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Abstract: We propose a new pruning constraint when mining frequent temporal patterns to be
used as classification and prediction features, the Semantic Adjacency Criterion [SAC], which filters
out temporal patterns that contain potentially semantically contradictory components, exploiting
each medical domain’s knowledge. We have defined three SAC versions and tested them within
three medical domains (oncology, hepatitis, diabetes) and a frequent-temporal-pattern discovery
framework. Previously, we had shown that using SAC enhances the repeatability of discovering the
same temporal patterns in similar proportions in different patient groups within the same clinical
domain. Here, we focused on SAC’s computational implications for pattern discovery, and for
classification and prediction, using the discovered patterns as features, by four different machine-
learning methods: Random Forests, Naïve Bayes, SVM, and Logistic Regression. Using SAC resulted
in a significant reduction, across all medical domains and classification methods, of up to 97% in
the number of discovered temporal patterns, and in the runtime of the discovery process, of up to
98%. Nevertheless, the highly reduced set of only semantically transparent patterns, when used as features,
resulted in classification and prediction models whose performance was at least as good as the models
resulting from using the complete temporal-pattern set.

Keywords: temporal data mining; machine learning; time intervals mining; semantics; frequent
temporal pattern mining; classification; prediction; medicine

1. Introduction

This paper deals with the increasingly important topic of the discovery of frequent
temporal patterns when given as input a set of symbolic time intervals, i.e., time periods over
which hold one or more propositions, such as, in the medical domain, “The dose of the
medication was High” or “The blood pressure was Low”, and the temporal relationships
among these periods. The discovered temporal patterns can then be exploited for clustering,
classification, and prediction.

Analyzing time-oriented, multivariate clinical data enables researchers to discover
new temporal knowledge and gain understanding regarding the temporal behavior and
temporal associations of these data [1–9]. The main methods for the discovery of new
knowledge in longitudinal multivariate data include multiple Temporal Data Mining (TDM)
approaches, although an alternative, Business Process Mining (BPM) approach has also
been used successfully when the data describe actual activities and processes; in such
cases, temporal relations at a finer level of resolution are often less emphasized [10–13].
Unlike most TDM methods, which typically focus mainly on the analysis of the raw time-
stamped data, the use of symbolic time intervals can reduce inherent random noise in the
data, avoid problems resulting from different sampling frequencies and at various tem-
poral granularities, and often alleviate the problem of missing data [3,7,9,14,15]. Thus,
to significantly enhance the capabilities for analysis of time-stamped data, a preprocess-
ing step of meaningful summarization and interpretation of the time-stamped raw data
(e.g., a series of hemoglobin values) into a set of interval-based abstractions or symbolic
time intervals (e.g., periods of moderate anemia), known as temporal abstractions, can be
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used [16–20]. The resulting interval-based summary can have multiple uses, such as to
create natural-language free-text summaries (e.g., discharge letters) of large numbers of
digital time-oriented clinical data [21], to visualize the data of individual patients [22], or to
interactively explore associations among the time-oriented data and their abstractions [2].

Once a set of interval-based abstractions of the time-stamped raw data exists, a set of
[sufficiently] frequent temporal patterns, incorporating these symbolic time intervals as
components, can be discovered. We refer to these patterns as time-interval-relation patterns
(TIRPs) [3]. Within TIRPs, all of Allen’s seven basic temporal relations and their respective
inverse relations [23] might hold, such as Before, During, Overlaps, Finishes, etc.

Recently, time-interval patterns have been increasingly used as features to classify
multivariate temporal data [1,20,24–27]. Using that approach, the [sufficiently] frequent
interval-based temporal patterns are used as the base features to induce a classifier. Further-
more, we have shown in an earlier study that frequent TIRPs can be consistently discovered,
and in similar proportions, in different subsets of the same data set within three different
medical domains, especially as the minimal threshold for frequency is raised, thus increas-
ing their value for potential classification and prediction tasks [28]. This repeated discovery
suggests that discovered TIRPs might indeed be good candidates for use as classification or
prediction features.

However, our work in multiple clinical domains had suggested that many of the
discovered frequent temporal patterns, although correct from the purely syntactic aspect,
do not conform to the basic semantics of medical experts, who often assume a certain type of
temporal adjacency among the temporal-pattern’s components. Thus, such patterns are not
transparent characterizations of the data. This semantic temporal adjacency, which domain
experts seem to implicitly assume, means that no instance of the pattern includes any
[additional] intermediate intervals within the scope of the pattern, which might contradict
a potential interpretation of causality, or at least direct temporal association, among the
pattern’s components. Our new principle injects semantics into what are usually purely
syntactic algorithms for discovering frequent temporal patterns in large data sets and
demonstrates their effectiveness for classification and prediction. For example, this can
be achieved by pruning away most of the potential machine-learning temporal features,
without losing any classification or prediction accuracy.

An example of the idea at the core of our new semantic principle, which exploits also
the semantics of the symbolic interval-based predicates and not just their temporal relations,
is the discovery of the following frequent temporal pattern: <“A period during which a
High dose of the medication” occurs Before “A period during which the Hemoglobin level
was Low”> (instance No. 1 in Figure 1). A domain expert might assume that perhaps there
is a causal association between the two symbolic intervals since they frequently seem to be
found together in this specific order.

However, what if, after examining the symbolic intervals abstracted from the raw data,
the expert finds that between these two symbolic intervals, there often exists, within the
patient’s original longitudinal record, an additional interval, during which a High level of
Hemoglobin exists (Instance No. 2a in Figure 1). Alternatively, what if this expert finds one
or more instances of the pattern in which, between the two components defining it, there
exists in the patient’s record an interval during which dose of the medication was actually
Low (instance No. 2b in Figure 1)?

Although technically the original temporal relation still holds, its significance now,
from a medical expert’s point of view, might change considerably. That would be the case
whether the discovered frequent pattern is used for human explanatory purposes, or for
succinctly summarizing the data, or for machine-learning purposes.
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Figure 1. An example of our new Semantic Adjacent Constraint. Three syntactically equal instances
of the same interval-based temporal pattern, which includes the symbolic intervals, “<Medication-
dose-level = High> Before <Hemoglobin [HGB]-level = Low>” are shown. Instance No. 1 describes a
situation in which the two intervals are adjacent, and no contradicting value exists between them,
and thus preserves semantic transparency. Instance No. 2a describes a situation in which the two
intervals are not semantically adjacent, since there is an unexpected (from the point of view of the
domain expert) High hemoglobin-level value between them that contradicts the pattern’s expected
semantics. Instance No. 2b, similarly, contains an unexpected medication-dose level (Low) between
the two symbolic intervals. Both of the instances of the non-SAC obeying patterns will be pruned out.

As we formally define in the Methods Section, we distinguish a TIRP (an abstract pat-
tern with certain temporal qualitative constraints) from its TIRP Instances, which are found
in the longitudinal records that are being analyzed. A TIRP is frequent if the proportion of
the records within which its TIRP instances are discovered is higher than some threshold.
However, within the temporal scope of some of the instances of frequent TIRPs, there might
exist, in some of the patients’ longitudinal records, additional symbolic intervals (which
are not part of that instance), as shown in Figure 1, which seem to contradict the TIRP’s
intuitive semantics.

Note that experts, especially medical experts, often expect a meaningful frequent
temporal pattern to convey some potential causal relationship, such as a High dose of a
medication reducing the level of Hemoglobin, in the case of the temporal pattern depicted
in Figure 1, Instance #1 (SAC-obeying TIRP). The fact that the true state of affairs is
such that it rules that possibility out, as in the case of Instance #2, since in the patient’s
record there exists a High-Hemoglobin period after the administration of the medication,
would not be expected by a clinician when hearing the description of the frequently
discovered pattern as “<Medication-dose-level = High> Before <Hemoglobin [HGB]-level
= Low>”. Nor would this clinician expect that there might be an additional episode of
medication administration, but with a Low dose, before the High Hemoglobin value. Given
that description, from the point of view of a clinician, Instance #2 and Instance #3 lack
semantic coherence.

In the current study, we are not exploring the purely psychological issue of the potential
lack of transparency, to medical experts, of different temporal-pattern semantics. (Although
such a lack might considerably reduce, for example, the patterns’ explanatory value, their
data-summarization value, and the efficacy of the experts in suggesting additional patterns
to explore). What we do conjecture in this study concerns a purely quantitative functional
issue: We believe that such “semantically incoherent” patterns, beyond being potentially less
transparent to medical experts, might also be less useful, and perhaps even unnecessary,
as classification and prediction features for a machine-learning process, precisely due to
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their potential lack of semantic coherence. At the same time, discovering such redundant,
“semantically incoherent” temporal patterns might require significant effort during the
discovery time, as well as during classifier-induction time, without enhancing the accuracy
of the resultant classifiers.

Of course, what precisely is and is not semantically coherent within a complete multiple-
interval temporal pattern needs to be carefully and formally defined, as we do in Section 3.
We shall see that in fact several options exist for exploiting the basic semantic intuition
demonstrated in Figure 1, depending on which constraints exactly must hold in such a
temporal interval triad, so as to comply with the notion of semantic coherence.

Although several of the earlier studies have noticed a potential redundancy during
pattern discovery (in particular, the discovery of patterns containing repeating symbolic
intervals as components, such as discovery of the pattern AAB in addition to the discovery
of the pattern AB), or even considered patterns characterized by the absence of certain
symbols [29], they have only considered the issue from a purely computational point of
view (i.e., the complexity of the temporal-pattern discovery process) [1,3]. For example, no
attention was paid to the relationship between pattern components denoted by different
symbols, each of which represents a different proposition, which in a medical domain’s
ontology might in fact represent different values of the same concept. For example, both of
the symbols “Low blood pressure” and “Hypertension” (i.e., High or Very-High values of the
blood pressure) are propositions that assign different values to the same concept, namely,
the concept that denotes the abstraction of the raw-data Blood Pressure measurement
concept into a discrete symbolic value. In contrast to these studies, in the current study we
shall refer to that potential problem from a semantic point of view (i.e., the potential meaning
of the discovered pattern and of each of its components), as well as from a functional point
of view (i.e., the implications for the effectiveness of the classification).

Thus, in the current study, we explored the application of semantic considerations to
symbolic time-intervals mining, and to classification and prediction tasks, in medical domains. The
current study complements and significantly extends into new grounds a previous study
of ours in which, in addition to the main methods, we had very briefly introduced, as a
secondary method, the SAC principle and had shown, among other related results, that
pruning discovered temporal patterns in clinical data using the SAC constraint enhanced
the consistency of discovering the same temporal patterns in similar rates in similar patient
populations [28]. The current study examines, for the first time, through the use of several
machine learning methods, the implications of the use of the SAC principle for the tasks of
classification and prediction, and the exploitation of the SAC principle for a considerable
reduction of the number of temporal-pattern features used by these machine-learning
methods, without any loss of performance.

As we shall see, the use of domain-specific semantics (which is explained in detail in
Section 3.3) can constrain the discovery of temporal patterns in symbolic time intervals data
to only those patterns that include certain semantically meaningful relations amongst the
symbolic time intervals of which they are composed, in the sense of not violating certain
semantic constraints that we have formally defined. Note that no new temporal patterns are
discovered; rather, a large number of candidate patterns are pruned [filtered] out during the
discovery process. Thus, our main contribution in this study, beyond introducing, for the
first time, a highly detailed and formal definition of the SAC principle and several of its
variations, is the rigorous evaluation for classification and prediction purposes of a new
pruning constraint for mining time intervals, the Semantic Adjacency Criterion (SAC). In fact,
we have defined and explored three versions of the SAC criterion.

Consequentially, our core double-pronged hypothesis in this study is that:

(a) It is more efficient, during the temporal data mining process, to discover only semantically
coherent patterns [coherent in a sense that we shall formally define]. But nevertheless,

(b) Imposing such semantic constraints, leading to the discovery of a significantly smaller set of
patterns, will not cause any harm with respect to the performance of the discovered patterns as
features for classification or prediction purposes, and might even enhance that performance.
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As our current study demonstrates, using any of the SAC versions results in the dis-
covery of temporal patterns whose overall cardinality, as well as time needed for discovery,
are smaller by at least an order of magnitude than the respective resulting cardinality
and required running time when not using the SAC constraint; but that whose value to
classification and prediction tasks that use the discovered patterns as features is at least as
good as the original full set of discoverable patterns.

The outline of this paper is the following: Section 2 provides the necessary background
for the rest of the paper. Section 3 describes our computational framework, including the
use of temporal abstractions, the discovery of TIRPs, and the formal definition of the three
SAC versions. Section 3.9 describes the evaluation and the experiments we performed to
assess the effect of using the three SAC versions to discover frequent temporal patterns
and exploit them as features for classification and prediction purposes, using four different
classifier-induction methods within each of three different clinical domains. Section 4
describes the results of our empirical evaluation. Section 5 discusses the results. Section 6
presents the main conclusions of this study.

2. Background and Related Work

In this section, we briefly present the background topics that are most relevant for later
presenting our methodology in detail, including: Semantics of Symbolic Time Intervals,
Time-Intervals Mining, and Classification using Temporal Patterns as features.

2.1. The Structure and Semantics of Symbolic Time Intervals

As the reader might have already gleaned from the examples mentioned in the pre-
vious section, the symbols that may hold on symbolic time intervals usually denote the
combination of a concept and its value. A concept might represent raw data (e.g., a Blood-
Pressure measurement) or an event (e.g., administration of the medication Insulin). The
values of such concepts are often numeric, such as “90 mmHg” for a blood pressure mea-
surement, or “2 units” for an Insulin administration. Other raw-data concepts, whose
default value is “True”, include events such as a total-hip-replacement surgery. A concept
might also denote, however, a more abstract interpretation of the raw-data concept, such
as the [discretized] level of the Blood Pressure raw-data concept, or the assessment of the
dose of administered Insulin. In that case, the respective values might be ‘High” or “Low
dose” or “Very High”.

Symbols that contain Abstract-concepts might also be the result of a temporal-abstraction
process, in which a series of raw time points were transformed into one or more symbolic
time intervals, such as the concept “The trend of the Blood-Pressure measurements” with
the value “Decreasing”.

Several types of abstract concepts, and in particular temporal abstractions, exist. To
be clear and consistent throughout this paper, we use a simple well-known temporal-
abstraction ontology, which has been deployed in multiple application domains, which
is the ontology used by the Knowledge-Based Temporal Abstraction (KBTA) method [16].
However, both the SAC principle and the results of using it are quite generic, and do not depend
on the use of any particular temporal-abstraction ontology, nor on any particular methodology for
generating the symbolic time intervals.

An abstract concept might denote a State abstraction, i.e., a classification of the value(s)
of one or more raw-data concepts into a set of values of a single abstract concept, using
a set of cutoff values. An example is the abstraction of the Hemoglobin-level value into
several states, such as Normal_Hemoglobin or Moderate_Anemia. Similarly, the raw-
data Height and Weight concepts might be jointly abstracted, using a simple arithmetical
function (Weight/Heightˆ2), into the abstract concept of a body mass index (BMI). The BMI
concept, in turn, might be further abstracted, using simple cutoff values, into the “BMI
state” abstract concept, which might have values such as “underweight”, “Normal_weight”,
“overweight”, or “obese”. A state abstraction can be performed using cutoff values that
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are provided by a domain expert [16]. Alternatively, the cutoff values might be derived
directly from the raw data series [14,15,26].

Temporal abstractions are usually formed within a context, or a state of affairs, such
as being a male or a female, an infant, or being under the influence of an Insulin injection
[Shahar, 1997]. Thus, the knowledge necessary for correctly forming abstractions from raw
data is context-sensitive, and the concepts, implicitly or explicitly, might include that context
(e.g., “the State of the Hemoglobin-value of a young woman”). For our purposes in the
current paper, we shall assume that the context is a part of the concept. Several approaches
to the abstraction of time-oriented raw data into symbolic intervals exist. The KBTA
methodology uses domain-specific and context-sensitive classification knowledge to generate
the abstractions from raw concept values and applies temporal interpolation knowledge to
bridge gaps between time points and time intervals and join them into longer [symbolic]
time intervals. It was applied within multiple domains and to different tasks, such as
within the domains of medicine, biology, information security, or traffic control, and to the
tasks of summarization, visualization, exploration, classification, and prediction [15,22].

However, when no suitable domain knowledge exists, various data driven discretiza-
tion methods exist [30], which typically focus on finding cut-off values (using various
heuristics) for discretizing continuous data. Such methods include, for example, the Equal
Width Discretization (EWD) method, which partitions the range of values into an equal-
width partitioning, and in practice, often suffices for the purposes of classification or
prediction; the SAX method for discretization of time series, introduced by Lin et al. [14];
and the Temporal Discretization for Classification (TD4C) method, introduced by Moskovitch
and Shahar [20], a discretization method that is specifically geared for the classification
task. The TD4C method learns the state-abstraction cutoff values, which best separate
the instances belonging to the predicted classes with respect to their differing distribution
of abstraction values over time. The inter-distribution distance measure is either Cosine,
Entropy, or the Kullback–Leibler measure. The TD4C method outperformed the EWD and
SAX discretization methods, for the purpose of classification, in several different medical
domains [20].

As we shall now see, one can mine symbolic time intervals to discover frequently
occurring temporal patterns (combinations of the symbolic intervals with certain temporal
relations among them) in the data of multiple subjects.

2.2. Mining Symbolic Time Intervals

Typically, time interval mining methods use some subset or variation of Allen’s
temporal relations [23]. Allen defined thirteen temporal relations, based on seven relations
(before, meets, overlaps, finished-by, contains, start-by, equal) and their inverses (note that the
inverse of equal is equal). Another option, which was investigated also in the current study,
is the one of using only three abstract temporal relations, two of which are defined by
a disjunction of Allen’s relations [3]: BEFORE, which is the disjunction of {before, meets},
OVERLAPS, which is the usual overlaps, and CONTAINS, which represents the disjunction
of {finished-by, contains, started-by, equal}.

Höppner introduced a method to mine rules in symbolic time interval sequences using
Allen’s temporal relations, using a non-ambiguous representation through a conjunction
of the pairwise temporal relations among the symbolic time intervals [31]. This time
intervals patterns definition was later used to discover patterns more efficiently by several
groups [3,24,32,33]. Other researchers used additional abstract relations [17] or other types
of temporal relations, such as coinciding [34].

Further improvements to the specific problem of mining frequent temporal patterns,
which appear above a particular percentage (i.e., support) threshold in the longitudinal
records of a collection of entities, have been made. In particular, Lee, Lindgren, and
Papapetrou [35] have introduced Z-Miner, an algorithm for solving this particular problem
that employs two data structures: Z-Table, a hierarchical hash-based data structure for
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time-efficient candidate generation and support count, and Z-Arrangement, a data structure
for efficient memory consumption.

Recent progress has been made on the front of examining time-interval relation patterns
(TIRPs) that include all of the information about TIRPs in the data set, referred to as closed
TIRPs [36]. An efficient algorithm for discovering closed TIRPs, referred to as TRIPClo, was
designed [9]; a recent evaluation has demonstrated the TIRPClo algorithm’s considerable
computational effectiveness on eleven real-world and four synthetic data sets, and has
examined its implications [9].

Note that the task of interval-based temporal data mining is quite different from sequen-
tial mining (see Section 2.3) which, as its name would suggest, is purely sequential, and
usually focuses on point-based episodes. The main task in the case of the multiple algo-
rithms for mining patterns based on time intervals is to mine frequent patterns of repeating
temporal relations among multiple time intervals. That task includes the determination of
temporal relations such as contains, overlaps, and finishes, in addition to the standard before
and after and equals.

However, it is important to note that unlike the SAC criterion that we define and exploit
in this paper, none of the advanced frequent temporal-pattern discovery methods listed
here, although exploiting several different temporal-pattern discovery principles [3,7,27,32],
also considers the internal semantics of the temporal patterns’ components. In other words,
when discovering a TIRP such as T1 = ((A before B) and (B before C)), no attention is usually
paid to the issue of the precise meaning of A, B, and C, and whether certain meanings make
more sense, with respect to the temporal relation in question, than others.

Nevertheless, as shown in Figure 1, the meaning of these three symbolic intervals
might well drastically change the interpretation of finding a frequent TIRP such as T1, the
decision whether to even include it in the set of candidate TIRPs to be discovered while
running an algorithm for frequent-temporal-pattern discovery, or the decision whether to
use it as a feature for classification and prediction, as our evaluation of the SAC principle
will demonstrate.

2.3. Classification and Prediction Based on Temporal Patterns

The field of sequential data mining and its use for TDM tasks has been explored in
various ways, e.g., through the sequence classification task [37], or through sequence and
motifs mining to extract features for classification [38–40]. However, its focus is on time-
stamped events, and essentially only on the before relation, and so is not appropriate for the
types of domains and tasks in which we are interested. We are interested in the more general
nature of multivariate, time-stamped, and interval-based data. Quite simultaneously,
several groups proposed using interval-based TIRPs as features for classifying multivariate
time series [1,24,41], which were followed by more recent studies [3,7,26,27,35].

A somewhat different approach to the analysis of time series at a more abstract level is
to partition the data into local groupings [42].

Interestingly, all of the above studies reported the use of temporal abstraction and
the use of TIRPs for classification applied to biomedical data. Patel et al. proposed
using IEClassifier to classify Hepatitis patients using TIRPs [1]. Batal et al. performed
knowledge-based temporal abstraction, but used only two relations: before and co-occur,
which is a specific case of an a priori sequential mining algorithm called STF-Mine [41].
Several studies had shown the advantages of using TIRPs over atemporal representations
in classifying multivariate temporal data [1,24,26,41]. Other studies attempted to introduce
several heuristics to decrease the number of discovered patterns that still maintain the
same level of accuracy [25].

Moskovitch and Shahar presented KarmaLegoSification—a framework for classifica-
tion of multivariate time series via temporal abstraction and time intervals mining [26].
Two new metrics for exploiting TIRPs as features for machine learning were defined: hor-
izontal support, which represents the number of TIRP instances discovered for a specific
entity, and mean duration, which measures the average time length of the supporting TIRP
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instances. Both new feature representation methods were shown to be superior to the
default binary representation (i.e., simple existence or not of the TIRP) for classification.
The use of the three abstract temporal relations (Section 2.2) was superior to the use of
Allen’s seven relations, and using knowledge-based State abstractions (see Section 2.1)
when available performed better for classification purposes than using EWD or SAX [26].
However, in a later study, using the TD4C method [20] (see Section 2.1) to create State
abstractions outperformed even the use of a knowledge-based abstraction method for that
purpose. As we shall see when presenting our methods and results, we have used several
insights from these preceding studies when assessing the value of our new semantic criteria
for the purpose of significantly reducing the number of patterns, without reducing their
classification performance.

Recent work has focused not only on the discovery of temporal patterns and their use
for classification and prediction, but also on proposing explanations to the classifications
and predictions [43–45].

Several research groups have been working recently on creating whole architectures
for time series classification. Middlehurst et al. improved on their HIVE-COTE 1.0 suite
to introduce the HIVE-COTE 2.0 meta-ensemble of time series classification [46]; Tan
et al. have demonstrated the computational efficiency of their MultiRocket architecture,
based on Convolutional Neural Networks (CNNs) for fast time-series classification, which
has a performance comparable to the HIVE-2.0 meta-ensemble [47]; Lee, Lindgren, and
Papapetrou have presented the Z-Time architecture [7]; and Sarafian and Moskovitch have
introduced the Saraswati suite of tools, which can modify an algorithm for temporal-pattern
discovery into an algorithm for the discovery of predictive temporal patterns [27].

However, unlike the case of other frameworks that discover and exploit temporal
patterns as classification features [3,7,25–27,32,47], when using our new SAC principle, the
decision whether to even include a candidate TIRP in the list of discovered TIRPs, and in
particular, whether to exploit it as a feature for classification and prediction, can use also
the internal semantics of the components of the TIRP, and as we shall show when defining the
SAC principle, can lead to the decision to reject its inclusion to begin with. This [often very
substantial] pruning can be made without any discernible decrease in the performance
of the classifier that uses the TIRPs as features, as our evaluation of the SAC principle
will demonstrate.

3. Materials and Methods

We start by first defining the basic interval-based TDM terminology. We then describe
briefly the high-level overview of the general TDM algorithm we chose to deploy for this
study, before formally introducing the SAC criterion and its semantics and several versions.

3.1. The Time Intervals Mining Process

To formally define the problem of mining symbolic time intervals, and to better
comprehend how the SAC constraint can be introduced into an interval-based frequent-
pattern discovery algorithm, we present several basic definitions used by common TDM
algorithms, such as by the KarmaLego frequent-pattern discovery algorithm [3], which we
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The goal of discovering frequent TIRPs is to discover [sufficiently] frequently occurring
abstract patterns within the instances of the given database; each pattern instance found in
the database is a TIRP instance.

The fact that the database is ordered lexicographically enables us to use only seven of
Allen’s temporal relations (or even the three abstract relations) as defined in Section 2.2.
Figure 2 presents a typical TIRP, represented as a half-matrix of temporal relations.
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of three types, A, B, and C, and all of their pair-wise temporal relations.

The vertical support for a TIRP is defined as follows: given an input database of |E|
distinct entities (e.g., different patients), each represented as a set of symbolic time intervals
(in which one or more symbols might repeat over different symbolic time intervals), the
vertical support of a TIRP P that was discovered in the input data is denoted by the cardinality
of the set EP of distinct entities (within which at least one instance of P was discovered)
divided by the cardinality of |E|.

When a TIRP has a vertical support above a given minimal predefined threshold
min_ver_sup, it is referred to as frequent. Furthermore, the horizontal support of a TIRP P
for an entity e (e.g., a single patient’s record), hor_sup(P, e), is the number of instances of
P found in e. Accordingly, we also define the mean duration of the supporting instances
of the same TIRP P within an entity e as the average time of the instances of P within a
specific entity e, from its earliest start-time to its last end-time. Thus, given a minimum
vertical support min_ver_sup, the goal of the mining task is to find the complete set of the
frequent TIRPs, including all of their supporting instances vertically and horizontally [26].

The KarmaLego algorithm [3], which we chose to use in this study’s evaluation to
discover frequent temporal patterns due to its proven efficiency comparing it to several
of the best-known alternatives (and it is provably complete in its discovery of all frequent
TIRPs [26]), consists of two main phases. The first phase is called Karma, in which all of the
frequent two-sized TIRPs, having two symbolic time intervals I1 and I2 and a temporal
relation r among them, are discovered and indexed. In the second phase, called Lego, a
recursive process extends the frequent two-sized TIRPs, referred to as T2, through efficient
candidate generation, into a tree of longer frequent TIRPs consisting of conjunctions of
the two-sized TIRPs that were discovered in the Karma phase. The final output is an
enumeration tree of all the frequent TIRPs discovered in the given database.

3.2. Adding Semantic Considerations to Time Intervals Mining

As explained in Section 1, there is a potential drawback inherent in the interval-based
pattern mining task. Many of the discovered patterns are syntactically true, but semantically
misleading. Addressing this problem requires the addition of semantic considerations to
the time intervals mining task.



Big Data Cogn. Comput. 2023, 7, 173 10 of 40

3.3. The Semantic Adjacency Criterion

Since frequent TIRPs mining algorithms generate all of the feasible TIRP candidates
and search for them in the data, certain discovered TIRP instances (e.g., a period of High-
dose medication of a certain type, is followed by a period of Low blood pressure), although
syntactically accurate, i.e., corresponding to a TIRP formal definition, might not represent in
a transparent fashion the common-sense semantics that a domain expert might assign to
the real data (see Figure 1). Thus, many of the discovered TIRPs might not be sufficiently
transparent to the expert. We shall now explore this observation in depth.

Recall that a symbol, and in particular a symbol that holds during the duration
of a symbolic time interval, is composed of a [raw or abstract] concept and its value
(Section 3.1). In Section 1, we presented a frequent TIRP that might be discovered (Figure 1),
“<Medication-dose = High> occurs before <HGB-level = Low>”. The TIRP seems to imply
that administering a medication at a High dose is often [temporally] followed by a Low
value of the Hemoglobin-value abstract concept (which is a State abstraction of the HGB-
value raw-data concept; see Section 2.1). Such an association is not necessarily causal, of
course, but it certainly might be, and justifies additional exploration.

To facilitate our discussion, for each symbol we will refer to its two components,
the concept and its value, following purely for consistency and clarity reasons the KBTA
theory’s nomenclature [16] (see Section 2.1). In the example we just discussed, the state
abstractions “Medication-dose-level” and “HGB-level” are the [abstract] concepts, and
“High” or “Low” are their values. A concept can only have one value at any point in time;
different values during the same time are considered mutually exclusive and therefore
contradictory. However, the TIRP shown in abstract fashion in Figure 2 might in fact include,
within its supporting instances group [for a given database] that defines its vertical (or
horizontal) support (see Section 3.1), instances that include, somewhere within their overall
temporal scope (although not at the same time), symbolic time intervals that represent
values that are semantically contradicting (see explanation below) to those appearing in the
formal TIRP definition. Two such cases were shown [as the grayed-out symbolic intervals
of Instances #2a and #2b] in Figure 1. Contradictions are instances in which, between
two of the TIRP’s symbols, there is a symbol, composed of a concept and a value, such
as, in this case, “HGB-level = High” (or “Medication-dose-level = Low”), in which the
concept (which implicitly includes its abstraction type, such as State or Gradient, and its
context, such as gender = Female) is identical to the concept of either of these two symbols,
but its value is different. Either of these contradictory associations (with the first or the
second symbols) might change, and in this case even reverse, the semantic meaning of
the original temporal association, since it now seems that a High medication-dose level
might be actually associated with a High Hemoglobin value (or conversely, that a Low
medication-dose level is associated with Low hemoglobin level).

Note that even if the meaning of the intermediate symbol does not directly contradict
the meaning of either of the temporal relation’s symbolic time intervals, for example if both
its concept name and abstraction type and its concept’s value are the same as the concept
name, type, and value of one of the two symbols, it might nevertheless change the overall
pattern’s semantics, or might simply be redundant. Thus, we might not wish to encounter
even a copy of one of these two symbolic intervals between them.

It is important to note at this point that most time intervals mining algorithms, includ-
ing KarmaLego, do not consider the semantics of the deeper structure of the symbols that
hold over the symbolic time intervals, and thus view them as a single, non-decomposable
symbol sym. However, as we have explained in Section 2.1, these symbols are in fact typi-
cally composed of a concept of some type and its value (e.g., the abstract concept “HGB-level”
and its value “High”). Furthermore, using Shahar’s KBTA ontology [16] (see Section 2.1),
an abstract concept would include also the abstraction type (e.g., State) and usually also a
context (e.g., gender = Female). For example, the following predicate is an example of an
abstraction that might hold for some patient: “The State of the HGB-value, in the context
of a Female, is High”. (Note that the definition of the value High might vary in different
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contexts.). We often refer to the full representation of the concept embodied in each symbol
(which typically also includes an abstraction type and a context) as its semantic type. In the
case mentioned above, the semantic type would be “The State of the HGB-value, in the
context of a Female”. The value of that semantic type (i.e., of the symbol’s concept), would
be “High”.

Definition 1. Symbolic time intervals Ii and I j are of the same semantic type if each of the two
symbols that hold over Ii and I j represents some value for the same concept (which, as we recall,
might include also a temporal abstraction type and a context). We denote that equivalence by the
notation sem_type

(
Ii) = sem_type

(
I j).

The semantic types (as defined above) of the symbols that might hold over all symbolic
time intervals need to be pre-defined and used throughout the TIRPs discovery process.
Such semantic types and the set of the allowed values for each abstraction of each concept in
each context are a part of each domain’s temporal-abstraction ontology [16] (see Section 2.1).
Thus, there might be, for example, exactly five values for the state abstraction of blood-
glucose values in the context of a patient who has diabetes, ranging from hypoglycemia
to hyperglycemia. Our intent is to discover only TIRPs in which adjacent symbolic time
intervals are semantically coherent, i.e., their symbols are composed of concepts and values
that fulfil a new, semantically oriented criterion, the Semantic Adjacency Criterion (SAC).

A Semi-formal Definition: The SAC guarantees that between two symbolic time intervals within
a TIRP, there can exist no other symbolic time interval of the same semantic type as either of the two
symbolic time intervals.

In particular, over such an intermediate “forbidden” symbolic interval there cannot
hold a symbol whose semantic type, i.e., its conceptual aspect (e.g., Hemoglobin-State in a
Female, or the State of the Medication-dose), is the same as the semantic type of one of the
two symbolic time intervals, but with a different value (e.g., a LOW value of the Hemoglobin
State abstraction, instead of a HIGH value; or a LOW value of the Medication-dose State
abstraction). Our motivation in defining and using the SAC is that symbolic time intervals
that appear between a pair of two other symbolic time intervals, but are of the same
semantic type as that of one of the two symbolic intervals, and in particular, those that
contradict the value of one of the symbols that hold over the two symbolic time intervals,
are not easily understandable to a domain expert and thus, the discovered TIRP might not
really represent the associations the expert expects to find in the data.

The expert will be notified that the temporal data mining algorithm discovered a
frequent relation such as “A before B”, as in the case of “a high medication-dose before
a low value of the hemoglobin level”, not realizing that there might be another symbolic
time interval between them that contains a concept of the same type as that of A or B (i.e., a
medication dose, or a hemoglobin level), but with a similar, or even a different value.

Instances of such a potentially contradictory intermediate symbolic time interval might
also interfere with the learning (training) phase of an algorithm that induces a classifier, and
reduce its classification power, which relies on features that are TIRPs that were discovered
while using the (potentially deceptive) temporal relation between that pair of symbolic
time intervals. The reason is that the real meaning of that temporal relation might change
in a radical fashion, depending on what other symbolic intervals exist between the two
members of the pair, for some of the TIRP’s supporting instances. Thus, detecting in the
patient’s record an instance of Low blood pressure, and that two weeks ago she had taken
a High dose of a medication that is similar to the medication that was taken yesterday
at a Low dose, i.e., a temporal pattern that syntactically also complies with the temporal
relation of being before a current instance of Low blood pressure, might potentially mislead
the classifier looking for the temporal pattern “High medication-dose before Low blood
pressure” as a feature. However, a medical domain expert analyzing the same data set
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might consider as meaningful only the last instance of the medication administration before
the blood pressure measurement.

We conjecture that using the SAC constraint, in addition to the discovery of only
semantically meaningful patterns, will also significantly reduce the number of potential fre-
quent TIRPs to consider, thus reducing the computational requirements of TIRPs discovery.

The SAC constraint was inspired by the temporal interpolation mechanism from
the KBTA methodology theory [16]. The temporal interpolation mechanism uses, in each
domain, a domain-specific interpolation function (found as part of that domain’s temporal-
abstraction ontology). The interpolation function is provided, as input, with two symbolic
time intervals, both of which hold similar temporal abstraction types (see Section 2.1) (e.g.,
Gradient) of the same concept (e.g., HGB level), such as two Increasing HGB-level periods,
each lasting for two weeks, with a gap of one week between them, and that returns an
abstraction interpreted over an interval that joins the two intervals while bridging the
gap between them, i.e., “five weeks of Increasing HGB level”. The temporal interpolation
mechanism [16] allows for a certain value-sensitive and context-sensitive maximal time
gap to be bridged between the two symbolic time intervals. It also ascertains that the values
of the symbols that hold over the symbolic time intervals within the gap do not contradict in any
way the values of the symbols that hold over the two symbolic intervals that are to be joined.

Figure 3 closely examines the possible contradictions that might be hidden within a
two-sized TIRP, thus revealing several possible versions of the SAC. For example, in the
simple case of sequential data mining, a TIRP can be treated as a sequence of symbols (con-
sidering the before and meets relations only). The symbol that holds over the intermediate
symbolic time interval cannot represent the same concept (i.e., have the same semantic
type) as one of the two symbolic intervals, even if it has the same value.
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additional symbolic intervals that might exist in the same database, and the full range of temporal
relations possible between two intervals. Cases 1, 2, 3, 6, 8, and 10 contradict the semantics of the
TIRP defined above. Cases 4, 5, 7, and 9 appear outside the temporal relation gap within the TIRP
and do not contradict it according to our current SAC definition.

3.4. The Sequential Semantic Adjacency Criterion: A Formal Definition

Using this simple version of the SAC constraint, any two successive symbolic time
intervals of each temporal relation pair within a TIRP, when the symbolic intervals of
the TIRP are ordered lexicographically in a canonical fashion, by start time, then end time,
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then symbol (see Section 3.1), must be temporally adjacent in the sense of our semi-formal
definition. That is, no symbolic time interval whose symbol has a semantic type equal to
one of them can exist between them. The two symbols of the successive symbolic intervals
themselves might include the same concept. This version of SAC is called the Sequential
Semantic Adjacency Criterion.

Definition 2. The Sequential Semantic Adjacency Criterion (Sequential SAC or SSAC) holds over
a TIRP P = {Ḯ,
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(Note that Ii is be f ore Ii+1; relaxing this constraint and allowing for relations such as Contains or
Overlaps leads to additional SAC versions that we introduce later.)

However, note that considering only successive symbolic time intervals within the
TIRP definition when using the lexicographic ordering ignores the existence of all of Allen’s
temporal relations [23] and stays within the stricter limits of the sequential data mining
approach. We shall demonstrate this observation with an example.

Figure 4 considers the TIRP “<Medication-dose = High> before <HGB = High> before
<HGB = Normal>”; the relationship between the medication administration time interval
and the third time interval is also before: “<Medication-dose> before <HGB = Normal>”, but
the two symbolic time intervals participating in this relation are not successive in the SSAC
sense, since they do not follow each other in the lexicographic ordering.
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Figure 4. An example of the difference between the sequential version of SAC and other possible
versions that do not consider only successive symbolic time intervals.

Thus, in the Sequential SAC version, only the first two temporal relations of this par-
ticular TIRP’s definition will be checked for the existence of any semantically contradictory
(in the SAC sense) symbolic time interval instances between them. However, other seman-
tically contradictory symbolic time interval instances might exist between the first and the
third symbolic time intervals, which will not be checked using the SSAC. (For example,
a Low medication dose within the dashed interval of Figure 4 would not contradict the
relation “<Medication-dose = High> before <HGB = Normal>”, since the components of that
relation do not follow each other in the canonical lexicographic-ordering representation of
this particular TIRP.)

Note two interesting insights regarding the SAC principle: First, this version of SAC
does allow for the discovery of what we refer to as “Symbolic Gradient” temporal patterns,
e.g., Decreasing or Increasing values of the State abstractions of the same raw-data concept
that hold over successive symbolic time intervals, such as a gradual decrease in the value
of the Hemoglobin-State concept (see Figure 5). The reason is that the constraint will
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only be checked between every two successive symbolic time intervals, and these can
be of the same type. Second, SSAC also allows for the discovery of what we refer to as
“Counting” temporal patterns. “Counting” temporal patterns are patterns that include some
finite repetition of instances of a symbolic interval as part of the pattern. For example,
the repeating of two or more successive Low Hemoglobin State abstraction values (see
Figure 5). Such TIRPs might serve as useful features in certain domains.
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Figure 5. A possible TIRP that might be discovered by using the SSAC; the first three symbols
represent a “Symbolic Gradient” temporal pattern of decreasing values of the Hemoglobin State
abstractions, while the last two symbols present a “Counting” temporal pattern of two successive
low hemoglobin tests.

We have also defined two additional versions of SAC that capture slightly different
semantics and enable different levels of expressivity of TIRPs that can be discovered.

3.5. The Conservative Semantic Adjacency Criterion (CSAC)

The first additional SAC version that we examine considers every pair of symbolic
time intervals within the TIRP definition. While the previous version considered only
successive symbolic time intervals, when the TIRP is represented in a canonical fashion
using a lexicographic ordering, we might want to consider all of the temporal relations
within the TIRP’s definition (thus probably reducing even more the potential vertical
support for such a TIRP and, correspondingly, the number of different TIRPs discovered in
the output).

Allowing the SAC constraint to hold over all of the TIRP’s pairwise relations enables
us to discover, in the input interval-based data, only true SAC-obeying TIRPs, in the
most restrictive interpretation. Thus, unlike the SSAC, this version of SAC will not allow
for the discovery of any “Symbolic Gradient” temporal patterns or of any “Counting”
temporal patterns at all. We refer to this version of SAC as the Conservative Semantic
Adjacency Criterion.

Definition 3. The Conservative Semantic Adjacency Criterion (Conservative SAC or CSAC) holds
over a TIRP P = {Ḯ,
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3.6. The Liberal Semantic Adjacency Criterion

The second additional version is a special variation of the conservative version, which
considers the SAC for all of the temporal relations within the TIRP definition, but enforces
it only between symbolic time intervals that represent different semantic types.

This new SAC version will allow for the discovery of “Symbolic Gradient” temporal
patterns and of “Counting” temporal patterns. This is achieved since it allows for the
discovery of patterns that involve successive symbolic time intervals whose symbol in-
cludes the same concept, such as A3A2A1A1A1, where each Ai represents some value of
the concept of type A. In some cases, this expressivity might be useful. This version of SAC
is called the Liberal Semantic Adjacency Criterion.
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Definition 4. The Liberal Semantic Adjacency Criterion (Liberal SAC or LSAC) holds over a TIRP
P = {Ḯ,
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However, unlike the Sequential SAC version, and certainly the Conservative SAC, the
Liberal SAC constraint does allow for some potential semantics that might not be intuitive
to domain experts. For instance, between the two LOW values of the Hemoglobin State
abstractions in the TIRP displayed in Figure 5, the LSAC allows for the potential existence of
a “hidden” HIGH Hemoglobin State value, because the constraint is not enforced between
symbolic time intervals that represent the same semantic types.

3.7. The Computational Implications of Enforcing the SAC

Using the SAC, in addition to enabling the discovery of only patterns whose semantics
enforce a stricter interpretation of the data relationships, is potentially also more functional
and efficient, i.e., classification and prediction algorithms might benefit from features that
represent more “reliable” temporal patterns and might also enable us to compute them
within a briefer time span. Recently, there has been an increasing use of TIRPs as features
for classification and prediction tasks [19,24,26,27,48], in which we would like to examine
the potential contribution of the SAC.

The SAC is a stricter selection criterion for TIRPs discovery algorithms and many
TIRP candidates might not be generated. Thus, our first hypothesis is that using the SAC
(including the several versions we proposed) to discover TIRPs will generate fewer TIRPs than when
not using the SAC for any given minimal vertical support, which is expected to lead to a shorter
run time for the discovery phase of the TIRPs.

However, due to the semantic coherence of the discovered TIRPs, i.e., their more
uniform meaning, our second hypothesis is that we expect that, nevertheless, the resultant
[smaller] set of TIRPs, discovered using the SAC, will still induce a classifier that has the same or
better classification and prediction performance, given the same minimal vertical support threshold
for the TIRPs as features.

3.8. Adding the SAC Constraint to the KarmaLego Algorithm

The SAC is a highly general criterion, equally applicable to any time intervals mining
algorithm, as well as sequential mining algorithms. However, we needed to assess it within
a concrete framework. We decided to evaluate the SAC within the KarmaLego framework
(see Section 3.1). Finally, the algorithm structure’s natural modularity, composed of the
Karma and Lego steps, greatly facilitated our task of integrating any SAC version.

To implement the SAC version within the KarmaLego algorithm, we first added
the basic SAC pruning constraint to the Karma phase. That is, only two-sized TIRPs
that obeyed the basic semi-formal SAC constraint (i.e., of not having any symbolic time
interval between them, over which holds a symbol of the same semantic type as either
of the two members of the potential two-sized TIRP) were added to the two-sized TIRP
enumeration tree.

Then, during the Lego phase, given each SAC version to be applied, we decided which
pairs of symbolic time intervals needed to be checked against the data when extending the
TIRP from size k to size k + 1:
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1. In the case of the SSAC version, we checked the constraint only between the (lexico-
graphically ordered) kth and the new kth + 1 symbolic time intervals.

2. In the case of the CSAC version, we checked the constraint between the 1st, 2nd. . .,
and the (lexicographically ordered) kth and the new kth + 1 symbolic time intervals.

3. In the case of the LSAC version, we performed a similar procedure to that used to
enforce the CSAC constraint, but only for pairs of symbolic time intervals over which
hold symbols of different semantic types.

Appendix A contains a short pseudo-code of the SAC implementation with the partic-
ular frequent TIRP-discovery algorithm that we had selected, the KarmaLego algorithm.

3.9. Evaluation

To demonstrate our methods, we decided to use a highly efficient interval-mining
algorithm that was recently introduced by the authors, called KarmaLego [Moskovitch and
Shahar, 2015a], as our means for discovering TIRPs. However, the semantic enhancements
that we introduced into KarmaLego are quite general. We measured the number of dis-
covered TIRPs, the runtime, and the performance of the TIRPs when used as features for
several classification and prediction tasks.

We evaluated the runtime of the KarmaLego algorithm and the number of discovered
TIRPs with the different SAC versions. Given our informal hypotheses (see Section 3.3),
which are based on reasonable arguments, but which need empirical verification, our
specific research questions were:

1. Does using SAC indeed reduce the discovery runtime, compared to not using it?
Which of the three SAC versions requires the shortest runtime?

2. Does using SAC indeed reduce the number of discovered TIRPs, compared to not
using it? Which of the three SAC versions results in the smallest number of TIRPs?

3. Does using SAC maintain the classification and prediction performance, compared to
not using it? Which of the SAC versions is best for classification and prediction?

This evaluation was performed across different state abstraction or discretization
methods (KB, EWD, SAX, and TD4C-KL, which uses the Kullback–Leibler distance measure
as explained in Section 2.1), each with three bins, different temporal relation sets (the
three abstract temporal relations mentioned in Section 2.2, and the full set of Allen’s
seven temporal relations), and various minimal vertical support thresholds to measure the
number of discovered TIRPs.

In addition, for the purpose of the classification and prediction tasks, we evaluated
different TIRP feature-representation methods (Binary, Horizontal Support, and Mean
Duration) (as discussed in Sections 2.3 and 3.1) and four different classification algorithms
(Random Forest, Naïve Bayes, Support Vector Machines [SVM], and Logistic Regression).
We expand on our classification-performance evaluation methods in Section 3.9.2.

3.9.1. The Data Sets

To evaluate the effect of using the SAC versions on the results of the TIRP discovery
process and on the eventual performance of the models induced for classification and
prediction, we used three clinical data sets.

The data sets included: (1) an oncology data set from the Rush Medical Center, Chicago,
USA, including patients who had undergone either allogeneic or autologous bone-marrow
transplantation; (2) a hepatitis data set describing patients who had either Hepatitis B or C,
which is from a KDD conference challenge [49] and which is publicly available [50]; and (3) a
diabetes data set from our local academic medical center [51], including Type II diabetes
patients who had been followed (albeit sporadically) for at least five years, focusing on
the future outcome of the level of albuminuria (protein in the urine, a measure of renal
dysfunction) in the fifth year. (Only the Hepatitis data set is publicly available.)

Table 1 describes the characteristics of the three data sets used throughout all of
the evaluations: the total number of data points, the number of patients, the number of
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concepts, or the number of all semantic types (e.g., Hemoglobin State in a particular context,
as explained in Section 3.3), and the average number of data points per patient.

Table 1. Descriptive statistics of the three data sets.

Data Set Data
Points Patients Concepts Total Number of

Potential Values
Mean Data Points

Per Patient

Oncology 76,468 207 12 41 369
Hepatitis 368,216 499 10 29 738
Diabetes 165,199 5178 4 12 32

Note that the concepts were used as classification and prediction features. However,
as shown in Appendix B, each concept (e.g., Hemoglobin State) might have from two to
five different values (e.g., in the case of Hemoglobin State values, five values: Very-Low,
Low, Moderately Low, Normal, High). Therefore, in the Oncology domain, the 12 concepts
included a total of up to 41 potential values; in the Hepatitis domain, the 10 concepts
included a total of up to 29 potential values; and in the Diabetes domain, the four concepts
included a total of up to 12 potential different values.

The task in the case of the oncology data set was to classify patients who underwent
bone-marrow transplantation into autologous bone-marrow transplantation versus an
allogeneic bone-marrow transplantation; the task in the case of the hepatitis data set was to
classify the patients into Hepatitis B patients versus Hepatitis C patients; and the task in the
case of the diabetes data set was the prediction, within a variable period of up to 5 years, of
the state abstraction of the albuminuria-value concept (a measure of the amount of protein
secreted in the urine), and specifically, whether the patient will have a normal albuminuria
level (denoting normal renal function) versus a micro-albuminuria or macro-albuminuria
albuminuria level (indicating renal deterioration).

The full description of the three data sets, the definitions used within each domain in
the case of the knowledge-based temporal state abstraction method, and additional details
about the tasks within each domain, appear in Appendix B.

3.9.2. The Experimental Design and the Evaluation Measures

We based our evaluation on the KarmaLegoSification framework [26]. The input time-
stamped raw data were interpolated and abstracted into a set of symbolic time intervals,
using either knowledge-based or automatic temporal abstraction methods. All of the
frequent TIRPs that can be discovered were discovered from the symbolic time intervals
output, with or without using any SAC version. In either case, we examined the effect of
using either the abstract three temporal relations or the full seven temporal relations. The
TIRPs were then used as features for the induction of classification and prediction models,
by representing each TIRP using either a simple binary representation of the TIRPs, the
mean horizontal support, or the mean duration of the TIRP within the entities.

For the evaluation of research questions 1 and 2, we performed a series of experiments
recording the runtime in seconds and the number of discovered TIRPs using the KarmaLego
algorithm with the three SAC versions, as well as without using any criterion at all. Note
that we could use any other temporal data mining algorithm; we used KarmaLego because
it is faster than several other approaches and it is complete [3]. The runtime and number
of TIRPs were evaluated on the different temporal abstraction methods, different sets of
relations, and various minimal vertical support thresholds.

Because these experiments measure runtime, each combination was executed sepa-
rately and thus was isolated from other processes that might have influenced the CPU
behavior. We used an AMD Opteron™ Processor 6128 2.00 GHz Machine with 32.00 GB
RAM and Windows Server 2008 R2 Datacenter.

To answer research question 3, we evaluated the classification and prediction perfor-
mance of the SAC using the Area Under the Curve (AUC). We compared the mean AUC
with two statistical analysis methods: a one-way ANOVA and the post hoc Scheffé method,
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using IBM SPSS Statistics 20. The one-way ANOVA was applied to the general parameters,
such as determining whether the different SAC versions performed differently and the
Scheffé method was applied as post hoc examination to test differences within the SAC
versions. Comparisons that were found to be significantly different (α = 0.05) are reported.

Since mining TIRPs may result with different sets for each group of patients [26], we
used a rigorous evaluation setup, including three-fold mining and ten-fold cross-validation
classification. Thus, the data were split into three folds wherein TIRPs were discovered
from one fold and then detected in the other two folds which were used for the classification
experiment. This was repeated three times for the three-folds mining. We used four highly
different types of induction algorithms: Random Forest, the best known application of the
decision trees family (randomizing both the features and the data) [52], the classic pure
probabilistic reasoning algorithm—Naïve Bayes [53], SVM—a very different family that uses
a special type of linear optimization [54], and of course from the Linear classifiers, Logistic
Regression [55], which is often used as the baseline statistical approach against which other
methods are compared.

We did not perform any feature selection methods on the temporal patterns discov-
ered, since previous studies [26] did not demonstrate their value, and also because we
wanted to directly assess the value of using all features found with and without using any
SAC variation. Once TIRPs were discovered, however, we exploited them for creating
three different features from each TIRP: Binary (existence of the TIRP in the record), Hor-
izontal Support (number of TIRP instances in the record), and Mean Duration of the TIRP
in the record.

The KarmaLego method was implemented based on the original Moskovitch and
Shahar study mentioned above [3]. We used the SAX algorithm, which we implemented
based on Lin et al.’s description [14], and the TD4C-KL method, which was implemented
based on Moskovitch and Shahar’s original description [20], using the Kullback–Leibler
divergence as the measure for deciding which value cut-off leads to the best separation be-
tween the outcome classes. We used the classification algorithm implementations available
in WEKA 3.7.1 [56].

4. Results

In the following two subsections and their sub-subsections, we shall present our
results in the following order: First, in Section 4.1, we shall present the runtime of the
SAC-enhanced pattern-discovery algorithm and the number of TIRPs it discovered in
each of the three evaluation domains using each of the three SAC variations, noting each
time the output when not using any SAC version. Then, in Section 4.2, we shall present
the classification and prediction performance of the TIRPs discovered in the same data
sets when used as features in the same three domains, when using each of the three SAC
variations, or when not using any of them.

4.1. The SAC Runtime and Number of Discovered TIRPs

For each data set, we ran the experiments with various minimal vertical support
thresholds (for reasonable runtime and memory usage).

4.1.1. The Oncology Data Set

Figure 6 presents the runtime in seconds of the KarmaLego algorithm using Allen’s
seven temporal relations and Figure 7 does so using the abstract three relations.
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Figures 6 and 7 show that all of the SAC versions result in a faster runtime. Using SAC
(and especially CSAC) allowed us to compute all of the TIRPs passing the minimal vertical
support [MVS] threshold in a time that was almost an order of magnitude shorter than the
time needed without using the SAC version.

Figure 8 presents the number of discovered TIRPs for when the data were abstracted
using Allen’s seven temporal relations and Figure 9 for when the data were abstracted
using the abstract three relations. The same trends, as for runtime, hold for the number of
discovered TIRPs.
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4.1.2. The Hepatitis Data Set

Figure 10 presents the runtime in seconds of the KarmaLego algorithm using Allen’s
seven temporal relations and Figure 11 does so using the abstract three relations. Using
LSAC and CSAC allowed us to compute all of the TIRPs passing the minimal vertical
support threshold in a time that was almost an order of magnitude shorter than the
time needed using SSAC or without using any SAC. The most restrictive CSAC version
is the fastest.

Figure 12 presents the number of discovered TIRPs for when the data were mined
using Allen’s seven temporal relations and Figure 13 does so for when the data were mined
using the abstract three relations. Here too, the same trends are seen as in the runtime
results. Using the SAC versions usually results in the discovery of a significantly smaller
number of TIRPs and within a shorter runtime.
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4.1.3. The Diabetes Data Set

Figure 14 presents the runtime in seconds of the KarmaLego algorithm using Allen’s
seven temporal relations and Figure 15 does so using the abstract three relations. From both
figures, we can see that using the SSAC and CSAC versions results in a faster extraction of
the TIRPs. The most restrictive version, CSAC, was also the fastest, as would be expected.
Using SSAC and CSAC allowed us to compute all of the TIRPs passing the minimal vertical
support threshold within a much shorter time.

Figure 16 presents the number of discovered TIRPs of the KarmaLego algorithm when
the data were mined using Allen’s seven temporal relations and Figure 17 does so for when
the data were mined using the abstract three relations. All SAC versions resulted in fewer
TIRPs when compared to the number of non-SAC-obeying TIRPs.

We saw the best results in the diabetes data set, which is also the largest one. When
running the experiment with 0.025 minimal vertical support, we discovered 7689 patterns
(in about 731 s) when not using SAC, and only 253 patterns (in only about 15 s) when using
CSAC. Thus, we obtained up to a 97% decrease in the number of discovered patterns in
up to 98% less time. Overall, discovering SAC-obeying TIRPs is faster and the number
of discovered TIRPs is much smaller when using the SAC. Moreover, the most restrictive
CSAC version resulted in fewer TIRPs and the fastest runtime.
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Figure 15. The runtime of the KarmaLego algorithm for different minimal vertical support [MVS]
thresholds on data mined using three temporal relations in the diabetes data set. Each graph
represents one temporal abstraction method and displays all of the SAC versions (if any) used (the
legend appears on the upper right).
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Figure 16. The number of discovered TIRPs for different minimal vertical support [MVS] thresh-
olds using seven temporal relations in the diabetes data set. Each graph represents one temporal
abstraction method and displays all of the SAC versions (if any) used (the legend appears on the
upper right).

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 25 of 40 
 

 
Figure 17. The number of discovered TIRPs for different minimal vertical support [MVS] thresholds 
using three temporal relations in the diabetes data set. Each graph represents one temporal abstrac-
tion method and displays all of the SAC versions (if any) used (the legend appears on the upper 
right). 

4.2. Classification and Prediction Performance Using the SAC 
For each data set, we calculated temporal abstractions based on the KB, EWD, SAX, 

and TD4C-KL temporal abstraction methods. We then discovered frequent TIRPs that are 
composed of the temporal abstractions and temporal relations among them, using the 
KarmaLego algorithm, with or without the SAC enhancement. To generate TIRPs, we ex-
amined both the use of Allen’s full seven temporal relations as well as the use of only the 
three abstract temporal relations. The TIRPs were used as features to train a classifier us-
ing the various induction methods. Note that to produce the TIRP features, in each data 
set we used a different minimal vertical support, such that it produced features that char-
acterize at least half of the patients, or at least produced a reasonable number of features 
(tens to hundreds of features). 

We then trained a classifier using each of the four classifier-induction methods we 
had chosen (Random Forest, Naïve Bayes, SVM, and Logistic Regression) and evaluated the 
performance of the resultant classifiers using the methodology explained in Section 3.9.2. 

Figure 18 displays the mean result of using the four resultant classifiers in the three 
domains when using any of the three SAC versions during the TIRP discovery process 
compared to the classification results when the TIRP discovery process did not use any 
SAC version (the results are averaged over all the SAC versions, representation methods, 
temporal abstractions, and temporal relations variations). As can be seen, using the greatly 
reduced set of discovered TIRPs achieved at least the same classification (or prediction) 
performance in all of the tested configurations as when using the original full set of TIRPs 
(without any SAC-based pruning). The classification performance, in each version of the 
experiment, was evaluated using the Binary (B), Horizontal Support (HS), or Mean Duration 
(MeanD) TIRP representation methods. 

Figure 17. The number of discovered TIRPs for different minimal vertical support [MVS] thresholds
using three temporal relations in the diabetes data set. Each graph represents one temporal abstraction
method and displays all of the SAC versions (if any) used (the legend appears on the upper right).
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4.2. Classification and Prediction Performance Using the SAC

For each data set, we calculated temporal abstractions based on the KB, EWD, SAX,
and TD4C-KL temporal abstraction methods. We then discovered frequent TIRPs that
are composed of the temporal abstractions and temporal relations among them, using the
KarmaLego algorithm, with or without the SAC enhancement. To generate TIRPs, we
examined both the use of Allen’s full seven temporal relations as well as the use of only the
three abstract temporal relations. The TIRPs were used as features to train a classifier using
the various induction methods. Note that to produce the TIRP features, in each data set we
used a different minimal vertical support, such that it produced features that characterize
at least half of the patients, or at least produced a reasonable number of features (tens to
hundreds of features).

We then trained a classifier using each of the four classifier-induction methods we
had chosen (Random Forest, Naïve Bayes, SVM, and Logistic Regression) and evaluated the
performance of the resultant classifiers using the methodology explained in Section 3.9.2.

Figure 18 displays the mean result of using the four resultant classifiers in the three
domains when using any of the three SAC versions during the TIRP discovery process
compared to the classification results when the TIRP discovery process did not use any
SAC version (the results are averaged over all the SAC versions, representation methods,
temporal abstractions, and temporal relations variations). As can be seen, using the greatly
reduced set of discovered TIRPs achieved at least the same classification (or prediction)
performance in all of the tested configurations as when using the original full set of TIRPs
(without any SAC-based pruning). The classification performance, in each version of the
experiment, was evaluated using the Binary (B), Horizontal Support (HS), or Mean Duration
(MeanD) TIRP representation methods.
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To present the results in more detail, we focus in the rest of this section only on the
results of the Random Forest algorithm because (a) very similar results were achieved for all
of the classifier-induction methods with respect to the effectiveness of either using or not
using the SAC enhancement and we wanted to avoid a tedious repetition; and (b) its overall
classification performance in the baseline case, when not using the SAC enhancement, was
slightly better in a consistent fashion than that of the other induction methods.

4.2.1. The Oncology Data Set

For the oncology data set, we used a minimal vertical support of 0.5. All SAC versions
performed the same, regarding classification accuracy, as when not using the SAC, in spite
of using a much smaller number of TIRPs when using the SAC. We can see from our results
of the empirical evaluation that using the SAC led to a slightly better performance, no
matter which TIRP representation (see Figure 19) or abstraction method (see Figure 20) was
used, although the differences are not significant. SAC also performed slightly better when
using either three or seven temporal relations.
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Note that each point in the figures represents the average AUC of multiple runs
(see Evaluation Methods). For example, in Figure 19, each point represents the mean of
240 different experimental runs (3 pattern extractions from 1/3 of the data each time
× 10 folds × 4 abstraction methods × 2 sets of temporal relations). Figure 20 points
represent 180 different experimental runs (3 pattern extractions from 1/3 of the data
each time × 10 folds × 3 feature representation methods × 2 sets of temporal relations).

The number of the TIRPs discovered without the use of the SAC was meaningfully
larger. However, it did not result in a superior classification performance, compared to the
use of the reduced sets of TIRPs that resulted when using the SAC. The full set of TIRPs
did not have additional classification or prediction power; rather, it even slightly reduced
the performance. (See the Discussion section for several possible implications.)

4.2.2. The Hepatitis Data Set

For the hepatitis data set, we used a minimal vertical support of 0.7. With and without,
all SAC versions performed the same (see Figures 21 and 22), in spite of the use of a much
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smaller set of discovered TIRPs. No significant difference between using three or seven
temporal relations with respect to classification performance was found.
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Although the data set is dense and there are multiple instances of the same TIRP for
each patient (as opposed to the sparser oncology data set), using the reduced set of TIRPS
as features led to a classification performance that was as good as that of using the large
set of TIRPs discovered without using the SAC. Thus, using the full set of TIRPs was not
superior to the reduced set of TIRPs discovered using the SAC.

4.2.3. The Diabetes Data Set

For the diabetes data set, we used a minimal vertical support of 0.1. Using the features
discovered by using all three SAC versions and the original TIRP discovery process without
using SAC led to a similar level of prediction performance (see Figures 23 and 24), in spite
of the use of a much smaller set of discovered TIRPs. There was no significant difference in
performance when using three versus seven temporal relations.
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Using the full set of TIRPs did not seem to have any additional benefit regarding
prediction performance; it was sufficient to use the reduced set of TIRPs discovered using
the SAC. This data set is sparser in comparison to the two others; thus, there are fewer SAC-
obeying TIRPs, but the performance stays the same. In this domain, the maximal gap for the
before relation was the largest, and thus, a larger number of potential semantic contradictions
may have been avoided, compared to not using any semantic considerations; thus, using
the SAC led to a good performance regardless of the small number of discovered TIRPs,
which was an order of magnitude less than when not using any semantic considerations.
From a practical point of view, it seems that CSAC produced the smallest set of TIRPs while
maintaining the classification and prediction performance, and even less when using the
seven temporal relations. In parallel, the Mean Duration TIRP representation method and
the Knowledge-based discretization method were the best for classification and prediction
tasks. In summary, the reduced set of discovered TIRPs with a much faster discovery
runtime using the various versions of the SAC maintained the same classification (or
prediction) performance in all of the tested configurations. These results complement the
result of discovering a much smaller number of TIRPs when using the SAC. Note also the
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clear trend towards higher performance when using the various SAC versions, in spite of
the much reduced feature set.

5. Discussion

We defined, formalized, and assessed in detail the Semantic Adjacency Criterion, a
filtering principle that in the past we had only briefly introduced. Note that no new
temporal patterns were discovered, of course, during the filtering-out process using the SAC
principle, but the number of temporal patterns found, and the time needed to discover
them, was greatly reduced by the various SAC pruning versions that we had used, without
hurting classification and prediction performance. Three versions of the SAC criterion were
suggested: The Sequential Semantic Adjacency Criterion (SSAC), which enforces the constraint
only over pairs of temporally successive symbolic time intervals within the TIRP’s canonical
lexicographical order definition; the Conservative Semantic Adjacency Criterion (CSAC), which
enforces the constraint over every pair of symbolic time intervals within the TIRP’s definition
(recall that in a TIRP, a temporal relation is defined in an unambiguous fashion between
each pair of symbolic time intervals); and the Liberal Semantic Adjacency Criterion (LSAC), a
variation of CSAC, which enforces the constraint only over pairs of symbolic time intervals
that have different semantic types.

It is important to note that each type of SAC can serve a different purpose and has
a different expressivity. For instance, the LSAC version implicitly enables a counting of
symbolic time intervals of the same type (e.g., patterns such as A1A1A1 denoting, for
example, three overall administrations of the same range of the dose of the medication,
although different ranges of doses of the medication might have been administered between
them), while constraining intervals of different semantic types. Another example is the
SSAC version, which enables a more restricted version of counting but, like the LSAC
version, enables the discovery of a TIRP that implicitly contains a “Symbolic Gradient”
temporal pattern (e.g., patterns such as A1A2A3B denoting, for example, a Low level of
the medication-dose, followed by a Medium level, and then a High level, followed by
some side effect). The CSAC version seems the most useful to maintain compactness in
the number of discovered TIRPs, while preserving the strictest semantics of the TIRPs,
although it prevents the discovery of repetitions of symbolic time intervals within the same
TIRP or the discovery of Symbolic Gradients.

Note also that as the minimal vertical support increases, and thus the number of
potentially discoverable patterns decreases, the returns for using the SAC principle are
diminishing; however, this is exactly the phenomenon that might enable researchers and
physicians to extract useful patterns, using the SAC principle, from bigger, and even very
big, data sets.

We evaluated the classification and prediction performance of the features discovered
using the three SAC versions on three different medical domains: oncology, infectious
hepatitis, and type II diabetes. Note that we did not choose any simulated or artificial data set,
since the main point of the evaluation was to test the SAC principle within real clinical
domains that incorporate real semantics, and in particular, potential causality. We believe
that the true value of the SAC principle can only be apparent within real-world data, since it
is precisely the lack of coherence of most real temporal patterns that is being filtered out by
that principle.

To further bolster the assessment process and its conclusions, we performed the
evaluation using classification algorithms from four different classifier-induction families:
Random Forest, Naïve Bayes, SVM, and Logistic Regression.

It is important to emphasize that the main objective of this study was to demonstrate
the possibility of reducing the number of pattern features that need to be discovered in a
large time-oriented data set by at least an order of magnitude (and enhance their intuitive
meaning to a domain expert, due to their increased transparency), without losing any
classification performance. Our goal was not to enhance any classification performance.



Big Data Cogn. Comput. 2023, 7, 173 31 of 40

The different SAC versions behaved slightly differently in each domain and for each
classifier version. However, overall, using all of them required much less time, up to 98%
less than when not using any SAC version, depending on the minimal vertical support
specified, to discover all of their respectively relevant TIRPs, compared to not using any
SAC at all. Using the various SAC versions also resulted in a significantly reduced number
of TIRPs, up to 97% less, depending on the minimal vertical support threshold. This
reduced set of TIRPs, however, did not lead to any reduced performance in any of the three
medical domains, i.e., the resulting classifiers performed when using this reduced set of
features as well as when using the full original set of TIRPs discovered in the standard
KarmaLego methodology.

We infer that, at least in the medical domains in which we assessed our methodology,
SAC-obeying TIRPs seem to contain most of the information important for classification
and prediction.

Most of the data sets we used were relatively small (at least compared to current big
data sets, although the data sets we experimented with contained about 70,000, 160,000, and
360,000 data points). However, the clear trend noted above towards a higher performance
when using the reduced set of TIRPs filtered using various SAC versions, in spite of the
much smaller feature set, suggests that repeating our studies with much larger data sets
might, in fact, not only show that the much smaller set of TIRP-based features is sufficient,
but might even demonstrate a significant improvement in the classification performance,
and future studies might elucidate that aspect.

However, in any case, a reduction of the number of temporal pattern features to
be discovered in a big data set has significant computational implications. On a sim-
ilar note, it is interesting to consider that Fradkin and Mörchen’s conclusions in their
study [25] were that the main advantage of their new proposed sequential mining algo-
rithm, BIDE-DC, lies in generating a smaller number of patterns, while preserving the same
classification performance.

As we noted in the Introduction, we have recently shown that frequent TIRPs can be
consistently discovered and in similar proportions in different subsets of the same data set
within three different medical domains, thus increasing their value for potential patient
trajectory clustering, classification, and prediction tasks [28]. (In fact, we used the same
three domains mentioned in the current study.) This study has also shown that consistent
discovery can be increased by increasing the minimal support threshold for frequency
and, interestingly, by using the SAC principle to prune in each subset the patterns that are
candidates for discovery.

Note also that the SAC principle is quite general and is not specific to the KarmaLego
algorithm on which we demonstrated it or even to the family of multivariate interval-based
TDM algorithms that KarmaLego is a part of. For example, sequential mining algorithms
such as SPADE [57] start with a set of time-stamped events, each containing several items,
and discover qualitative associations that involve the Before temporal relation. Using
SPADE to generate a set of temporal sequences that will be used as classification features
might well benefit similarly through the addition of semantic considerations similar to the
SAC variations, while enhancing its semantic transparency to domain experts.

Several limitations of our study can be noted. We did not measure the runtime of
the classification and prediction phases, but obviously, representing a larger number of
features, especially when using various functional methods (e.g., computing the mean
duration of each TIRP) requires more time. That might be an additional advantage of using
the SAC principle which we did not assess. Other factors that might also require more time
are selecting and using various feature selection algorithms and inducing a classifier from
a larger set of features.

Note that a trivial case for semantic equivalence is the one in which all concepts are
different (e.g., different events, each with its own symbol); semantic type equivalence
between two symbolic intervals will then consist of having the same symbol hold over
both intervals.
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Our main intent in the current study, however, was to explore the non-trivial case in
which most concepts might have more than one value or, at least, in which there is some
domain knowledge that assigns types to the various concepts. However, exploring the
potential implications of the SAC principle for the simple case in which all symbols are
different and no domain knowledge exists can certainly be explored in a future study.

Another potential limitation might be noted. We did not assess the actual transparency
of the SAC-obeying TIRPs, as opposed to the non-SAC-obeying TIRPs, in the eyes of medical
domain experts in the three domains. That was not an objective of the current study, which
focused on the pure objective computational aspects of using the SAC principle, but it
might be interesting to assess this subjective cognitive aspect explicitly in future studies.

The use of the four different abstraction and discretization methods led qualitatively
to the same results, with respect to the number of TIRPs discovered, the time needed to
discover them, and the performance of the TIRPs as features for classification and prediction
purposes, in all three domains using four different classification algorithms. Nevertheless,
when using the EWD abstraction method, we noted in the specific case of the hepatitis data
set that the SSAC’s runtime (and the number of discovered TIRPs) was close to the runtime
achieved without the use of any SAC (see Figures 10 and 11). SSAC is a sequential version
of SAC; thus, the most reasonable explanation for this phenomenon is probably that the
hepatitis data were not sequential and most of the concepts appeared at the same time. Still,
the use of SSAC did not significantly reduce the performance compared to not using any
semantic criterion.

Not all of the SAC versions performed equally well in the case of the diabetes data
set (see Figures 14 and 15). Using LSAC, which is the liberal version of SAC, meaning that
it restricts the criterion to hold only over pairs of semantically different concepts, led to a
worse performance when compared to the other SAC versions. The reason might be that
the diabetes data set includes a small number of concepts measured repeatedly over a long
time and is pretty sparse, but there are several laboratory tests that are very common and,
in the case of the liberal version of the SAC, relations among pairs of intervals of the same
concept were considered, just as in the case of not using any semantic criterion; the result is
a runtime that is pretty close to that of not using any semantic considerations, at least in
some of the configurations.

The last two examples, i.e., the exceptions in our results of the empirical evaluation,
demonstrate that one must learn the data and select the most appropriate SAC version, as
well as the other parameters, e.g., discretization and representation methods. However,
overall, the CSAC version performed best, no matter which configuration was chosen.

6. Conclusions and Future Work

We defined and formalized in detail a new Semantic Adjacency Criterion [SAC] for
pruning temporal interval relation patterns [TIRPs] during their discovery, which increases
the transparency of the discovered TIRPs for domain experts, and which can exploit even
very basic domain knowledge. We have demonstrated a significant reduction, up to an
order of magnitude, in the number of TIRPs discovered when using the SAC, as well as in
the runtime needed to extract these TIRPs. Nevertheless, this reduced set of TIRPs, when
serving as features for classification and prediction using any of four different families of
classifier-induction algorithms in three different clinical domains, proved to be as good as
the whole set with respect to classification and prediction performance. Overall, the CSAC
version, the most restrictive of the SAC versions, seemed to be the most promising for
inducing the smallest set of TIRPs while maintaining the same classification and prediction
performance. We have examined three variations of the SAC principle; future studies can
examine the implications of using additional variations on our basic concept of exploiting
domain semantics to prune temporal relations within temporal patterns. Furthermore, the
subjective implications of interpreting discovered frequent TIRPs by domain experts, when
using or not using the SAC principle for pruning, can be examined in future studies as well.
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Appendix A. The SAC Pseudo-Code within the KarmaLego Algorithm

The KarmaLego algorithm (Algorithm A1) consists of two main phases [Moskovitch
and Shahar, 2015a]. The first phase is called Karma and it enumerates all two-sized TIRPs
(Algorithm A2). The second phase is called Lego and it is a recursive method that extends
each k-sized TIRP into the possible (k+1)-sized TIRPs (Algorithm A3).

Note that the supplied algorithms are coherent with Moskovitch and Shahar’s orig-
inal paper, except for the underlined modifications, added to support the SAC principle.
Additional details can be found in Alex Shknevsky’s Ben Gurion University M.Sc. thesis.

Algorithm A1. The KarmaLego main loop.
Input:
db—A database of |E| entities.
min_ver_sup—The minimal vertical support threshold.
Output: T—An enumerated tree of all frequent TIRPs.
Algorithm:
1. T = Karma(db, min_ver_support)
2. Foreach t ∈ T2 // T2 is T at the 2nd level
2.1. Lego(T, t, min_ver_support)
3. Return T
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Algorithm A2. The Karma algorithm with the SAC modifications.
Input:
db—A database of |E| entities, representing for each entity e ∈ E the lexicographically
sorted vector of its symbolic time intervals, e.I
min_ver_sup—The minimal vertical support threshold.
Output: T—An enumerated tree of up to two-sized frequent TIRPs.
Algorithm:
1. T ← ∅
2. Foreach e ∈ E // T2 is T at the 2nd level
2.1. Foreach Ii, I j ∈ e.I ∧ i < j
2.1.1. r← the temporal relation among Ii, I j

2.1.2. if SSAC ∨ (LSAC ∧e.Ii
sym 6= e.I j

sym) ∨ CSAC

2.1.2.1. Foreach Ik ∈ e.I ∧ k 6= i ∧ k < j
2.1.2.1.1. If Ik.e > Ii.e ∧(

sem_type
(

e.Ii
)
= sem_type

(
e.Ik
)
∨ sem_type

(
e.Ik
)
= sem_type

(
e.I j
))

2.1.2.1.1.1. break
2.1.3. Index( T2,< e.Ii

sym, r, e.I j
sym >

3. Foreach t ∈ T2

3.1. If ver_sup(t) < min_ver_sup
3.1.1. Prune(t)
4. Return T

Note that regarding the use of the sem_type method, we saved for each symbolic time
interval (STI) its symbol (sym) as a pair of concept and value. In this case, checking the
semantic equivalence of symbolic intervals is interpreted as a comparison of the concepts
(and not the values), corresponding to Definition 1.

Algorithm A3. The Lego algorithm.
Input:
T—The enumeration tree created by Karma.
t—A TIRP that has to be extended.
min_ver_sup—The minimal vertical support threshold.
Output: void.
Algorithm:
1. Foreach sym ∈ T1

1.1. Foreach r ∈ R
1.1.1. Create new tc of size (t.size +1)
1.1.2. tc.s[tc.size− 1]← sym
1.1.3. tc.tr[tc.tr_size− 1]← r
1.1.4. C ← 0
1.1.5. C ← generate cantidate TIRPs f rom tc

1.1.6. Foreach c ∈ C // candidates
1.1.6.1. Search_Supporting_Instances(c, T2)
1.1.6.1.1. If ver_sup(c) > min_ver_sup
1.1.6.1.1.1. T ← T ∪ c // c is frequest
1.1.6.1.1.2. Lego(T, c, min_ver_sup)
2. Return T

The Search_Supporting_Instances method (Algorithm A4) receives as input the candi-
date TIRP c and the set of the two-sized TIRPs in T2. In line 1, the next (new) symbol that
was added (in Algorithm A3) is set to next_sym; then, for each instance in the extended
TIRP’s supporting instances, the search is made. First, the temporal relation rel between
the next time interval and the latest (in the extended TIRP) is set (line 2.1), and then the
latest symbol of the extended TIRP sym is set (line 2.2).



Big Data Cogn. Comput. 2023, 7, 173 35 of 40

GetNextSTIs (Line 2.3) searches the symbolic time interval (sti) two-dimensional
square array T2 using indices defined by the symbols sym and last_sym and the temporal
relation rel, for the instances starting with the latest time interval in the instance ins.sti.
GetNextSTIs might return several new symbolic time intervals next_stis.

The method NoInst? searches for an instance of a pair of symbolic time intervals
having the given temporal relation; thus, it obtains sym, rel, and next_sym as indices to
its fourth argument, the appropriate T2 array entry, in which it queries the HashMap for
the pair based on the entity id of the new instance (instnew.e_id) and the first symbolic time
interval instance (instnew.sti[c.size− 2− i]). It returns True if no instance of the relation was
found, or else it returns False.

The method SAC?
(

e_id, sti_1, sti_2, T2[sti_1.sym, rel, sti_2.sym]
)

checks the relation be-

tween a given pair of symbolic time intervals, sti_1 and sti_2, for the entity e_id in the T2 SAC
compatibility. If we are checking without SAC, then the result is True. If we are checking using
LSAC, but sem_type(sti_1) = sem_type(sti_2), then the result is True. Otherwise (i.e., when
using SSAC, CSAC, or LSAC but sem_type(sti_1) 6= sem_type(sti_2)), and then if there is a gap
between sti_1 and sti_2, then SAC? will return True if T2[sti_1.sym, rel, sti_2.sym] contains the
pair (sti_1, sti_2), which means that it was previously discovered as obeying the SAC criterion.

Algorithm A4. Search_Supporting_Instances.
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Appendix B.1. The Oncology Data Set

A medical oncology domain knowledge source that was used for the evaluation (of
the KB temporal abstraction method) was an oncology knowledge database specific to the
bone-marrow transplantation domain. It includes in total more than 350 concepts from
1991 to 1997 including more than 200 raw concepts (e.g., laboratory tests—White Blood Cell
count, Hemoglobin), internal events (e.g., bone marrow transplantations—BMT), and more.
The data source used for the evaluation was of bone-marrow transplantation patients who
were followed for 2–4 years at the Rush Medical Center, Chicago, USA. The knowledge base
and databases were previously elicited from our clinicians’ colleagues. Table A1 presents
the knowledge base that was used for the purposes of this study. Note that in case of an
overlap, the maximum value will be taken.

We used 207 patients who had a bone marrow transplantation and data for the fol-
lowing 12 laboratory tests: Platelet count, Hemoglobin, White Blood Cell count (WBC),
Glucose levels, Total Bilirubin, Alkaline Phosphatase, Hematocrit, Monocytes, Lympho-
cytes, Eosinophil granulocyte count (EOS), Neutrophilic band forms (Bands), Basophil
granulocyte count (Basos).

Table A1. The knowledge base for the oncology data set.

Platelet count Hemoglobin WBC

High ≥400 High ≥16 Very_High ≥20
Normal 100–400 Normal 11–16 High 12–20
Moderately_Low 50–100 Moderately_Low 9–11 Normal 2.5–12
Low 20–50 Low 7–9 Moderately_Low 0.5–2.5
Very_Low <20 Very_Low <7 Low 0.1–0.5

Very_Low <0.1

Glucose level Total Bilirubin Alkaline Phosphatase

Very_High ≥250 Very_High ≥10 Very_High ≥225
High 151–250 High 3–10 High 110–225
Normal 75–151 Normal 1.5–3 Normal 35–110
Low <75 Low <1.5 Low <35

Hematocrit Monocytes Lymphocytes

High ≥46.9 High ≥10 High ≥52
Normal 34.9–46.9 Normal 3–10 Normal 18–52
Low <34.9 Low <3 Low <18

EOS Bands Basos

Very_High ≥12 High >=6 High >=3
High 6–12 Normal <6 Normal <3
Normal <6

For the interpolation, for producing intervals out of the time-stamped raw data, we
treated each time-stamped point as good for one day after and one day before. The task
was to classify patients who went through autologous bone-marrow transplantation (137
patients) versus allogeneic bone-marrow transplantation (70 patients) based on TIRPs
discovered from the mentioned laboratory tests.

Appendix B.2. The Hepatitis Data Set

The hepatitis data set contains the results of laboratory examinations on hepatitis B
and C patients who were admitted to Chiba University Hospital in Japan. Hepatitis A, B,
and C are viral infections that affect the liver of the patient. Hepatitis B and C chronically
inflame the hepatocytes, whereas hepatitis A acutely inflames them. Hepatitis B and C are
especially important because they have a potential risk for developing liver cirrhosis or
hepatocarcinoma. The data set contains long time-series data of laboratory examinations.
The subjects are 771 patients with hepatitis B and C who were examined between 1982 and
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2001. Table A2 presents the relevant knowledge that was extracted from a public KDD
conference challenge [Ho and Nguyen, 2003] and was used for our evaluation. In case of
an overlap, the maximum value was taken.

The data set is publicly available [Berka et al., 2002].
We used 499 patients who had a biopsy result of hepatitis B (204 patients) or C

(295 patients) and the ten most frequent tests (occurring in most of the patients), including
the following: Glutamic-Oxaloacetic Transaminase (GOT), Glutamic-Pyruvic Transaminase
(GPT), Lactate DeHydrogenase (LDH), Total Protein (TP), ALkaline Phosphatase (ALP),
Albumin (ALB), Uric Acid (UA), Total BILirubin (T-BIL), Indirect BILirubin (I-BIL), and
Direct BILirubin (D-BIL). For the interpolation, we treated each time-stamped point as
good for 15 days before and after each point. The task was to classify the patients as
Hepatitis B versus Hepatitis C, based on the TIRPs discovered from the mentioned 10 most
frequent tests.

Table A2. The knowledge base for the hepatitis data set.

GOT GPT LDH

High ≥40 High ≥40 High ≥450
Normal 7–40 Normal 7–40 Normal 216–450
Low <7 Low <7 Low <216

TP ALP ALB

High ≥8.2 High ≥206 High ≥5.1
Normal 6.5–8.2 Normal 72–206 Normal 3.9–5.1
Low <6.5 Low <72 Low <3.9

UA T-BIL I-BIL

High ≥8 High ≥1.2 High ≥0.9
Normal 2.5–8 Normal 0.2–1.2 Normal 0.2–0.9
Low <2.5 Low <0.2 Low <0.2

D-BIL

High ≥3
Normal <3

Appendix B.3. The Diabetes Data Set

The diabetes data set was provided by the National Institute for Biotechnology in
the Negev (NIBN) in a joint study with Soroka University Medical Center [Gordon, 2012].
The subjects are 26k anonymous patients (and about 12 million raw data records) who
had diabetes and various laboratory tests between 2004 and 2008. The data include static
information (e.g., gender) and temporal records (e.g., High-density lipoprotein, Low-
density lipoprotein, Triglycerides, Glucose, Hemoglobin A1c, Creatinine, Total cholesterol,
and Albuminuria). The main interest in this data was on the investigation of factors
associated with changes in renal function (mostly focusing on the level of albuminuria, or
secretion of protein in the urine), exploring its predictive risk factors.

We used 5178 patients who had Albumin-to-creatinine ratio or Albumin-24 h from
urine in the last fifth year of the data set, and who also had these tests and also Glycosylated
hemoglobin (HbA1c) and Creatinine (CREATININE) in the first four years of the data
set. For the interpolation, we treated each time-stamped point of Albuminuria ACR and
Albuminuria U24h as good for 3 months before and after each point, for Creatinine as good
for 2 months before and after each point, and for HBA1C as good for 4 months before and
after each point. The task was to predict Albuminuria-normo (3231 patients) versus micro-
or macro-albuminuria (1947 patients) in the fifth year based on TIRPs discovered in the
first four years. Table A3 presents the relevant knowledge that was supplied by Gordon
[Gordon, 2012] and other clinicians who worked on other projects as well.
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Table A3. The knowledge base for the diabetes data set.

Albuminuria ACR/Albuminuria U24h

Female

Macro >300

Male

Macro >300
Micro 30–300 Micro 30–300
Normo-High 15–30 Normo-High 13–30
Normo-Low 0–15 Normo-Low 0–13

CREATININE

Female

Very_High >4

Male

Very_High >4
High 2–4 High 2–4
Moderately_High1–2 Moderately_High1.2–2
Normal <1 Normal <1.2

HbA1c

Very_High >10.5
High 9–10.5
Moderately_High 7–9
Normal <7
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