs were used. Additionally, the llama-2-7b-chat.ggmlv3.q4_0 model was
also fine-tuned to our dataset; the Adam optimizer, cross-entropy loss function, learning
rate 2.0 × 10−4, batch size of 16, and 5 epochs were used. The training and fine-tuning
processes of the large language models was done in a physical server—on the premises—
with the following configuration: 2 Xeon Platinum 8452Y 36C 300W 2.0GHz Processor 4th
Gen, 512Gb RAM, 32Tb SSD HD, and 2 GPUs L4 24GB PCIe Gen4, running on Ubuntu
Server 22.04 LTS.

The following text fragment shows the re-training process of the BERT model, and its
graphic results in Figure 3.
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Once the BERT model was re-trained and the Llama 2-Chat model was fine-tuned, we
proceeded to build our solution called PCS-AI v1.0, a web application with the following
requirements for construction and deployment: Ubuntu Server 22.04, Gunicorn Flask, GoJS
API, and Python 3.10. This web-based software uses the NLP of basic pre-conceptual
schemas using the models. For this first approach to the automatic interpretation of pre-
conceptual schemas, the concept related to a person—the actor—and was adapted in blue
to be differentiated from traditional concepts. Of note, this first version only handled
structural and dynamic features in pre-conceptual schemas.

Engaging in software testing within an academic setting, particularly with students
from courses in Formal Languages and Automata and Object-Oriented Design, offers a
multifaceted and enriching experience that bridges theoretical knowledge and real-world
application. By testing our software as an additional result of this research in this setting,
we can harness the fresh perspectives and diverse skill sets of these students, which are
instrumental in identifying potential improvements and challenges to our software for
representing knowledge in any domain by using pre-conceptual schemas. Moreover, this
collaboration serves as a valuable teaching tool, allowing students to gain practical experi-
ence in representing knowledge based on a controlled language. The interaction between
students from these distinct yet complementary courses encouraged an interdisciplinary
approach, enriching the testing process with a blend of theoretical rigor and design-centric
thinking. In fact, the use of pre-conceptual schemas allowed us access to the design skills
of those who use this way of representing knowledge [1]. In specific cases such as re-
quirements engineering, pre-conceptual schemas have been a fundamental part of such
an activity.

Our main motivation focused on providing a computational solution—software—for
the design of pre-conceptual schemas in academic settings. Considering that pre-conceptual
schemas are used to represent knowledge of any nature based on controlled language, we
consider that the construction of a software capable of interpreting in natural language the
designs that human beings create is a relevant contribution in academic scenarios.
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In this sense, we created the PCS-AI v1.0 software, which represents an acronym
for Pre-Conceptual Schemas Artificial Intelligence version 1.0. This software has been
registered in the national copyright office of Colombia, through logical support registration
number 13-96-425 of 2023.

It is highlighted that PCS-AI v1.0 uses the BERT and Llama 2-Chat language models
available through the Hugging Face portal, and that these models have been re-trained and
fine-tuned with a private dataset called customPCS, which comes from a linguistic corpus
whose copyright is protected by Colombian law.

PCS-AI v1.0 is a web-based software. After authentication processes, a screenshot of
the pre-conceptual schema visual editor of the PCS-AI v1.0 software is depicted in Figure 5.
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End users who wanted to use the computing solution had to enter the platform by
authenticating their usage with their credentials. Once inside the visual editor, by using
drag-and-drop techniques, a pre-conceptual schema could be designed that represented
specific knowledge in a given domain. The connections between the objects of the pre-
conceptual schema were made by arrows touching the initial and end elements of the
node-based graph.

Once the end user had built the pre-conceptual schema in the visual editor, the
sentences were generated through NLP. Next, the linguistic engine, supported by artificial
intelligence, reconstructed the sentences represented in the pre-conceptual schema. By
pressing the “Getting sentences” button, the graph depicted in Figure 6 was obtained for
this case.

In essence, a pre-conceptual schema is a directed graph. The way to extract the triads
is by using finite state machines in the internal programming of the computational solution.
When traversing such graph, the nature of the object is passed along with its content to be
analyzed by the computational solution; in this way, the finite state machines determine if
it is a triad that complies with the noun, verb, noun form.

To recall the way this linguistic corpus was built, this same principle about using
finite state machines for detecting word triads was used, since the sentences were elicited
by automatic means from the original data sources. Our linguistic corpus also had a
taxonomy of the most frequent words, their linguistic variations (i.e., verb conjugations),
and some linguistic collocations. In this way, such taxonomy is the reference base for
detecting word triads from complete sentences that have been automatically detected from
the original sources.
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Subsequently, by pressing the “interacting with the PCS” button, the user could
interact with the designed pre-conceptual schema through an interface. This interaction
was based on the mechanism of preparing questions or queries that the humans could
ask the pre-conceptual schema. Via a phrase or question using NLP, the system could
determine the answer using the linguistic engine based on artificial intelligence. Figure 7
presents a corresponding screenshot.
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Finally, the computational solution had a generative feature in the user’s action of
pressing the “Explaining the PCS’s sentences” button. By doing this, the computational
solution used the fine-tuned Llama 2-Chat model to explore explanations of the triads
elicited from the pre-conceptual schema designed by the user. This feature is depicted in
Figures 8 and 9.
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4.2. Validating the Computational Solution in Academic Scenarios

In our role as professors at public universities in Colombia, we are driven by the
objective to develop and implement computational solutions specifically tailored to meet
the educational needs of our computer science students. This initiative is rooted in an
understanding of the distinct academic and cultural contexts of our institutions. A key
component of our approach is the integration of pre-conceptual schemas as a tool for
knowledge representation. These schemas facilitate the abstraction and conceptualization
of complex information, thereby enhancing the students’ comprehension and application of
computer science theories and principles. Our endeavor is not merely to impart theoretical
knowledge but to equip students with the skills necessary to analyze, interpret, and
innovate within the field of computer science. By aligning our teaching methodologies and
technological resources with pre-conceptual schemas, we aim to foster a more effective
and contextually relevant learning environment. This commitment leads us to validate our
computational solution in academic settings.

The first phase of the validation process focused on interpreting the pre-conceptual
schemas and eliciting sentences in triads. In evaluating the efficacy and user experience of the
newly developed software in this phase, a research study involving 25 students—distributed
between two groups—was meticulously designed and executed. We applied a mixed-
method research technique, integrating qualitative and quantitative approaches to com-
prehensively analyze the software’s performance and usability [47]. The 25 participants
were students in the Formal Languages and Automata Theory course in their seventh
semester of the systems engineering undergraduate program at the University of Nariño,
Tumaco campus.

The first phase of the validation was structured in two parts. Initially, we conducted
quantitative assessments, wherein the students interacted with the software, executing
specific tasks (i.e., representing practices in software design, activities, situations, etc.)
designed to explore the application’s various features and functionalities [48] using pre-
conceptual schemas. Metrics such as the task completion time, success rate, and error
frequency were systematically recorded. This part aimed to quantitatively measure the
software’s efficiency, effectiveness and reliability in a controlled setting, as depicted in
Table 4. In addition, Figures 10–12 show the results of the closed questions after the
experience with the software.
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Table 4. Quantitative measurements in the first phase of the experience.

Group Participant ID Task Completion
Time (min)

Success Rate
(%) Error Frequency

1 1 15.3 90 2
1 2 16.1 85 3
1 3 14.7 92 1
1 4 15.8 88 2
1 5 16.2 86 3
1 6 15.4 89 2
1 7 15.9 87 3
1 8 15.0 91 1
1 9 16.3 85 4
1 10 15.5 88 2
1 11 14.9 90 1
1 12 16.0 86 3
1 13 15.7 87 2
1 14 15.1 89 1
2 15 16.4 84 4
2 16 15.6 88 2
2 17 15.2 89 1
2 18 16.5 83 4



Big Data Cogn. Comput. 2023, 7, 182 16 of 22

Table 4. Cont.

Group Participant ID Task Completion
Time (min)

Success Rate
(%) Error Frequency

2 19 15.0 90 1
2 20 15.8 87 3
2 21 14.8 91 1
2 22 16.2 85 3
2 23 15.4 88 2
2 24 15.9 86 3
2 25 15.3 89 2

Subsequently, a second part of the phase involved a qualitative exploration which
entailed in-depth interviews and focus-group discussions to explore the students’ subjec-
tive experiences, perceptions, and suggestions [49]. This holistic approach enabled us to
quantify the software’s operational competence and understand nuanced user interactions,
uncovering potential improvements in the user interface’s design and functionality and
overall user satisfaction. The integrated findings from both parts of the study provided
multi-dimensional insights, laying a robust foundation for refining and enhancing the
software to meet the dynamic needs of its diverse user base. A photographic record of the
experience is depicted in Figure 13.
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Then, a second phase of the validation was performed, focusing on the generative
features of the computational solution. To do that, 15 students—also distributed between
two groups—in the Object-oriented Design course at the University of Nariño explored
the computational solution and evaluated the quality of the responses generated from
the elicited triads from the pre-conceptual schemas. Figure 14 depicts the student group
experiencing the computational solution PCS-AI v1.0.
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In this second phase of the experience, we performed some exercises by representing
knowledge using pre-conceptual schemas and the students used the generative features
according to the specification of triads in the pre-conceptual schemas. Table 5 depicts the
results after applying a survey to the students in the second phase of the validation. All
responses are based on Likert scales from 0 to 5 as follows:

Functionality rating.

0: Non-Functional—The features do not work.
1: Poor—The features have minimal functionality.
2: Fair—The features work but have significant limitations.
3: Good—The features are functional with some minor issues.
4: Very Good—The features provide extensive functionality with minor limitations.
5: Excellent—The features are fully functional and exceed expectations.

Quality of the generated responses.

0: No Understanding—Users have no comprehension of the generated responses.
1: Minimal Understanding—Users barely understand the generated responses.
2: Partial Understanding—Users have a basic comprehension of the generated responses.
3: Good Understanding—Users understand most aspects of the generated responses.
4: Very Good Understanding—Users have a strong comprehension of nearly all aspects

of the generated responses.
5: Excellent Understanding—Users fully comprehend all aspects of the features.

Likelihood to recommend the computational solution.

0: Would Not Recommend at All—Users would strongly advise against using the soft-
ware.

1: Unlikely to Recommend—Users are not inclined to recommend the software.
2: Neutral—Users neither would nor would not recommend the software.
3: Likely to Recommend—Users are likely to suggest others try the software.
4: Very Likely to Recommend—Users would strongly recommend the software to others.
5: Extremely Likely to Recommend—Users would highly advocate for using the software

to others.

Table 5. Quantitative measurements in the second phase of the experience.

Group Participant ID Functionality
Rating

Quality of the
Generated
Response

Likelihood to
Recommend the
Computational

Solution

1 1 5 5 5
1 2 5 5 3
1 3 5 5 5
1 4 4 4 5
1 5 5 5 5
1 6 5 5 5
1 7 5 4 4
1 8 5 5 5
2 9 5 5 5
2 10 5 5 5
2 11 5 4 5
2 12 4 3 3
2 13 5 5 5
2 14 5 5 5
2 15 5 5 5

The results of the second phase of the experience about generative features of the
computational solution are depicted graphically in Figure 15.
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5. Discussion

The overall experience with the computational solution was performed in two phases.
In the first phase, we began by defining how knowledge is represented using pre-conceptual
schemas. At this point, some examples of pre-conceptual schemas were presented in soft-
ware engineering, which the students managed to represent very well using the compu-
tational solution. At the time of developing the validation with the students, the tasks
performed were associated with the representation of some software engineering practices
using pre-conceptual schemas by themselves. Most students chose to represent extreme
programming and Scrum methods.

It was at this moment that the quantitative measurement of the tasks began. Two
exercises were proposed and developed in an expected time, with a subtle difference in
the completion time. According to the students’ reactions at the end of these activities, the
ease with which knowledge was represented through the structures based on triads with
pre-conceptual schemas was notable.

Subsequently, when developing the focus groups and interview processes, the stu-
dents generally expressed the ease with which knowledge can be expressed using the
computational solution. They highlighted the intuitive use and the possibility of expanding
on the definitions based on triads until more complex descriptions could be achieved.

We take these students’ appreciation as support for the enormous potential for using
pre-conceptual schemas in other knowledge domains. In practice, a test on representing
knowledge in domains other than software engineering was even developed at the end of
the measurement. In this case, some students represented knowledge in music, graphic art,
and cooking recipes.

The use of artificial intelligence to ask the pre-conceptual schema designed in the
visual editor of the computational solution impacted the students since they experienced
complex queries in the knowledge structures, obtaining correct answers. Some students
mentioned the possibility of creating an interactive chat in the style of intelligent copilots,
as some examples are presented in current developments, such as ChatGPT, Microsoft, and
Bing AI, among others.

Regarding the answers to the closed questions related to the graphic interface, func-
tionality and performance, it is notable that a high rating was obtained. With all these
considerations, we think the developments based on the representation of knowledge sup-
ported by artificial intelligence and computational linguistics techniques are appropriate in
these academic scenarios.
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The second phase of the experience with the computational solution was focused on
the generative characteristics from the triads derived from the pre-conceptual schemas.
Considering the results obtained, the use of the most recent Llama2-Chat model gave
excellent functionality to the software, highlighting the quality of responses generated
by such a model. The fine-tuning process applied to the Llama 2-Chat model generated
satisfactory results from using the customized dataset in this research. In this second
phase of the experience, the results of generating textual explanations about the triads were
somewhat surprising for most students.

6. Conclusions

In conclusion, this study underscores the pivotal role of adopting innovative ap-
proaches to enhance computers’ interpretations of pre-conceptual schemas, bridging the
existing gap in communication and information sharing by using such schemas. By lever-
aging a specially curated linguistic corpus constructed from Master’s and doctoral theses
housed in the digital repository of the University of Nariño, we successfully re-trained a
BERT model to yield improved outcomes in interpreting pre-conceptual schemas. Also,
we reached our goals by fine-tuning the Llama 2-Chat model to incorporate generative
features into our computational solution.

The empirical validation involving 25 students in the Formal Languages and Au-
tomata Theory course attests to the efficacy of the re-trained BERT model in the first phase
of the experience. In addition, the second phase of the experience included the genera-
tive features of the computational solution based on the fine-tuned Llama 2-Chat model,
where 15 students in the Object-oriented Design course participated in the experience with
favorable feedback. These findings signify a contribution to the realm of NLP applied
to pre-conceptual schemas and carve out avenues for future research and development
in this regard. The utilization of diverse and comprehensive academic writing infused a
broad spectrum of linguistic constructs into the model, rendering it adept at managing the
complexity and diversity inherent in pre-conceptual schemas.

LLMs play a pivotal role in enhancing the generative features of the software, offering
an array of benefits that elevate the user experience and software utility, in this case, the
Llama 2-Chat model. Integrating the Llama 2-Chat model empowers software with superior
text generation, comprehension, interaction capabilities and user inputs into meaningful,
coherent and contextually relevant outputs. Users enjoy an enriched interactive experi-
ence with personalized content, real-time feedback, and adaptive learning mechanisms.
Additionally, developers are enabled to innovate sophisticated applications ranging from
content creation, automated storytelling, and customized learning to interactive gaming
and beyond. Using models like Llama 2-Chat strengthens the ability to analyze and gener-
ate text in multiple languages and dialects, further amplifying their global applicability.
Incorporating the Llama 2-Chat model into software’s generative features heralds an era
where technology and human interaction converge, fostering creativity, efficiency and
inclusivity in digital experiences.

As we reflect on the achievements of this research, we are also aware of the prospective
enhancements and expansions that can further elevate the model’s performance. Future
research can delve deeper into optimizing the model’s parameters, expanding the linguistic
corpus, and exploring the model’s real-world applications in various domains beyond
software engineering. The nexus between pre-conceptual schemas and artificial intelligence
stands at the cusp of a transformation, and this research lays a robust foundation for
the journey ahead, promising a future where computers can interpret human thought
structures with unprecedented accuracy and efficacy.

7. Future Work

Since this is the first version of the essential management of pre-conceptual schemas,
future work points towards integrating all the elements that make up the language based on
such schemas; currently, only concepts and dynamic and static relationships are considered
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in this first version. On the other hand, automatically generating pre-conceptual schemas
via live transcription in speech recognition scenarios is possible.
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