
Citation: Jin, A.; Basnet, P.; Mahtab, S.

Evaluation of Short-Term Rockburst

Risk Severity Using Machine

Learning Methods. Big Data Cogn.

Comput. 2023, 7, 172. https://

doi.org/10.3390/bdcc7040172

Academic Editor: Moulay A.

Akhloufi

Received: 10 October 2023

Revised: 1 November 2023

Accepted: 1 November 2023

Published: 7 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

Evaluation of Short-Term Rockburst Risk Severity Using
Machine Learning Methods
Aibing Jin 1,*, Prabhat Basnet 1 and Shakil Mahtab 2

1 Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science
and Technology Beijing, Beijing 100083, China; prabhat@126.com

2 Department of Geotechnical Engineering, College of Civil Engineering, Tongji University,
Shanghai 200092, China; shakilmahtab@tongji.edu.cn

* Correspondence: jinaibing@ustb.edu.cn

Abstract: In deep engineering, rockburst hazards frequently result in injuries, fatalities, and the
destruction of contiguous structures. Due to the complex nature of rockbursts, predicting the severity
of rockburst damage (intensity) without the aid of computer models is challenging. Although there
are various predictive models in existence, effectively identifying the risk severity in imbalanced
data remains crucial. The ensemble boosting method is often better suited to dealing with unequally
distributed classes than are classical models. Therefore, this paper employs the ensemble categorical
gradient boosting (CGB) method to predict short-term rockburst risk severity. After data collection,
principal component analysis (PCA) was employed to avoid the redundancies caused by multi-
collinearity. Afterwards, the CGB was trained on PCA data, optimal hyper-parameters were retrieved
using the grid-search technique to predict the test samples, and performance was evaluated using
precision, recall, and F1 score metrics. The results showed that the PCA-CGB model achieved better
results in prediction than did the single CGB model or conventional boosting methods. The model
achieved an F1 score of 0.8952, indicating that the proposed model is robust in predicting damage
severity given an imbalanced dataset. This work provides practical guidance in risk management.

Keywords: short-term rockburst; risk prediction; principal component analysis; categorical gradient
boosting; class imbalance; hazard risk modelling; machine learning and big data

1. Introduction

Deep underground engineering is becoming more common in mine production, tunnel
construction, and the construction of various subsurface structures. This trend has led
to more frequent encounters with highly stressed geological conditions [1]. As a result,
the seismically triggering environment has led to numerous geological hazards, such as
rockbursts. A rockburst is a progressive failure process wherein a rock mass ruptures
due to the sudden release of a large quantity of stored elastic energy in highly stressed
rocks. Casualties and the failure of engineering structures then result from the sudden
ejection of surrounding rocks [2]. Rockbursts are becoming more prevalent worldwide
as mines delve deeper; as a result, accidents are becoming more common [3]. In central
Europe, 42 seismically active mines reported approximately 190 rockbursts that caused
122 casualties over the last two decades [4]. Deep gold fields in western Australia and
the Beaconsfield mine in Tasmania have also experienced fatalities [3]. The Taiping head-
race tunnels in China have experienced over 400 rockburst incidents, resulting in several
casualties and the destruction of mechanical equipment [5]. Numerous countries have
faced rockburst problems in mines, tunnels, shafts, and caverns [6,7]. To ensure the safety
of personnel, various approaches have been implemented for the real-time monitoring of
short-term rockburst risk.

Microgravity, electromagnetic radiation, acoustic emissions, and microseismic moni-
toring (MS) methods are commonly employed to generate early warnings of short-term
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rockburst risk [8,9]. Among these techniques, the MS technique has been extensively used
in deep engineering excavation to warn of short-term rockburst risks by studying the
results of various multi-parameter MS methods using experimental, probabilistic, and
fractal-theory approaches [10–12]. For instance, Feng et al. examined the fractal behaviour
of the energy distribution of microseismic events during the development of immediate
rockbursts. The results indicated that, as the rockburst approached, the daily energy fractal
dimension for MS events increased [11]. Additionally, Yu et al. investigated the fractal
behaviour of the time distribution of MS events for different intensities of rockbursts.
The result indicated that time-fractal characteristics could be used to estimate rockburst
intensity and that a smaller time-fractal dimension means a lower intensity [13].

Further, using the MS technique, Chen et al. collated 133 rockburst cases and estab-
lished a relationship between radiated energy and burst intensity. Based on their criteria,
rockburst grades were divided into five types: none, slight, moderate, intense, and highly
intense [14]. Feng et al. utilised six MS parameters from real-time monitoring and estab-
lished an early warning method. The proposed method was able to successfully identify the
strain and strain-structure slip burst of the Jinping II hydropower project [10]. Additionally,
Alcott et al. established performance criteria for MS source parameters and thresholds for
daily decision-making on the ground control. Those criteria were used to help identify
seismically affected areas [15]. Lastly, Liu et al. observed that, before more significant
events, MS apparent volume and spatial correlation length increased, while the energy
index, fractal dimension, and b value decreased [6].

All the aforementioned approaches achieved significant results for the early recogni-
tion of rockbursts and could be used in early-warning systems. However, the identification
of a globally accepted threshold value for rockburst risk that could apply to different site
conditions and the choice of MS parameters indicating the various risk levels without the
aid of computer models both remain challenging. As a result, some researchers have used
a machine learning (ML) approach to predict rockburst risk. The value of ML methods is
that they do not require knowledge of input and output, so they can predict outcomes by
studying underlying data patterns without human involvement.

Feng et al. proposed an optimised probabilistic neural network (PNN) method to
predict rockburst intensity using real-time MS information. The model integrated two
other algorithms to improve performance, which increased the model’s accuracy in pre-
dicting test samples by 20% compared to the standard PNN model [16]. Additionally,
Liang et al. developed boosting and stacking ensemble methods using real engineering
datasets. Those researchers achieved significantly higher accuracy in predicting short-term
rockbursts [17,18]. Further, Liu et al. presented an artificial neural network (ANN) for the
dynamic updating of short-term rockburst predictions. The model was further optimised
by embedding a genetic algorithm (GA), which was employed to predict 31 actual cases.
The results showed that the model could correctly estimate 83.9% of rockburst cases [19].
Further, Zhao et al. built a decision tree (DT) model to predict the exact rank of the rock-
burst using MS information. The relationship between the MS features and rockbursts was
investigated using the DT classifier, and the results showed that the model could accurately
predict risk and provide insights regarding rockbursts using MS data [20]. Toksanbayev
and Adoko collected 254 samples from seismically active mines and established a damage-
scale classification model based on multinational logistic regression (LR). The proposed
work used regression equations to create probabilistic models for the assessment of seismic
hazards in mines [21]. Lastly, Ullah et al. integrated K-means clustering with extreme
gradient boosting (XGBoost) [22]. The original data were relabelled through a clustering
method, and XGBoost was trained and tested to validate the model.

All the above-mentioned models have contributed significantly to improving the
accuracy of prediction. Neural networks have an advantage in dealing with complex
nonlinear problems; however, some neural-network models are susceptible to problems
caused by irrelevancies in the data and prone to suboptimal local minima. Although the
integration of multiple hybrid and complex ensemble models improves prediction accuracy,
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the resultant models are often difficult to understand and execute. LR and DT are simple
and easy to use but have less accuracy in highly complex, nonlinear rockburst problems.
Most applied methods have focused on achieving higher accuracy in predicting risk, and
the microseismic dataset is comparatively small. The proportions of different intensity
levels in datasets are often unequal. However, accurately classifying each risk level is
crucial when classes are imbalanced. One previous study [23] shows that the boosting
method (CGB) is more efficient for analysing multi-class imbalanced data in small and
large datasets than are other boosting algorithms. However, the feasibility of employing
CGB in short-term rockburst prediction has never been studied before, and it is necessary
to develop a simple and easy-to-use classification model with promise for predicting each
class level effectively.

Therefore, this work proposes a PCA-CGB classification model to create a simple and
reliable approach to predicting the intensity of rockbursts. The advantage of this proposed
work over the previous approach is that more data have been gathered for the study;
additionally, variable redundancies are managed through unsupervised learning. Also, to
precisely classify each majority or minority class, a simple model is built and performance
is comprehensively evaluated using various metrics.

2. Materials and Methods

The flowchart of the proposed method is shown in Figure 1.
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Figure 1. Flow chart of the proposed work.

2.1. Data Collection

Rockburst data were extracted from [19,24] as a supportive database based on mi-
croseismic information. All data were obtained from underground tunnelling works and
include the following six MS parameters as the feature variables: cumulative MS events
(PN), logarithm of cumulative MS energy (PE), logarithm of cumulative apparent volume
(PV), event rate (PNR), logarithm of energy rate (PER), and logarithm of apparent vol-
ume rate (PVR). Rockburst intensity was the output variable. The output variable has
four intensity classes: none (N), slight (S), moderate (M), and intense (I). The classes of the
output-variable are described in Table 1.
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Table 1. Descriptions of target-variable classes. Authors’ own work based on [14].

Rockburst Intensity Characteristics

None Crack appears inside rock mass; no obvious failure on the surface of rock mass; construction and
supports are unaffected

Slight/Weak
Failure is accompanied by slight spalling and slabbing, with slight ejection of rock fragments of size
10–30 cm; failure depth is less than 0.5 m; no harm to the support system and construction if supports
are provided at the time

Moderate
Failure of surrounding rock mass followed by severe slabbing and spalling; ejected-fragment size of
30–80 cm; failure sound resembles detonator blasting and lasts for some time; failure depth is more
than 0.5 m and less than 1 m; shotcrete lining among rock bolts could be damaged

Intense
Extensive failure range with an ejected-fragment size of 80–150 cm; failure zone with fresh fracture
plane; burst sound like an explosive with an impact wave; failure depth between 1–3 m; damage
system fully destroyed and severe impact on construction

Figure 2 shows the six different features and the distribution of the four intensity levels.
In Figure 1, PN represents the density of microfractures. Similarly, PE and PV represent
the fracture strength and the degree of damage to the rock mass, respectively. These
three parameters are basic parameters that reflect characteristics of microfractures during
rockburst development [10]. To account for temporal characteristics in the mechanism,
three parameters pertaining to time are considered: PNR, PER, and PVR. PNR reflects
the frequency of microseismicity, the failure process of the rock mass, and the average
evolutionary law of the response over time. PER represents the microseismic radiation
energy of the rock mass per unit of time, and PVR is the volume of the rock in the inelastic
zone of deformation per unit of time. The PE, PV, PER, and PVR values are in common
logarithmic form to ensure it does not change the correlation of the data variables; the
form also compresses the scale of the predictors and reduces the absolute values of the
datapoints [17]. The data-acquisition method is reported in [10]. Figure 2 demonstrates
that all features contain a degree of discreteness in their characteristic values. For example,
we can see that the characteristic values for some intensity class in PN, PV, PNR, and PVR
show some discreteness and differ marginally in magnitude. This result arises because
some microseismic activity was silent during rockburst development and the microseismic
behaviour was stable and low. The precursors of the rockburst were thus not noticeable.
When a rockburst occurs, microseismic activity increases suddenly and sharply, so this type
of rockburst is not easy to accurately predict in an early-warning system because it is often
dispersed [24], reflecting the complex mechanisms of rockburst formation.
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Figure 2. Feature variables for rockburst prediction.

2.2. Data Visualisation and Pre-Processing

Data visualisation, analysis, and pre-processing are critical in data science to under-
standing statistical information, the distribution of variables, the pattern between multi-
variate features and targets, and the correlation among predictors. This dataset contains
37 none, 26 slight, 23 moderate, and 13 intense rockburst cases. As we can see, the dataset is
imbalanced, as the distribution of the four classes is not equal. The classes are in categorical
form and, for convenience, are converted into ordinal form by assigning values of 0, 1,
2, and 3 for none, slight, moderate, and intense rockbursts, respectively. The statistical
descriptions of each intensity level are summarised in Table 2. Table 2 contains the statistical
parameters mean, standard deviation, minimum, and maximum for each of the four classes,
and it is possible to determine how their value distribution varies across six different fea-
tures. For instance, for classes 0 and 3, the minimum and maximum MS energy values
range from 0.78 to 5.82 and from 4.11 to 7.09, respectively. Similar comparisons can also be
made for other variables using data from the table below.

Table 2. Statistical description of intensity levels across different predictors.

Intensity
Class

Predictor Variables

Statistical Description PN PE PV PNR PER PVR

0

Minimum 1 0.78 2.51 0.11 0.17 1.66
Maximum 17 5.82 5.03 3.00 4.78 4.94

Mean 4.16 3.08 3.68 0.98 2.46 3.06
Standard deviation 3.812 1.47 0.70 0.75 1.35 0.72
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Table 2. Cont.

Intensity
Class

Predictor Variables

Statistical Description PN PE PV PNR PER PVR

1

Minimum 2 3.17 3.49 0.53 2.17 2.39
Maximum 29 5.20 5.01 4.00 4.72 4.06

Mean 11.61 4.31 4.25 1.58 3.48 3.42
Standard deviation 7.96 0.52 0.47 0.97 0.58 0.49

2

Minimum 3 3.54 3.51 0.42 2.28 2.67
Maximum 36 5.98 4.83 4.00 5.07 4.01

Mean 14.62 5.24 4.46 1.63 4.22 3.48
Standard deviation 6.95 0.53 0.29 0.75 0.68 0.29

3

Minimum 70 4.11 3.62 1.25 3.41 2.92
Maximum 10 7.09 5.16 12.2 5.89 4.39

Mean 37.31 5.93 4.86 4.52 5.00 3.93
Standard deviation 18.59 0.80 0.40 2.98 0.78 0.38

Note: PE, PV, PER and PVR are in common logarithmic form.

2.3. Histogram and Parallel Plot

A histogram provides insights into how variables are distributed or whether they are
positively or negatively skewed or distorted. According to Figure 3, the values of PE, PER,
and PVR resemble a Gaussian distribution, but all are slightly negatively skewed. PN and
PNR are positively skewed, and PV is marginally negatively skewed. The scaling of such
features often increases the performance of models.
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Figure 3. Histograms for all six features.

After the descriptions of target and feature variables were individually examined,
a parallel plot was used to visualize the underlying relationship between input and out-
put variables, as shown in Figure 4. Parallel coordinate plots aid in comprehending the
graphical representation of multivariate MS information [19]. The vertical axis represents
each independent variable, and line graphs of different colours represent rockburst grades.
Based on the plot, the following conclusions can be reached:

• There is no rockburst when PN and PNR values are low and PE, PV, PER, and PVR
values are low-to-medium (dark brown lines).

• Slight and moderate grades have overlapping lines, indicating that medium PN and
PNR values and medium-to-high PE, PV, PER, and PVR values are often associated
with slight or moderate rockbursts (red and orange lines).

• Medium-to-high PN and PNR values and high PE, PV, PER and PVR values correspond
to intense rockbursts (yellow lines).
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Figure 4. Parallel plot for MS parameters and rockburst grades.

Overall, it is evident that the relationship between MS parameters and rockburst risk
is very complex. It can also be seen that there is some overlap in feature values between
slight and moderate rockbursts.



Big Data Cogn. Comput. 2023, 7, 172 8 of 19

2.4. Correlation Examination

Correlation represents the dependencies between two variables and measures the
degree to which one fluctuates in relation to the other. Correlation analysis can categorise
into three groups: positively correlated, uncorrelated, and negatively correlated. The
Pearson correlation coefficient is often used to compute correlations among variables and
is expressed in the following form:

r = ∑ (xi − x)(yi − y)√
∑ (xi − x)2∑(yi − y)2

(1)

Simply, r is a Pearson correlation coefficient and xi and yi are the X and Y variable
samples. Likewise, x and y denote the mean values of the X and Y variables, respectively.
The r value ranges from ‘−1’ to ‘+1’, and different coefficient values indicate the various
degrees of correlation, as depicted in Table 3 [25].

Table 3. Measure of correlation strength based on Pearson correlation coefficient. Authors’ own work
based on [26].

Pearson Correlation Coefficient as an Absolute Value Correlation Strength

0–0.19 Very weak correlation
0.20–0.39 Weak correlation
0.40–0.59 Moderate correlation
0.60–0.79 Strong correlation
0.80–1.00 Very strong correlation

2.5. Dimensional Reduction

Principal component analysis (PCA) is a dimensionality-reduction technique that
maps higher-dimensional data to a lower-dimensional space through mathematical trans-
formation. The procedure used to conduct PCA follows the standard below [26]:

1. Construct the original data matrix M =
(
xij
)

m×n, which contains m samples with n
variables. xij is the value of the j predictor for observation i.

2. Standardise the data to eliminate the effect of varying magnitudes of variables:

x∗ij =
xij − xj

sj
(2)

where the mean and standard deviation of the j predictor are denoted by xj and sj,
respectively.

3. Afterwards, use the standardised data to compute the correlation coefficient matrix
CM = (r)n×n, where r stands for the Pearson correlation coefficient.

4. Compute the eigenvalues and eigenvectors of the CM matrix.
5. Choose the appropriate principal components to reduce the original dimension into a

lower dimension. Generally, criteria for the first few principal components are eigen-
values greater than 1 and cumulative contribution rate above 80% are elected [26].

The formula provided is used to calculate the contribution rate of the first p principal
components:

ηp =
λ1 + λ2 + · · · · · · λp

λ1 + λ2 + · · · · · · λn
(3)

where λ stands for eigen value.

2.6. Categorical Gradient Boosting Classifier

CGB was initially proposed by [27] because of its usefulness in both classification
and regression. CGB has demonstrated superiority over other leading boosting variants
that have been applied to different problems. For instance, CGB demonstrated better
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performance than extreme gradient boosting (XGboost) and light gradient boosting (LGBM)
in the work of [27]. Most recently, a comparative study from Wu et al. found that CGB
has remarkable predictive capabilities compared with existing boosting methods [28]. It
also performed particularly well in some geotechnical areas, such as uniaxial compressive-
strength prediction [29] and prediction of the elastic modulus of rocks. Some recent studies
have also verified that CGB is superior to other boosting classifiers when applied to multi-
class imbalanced data [23].

The working strategy of CGB is to learn many weak learners and integrate them to
form a stronger learner. This approach is similar to the strategies of all other boosting
methods. It implements gradient boosting with binary decision trees as weak learners [27].
For data with samples D =

{(
Xj, yj

)}
j=1,...m,, Xj =

(
x1

j , x2
j , . . . . . . , xn

j

)
represents the

vector of n number of features and target yj ∈ R, which is either binary or a numerical
response. Samples (Xj, yj) are independently distributed according to some unknown
distribution P(., .). The objective of the learning task is to train a function H : Rn → R that
minimises the expected loss, which is provided in Equation (4).

L(H) := EL(y, H(X)) (4)

where L(., .) represents a smooth loss function and (X, y) represents validation data sam-
pled from D.

The process for all iterative gradient boosting constructs a sequence of approximations
Ht : Rm → R, t = 0, 1, . . . . . . . From the previous approximation, Ht−1, Ht is acquired in

an additive process, as Ht−1+αgt, with a step size α and function gt : Rn → R , which is a
base predictor and is chosen from a group of functions G to minimise the expected function
defined in Equation (5).

gt = arg ming∈G L(Ht−1 + g)
= arg ming∈G EL(y, Ht−1X + g(X))

(5)

The Newton method often deals with the minimisation problem using a second-order
approximation of L

(
Ht−1 + gt) at Ht−1 or with the help of a gradient step. Further detailed

information can also be obtained in [27].

2.7. Evaluation Metrics

Generally, evaluation metrics evaluate the model’s performance in assessing the
test sample and whether the classifier can appropriately classify the new observations.
Although there are various performance metrics for evaluating classifier robustness, this
study adopts three metrics: precision, recall, and F1 score. The primary reason for selecting
these metrics is that they are useful for evaluating performance when the dataset has a
class-imbalance problem. As mentioned in Section 2.2, the numbers of datapoints in the
four classes are not equal, making the classes imbalanced; in this case, the F1 score aids
in addressing such problems by weighting precision and recall equally. The accuracy,
precision, recall, and F1 score for any classifier is calculated using the following formula:

Accuracy =
TP + TN

TP + FP + FN + TN
(6)

where true positive (TP) indicates the number of positively predicted observations that
are actually positive; false negative (FN) represents the number of negatively predicted
observations that are actually positive; false positive (FP) denotes the number of predicted
positives that are actually negative; and true negative (TN) is the number of predicted
negatives that are actually negative.
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Precision measures the correctness of a model’s positive predictions [30]. It is the
fraction of predicted positive examples that were actually positive and is provided by:

Precision =
TP

TP + FP
(7)

In contrast, recall measures the completeness of a model’s positive predictions [30]. It is
the fraction of actual positive examples that were predicted positive, which is expressed as:

Recall =
TP

TP + FN
(8)

A high-performing model should have both high precision and high recall because
both measure the accuracy and completeness of positive predictions. Nevertheless, simul-
taneously achieving a high value for both is complex because trade-offs exist, meaning that
when one increases, the other tends to decrease. Hence, the F1 score gives equal weight to
both metrics by computing the harmonic mean of precision and recall [30]. The value of
the F1 score ranges between 0 and 1 for any particular classifier. An F1 score of 1 or nearly
1 indicates a perfect model. The F1 score is computed using the expression below:

F1 =
2 precision× recall
precision + recall

(9)

3. Results
3.1. Correlation Result

The computed correlation for the given dataset is shown in a correlation-matrix plot in
Figure 5. From Figure 5, it can be seen that all indicators positively correlate with intensity
levels to different extents. Four indices, PN, PE, PV, and PER, strongly correlate with targets,
having correlation values above 60%, whereas PNR and PVR are moderately correlated at
only 55% and 46%, respectively. In addition, some predictor-variable pairs are also strongly
correlated with each other. For instance, the correlation of PE and PER is 97%, and PV and
PVR follow with a correlation of 88%. Similarly, a correlation of 77% can be seen for PN
and PNR. As a correlation between predictor variables becomes stronger, the redundancy
of information increases and may impact the training process and prediction. Therefore, a
good combination of variables should have features highly correlated with the target, yet
uncorrelated with each other [31].
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Depending upon the correlation analysis, a highly correlated variable can be dropped
to reduce the multi-collinearity of the analysis [32]. When two variables possess a high
degree of association, one can be predicted from the other. However, determining which
should be removed is complicated, as the indicators selected define the rockburst based on
two aspects: microfracture characteristics (PN, PE, PV) and temporal evolution character-
istics (PNR, PER, PVR). Hence, if all features are dropped from either of these categories,
information regarding that aspect will be lost. As a result, considering the negative conse-
quences of one-sided feature removal, the data are further handled by implementing the
dimensional-reduction technique to retain original information in low dimensions.

3.2. Dimensional Reduced Data

PCA was used to approach the correlated variables discussed here. PCA was imple-
mented using the Sklearn module [33] to reduce the impact of high correlation, and the
first three components to achieve the cumulative contribution rate above 80% were chosen.
The individual contribution rates for the first components are 60.41%, 19.00%, and 14.82%,
respectively, with a cumulative contribution rate of 94.26%. The shape of the data in the 3D
space is pictured in Figure 6. It can be seen that, after scaling and PCA, the data points for
each cluster are not scattered and are close to each other. The four different colours indicate
the different intensity levels.
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3.3. Model Training and Hyper-Parameter Optimisation

The dataset remaining after pre-processing was used to create the predictive model.
The training and testing set is formed by randomly splitting the dataset into two parts,
generally in an 80:20 ratio. The larger portion (79 samples) was used as the training set
and was fed to the model to train it. The remaining 20 samples were used as a testing set
to evaluate the model. While training the model, hyper-parameter tuning was essential
and significantly increased performance. Therefore, hyper-parameters were tuned using a
grid-search method that embeds the cross-validation (CV) method. The general architecture
of cross-validation with five folds is portrayed in Figure 7.

Five-fold CV starts with partitioning the training dataset into five portions and training
the model five times. In each round, four portions of the data act as a training set, while the
remaining one acts as a test set. The results obtained from all five rounds are then averaged
to obtain the final prediction [34].
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To build a simple and easy-to-use model, two important hyper-parameters, depth
and n_estimators, were chosen, and optimal values for each were identified. The depth
is the maximum depth of the tree, and n_estimators is the total number of trees in the
forest. Hyper-parameter tuning is computationally expensive. Therefore, considering the
computational cost during hyper-parameter selection, values between 2 and 15 were chosen
using the range function in Python to select the appropriate value for depth. Likewise, the
same range function was also applied for n_estimators, and a range between 10 and 200 was
specified with an interval of 10. As for the learning rate, the default setting was used.

To optimise the hyper-parameters, the grid-search CV (GS-CV) method using stratified
k-fold CV was adopted. This method divides the dataset into k segments such that each
segment contains approximately the same percentage of samples of each target class as
the complete set does. This approach is beneficial when target classes are unbalanced
because it ensures that the model does not overfit to the majority class and that it is able to
learn to accurately predict the minority class. GS-CV tunes the parameters by methodically
building and evaluating a model for each combination of algorithm parameters, as specified
in a grid [35]. Estimator and param grid are two key terms involved in using GS-CV. The
estimator is a classifier that is being trained. The param grid indicates the list of parameter
settings specified above. Every parameter combination is validated to seek the best accuracy,
and of the possible combinations of pairs and parameter values, those that are closer to
optimum are selected to yield a more precise model. The hyper-parameter optimisation
results for the PCA-CGB and single CGB model that was trained on the original data are
shown in Figure 8 respectively.

In Figure 7, the different colours inside the plot indicate the average accuracy for
various combinations, and the taller the peak, the higher the accuracy. As illustrated, the
accuracy varies significantly for different pairs of combinations. The hyper-parameter
tuning range and the optimal values obtained after optimisation for PCA-CGB and CGB
are given in Table 4. The optimal values acquired through the GS-CV optimisation process
differ between classifiers. For PCA-CGB, the optimal depth and n_estimators are 3 and 140,
respectively. Similarly, CGB has a depth value of 2 and an n_estimators value of 130.
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Table 4. Hyper-parameters and tuning range.

Classifier Hyperparameters Parameter Range Interval Optimal Value

PCA-CGB
depth (2, 15) 3

n_estimators (10, 200) 10 140

CGB
depth (2, 15) 2

n_estimators (10, 200) 10 130

After the best hyper-parameters were derived using GS-CV optimisation, the optimal
models were used to predict the test set that was initially separated from the rest of the
data and that had not been used during the training process. The confusion matrix in
Table 5 shows that, among 20 observations, the PCA-CGB predicted 18 cases correctly, only
misidentifying two samples. The single CGB, by contrast has five incorrect predictions.
Considering the available dataset size, the PCA-CGB has a better accuracy, at 90%. However,
accuracy alone cannot reflect the overall strength of the model when the dataset has an
unequally distributed class. Therefore, their strength is determined by analysing precision
and recall for each class and computing the F1 score.

Table 5. Confusion matrix for PCA-CGB and CG.

Predicted

PCA-CGB CGB

0 1 2 3 0 1 2 3

Tr
ue

0 9 0 1 0 8 2 0 0
1 0 2 1 0 0 2 1 0
2 0 0 5 0 1 1 3 0
3 0 0 0 2 0 0 0 2

Depending on the requirements, some sectors prefer high-recall models and some
sectors demand high-precision models. However, the prediction of rockburst hazards is
very sensitive and focuses on two primary aspects: minimising unnecessary controlling
costs and the safety of personnel and the project. If moderate and intense rockbursts
are treated as high-risk and none and slight are treated as low-risk, then a model should
precisely classify high-risk and low-risk cases. This should be prioritised because classifying
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high-risk cases as low-risk threatens human life and project safety; similarly, classifying
low-risk cases as high-risk increases economic losses to control and support measures
even though the high-risk event is unlikely. From this logic, it can be concluded that
rockburst-hazard risk prediction is vital in accurately identifying low-risk and high-risk
cases because it is equally important to minimise costs and to ensure the safety of human life
and projects. Therefore, in rockburst prediction, precision and recall have equal importance.
The precision and recall for the proposed work at each intensity grade are illustrated
in Figure 9.
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As shown in Figure 9a, PCA-CGB has high precision for none, slight, and intense
rockbursts, but the precision is slightly lower for moderate rockbursts. Regarding the
recall score, the values for none, moderate, and intense are greatest, whereas that for
slight risk is comparatively low (Figure 8b). Overall, the model achieved precision and
recall of 0.9286 and 0.8917, respectively. For any optimal model, higher precision and
recall are desirable, but practically, it is difficult to maintain high precision and recall
simultaneously because there is a trade-off; when one increases, another decreases. As
shown in Figure 9, recall decreases when precision increases and vice versa. Hence, the F1
score determines the classifier’s strength using the harmonic mean of precision and recall.
The F1 score for a single class is derived in the chart in Figure 10, and Table 6 describes
the general rule of thumb for determining classifier strength according to the F1 score
(https://stephenallwright.com/good-f1-score/, accessed on 11 August 2023). The bar
chart shows that, overall, PCA-CGB has the best F1 score for the none and intense levels,
with a slightly lower score for the slight and moderate levels. It had an F1 score of 0.8952,
which is considered to indicate a good classifier, according to Table 6.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 15 of 20 
 

 

Figure 10. F1 score for PCA-CGB. 

Table 6. Description of model performance based on F1 score. Created by author based on 

h�ps://stephenallwright.com/good-f1-score/ (accessed on 11 August 2023). 

F1 Score Performance Measure 

Above 0.9 Very good  

0.8–0.9 Good 

0.5–0.8 Ok 

Below 0.5 Not good 

4. Performance Comparison 

To check the feasibility of using the PCA-CGB, its performance was compared with 

those of three conventional boosting classifiers on the same dataset. These other classifiers 

have often been utilised in rockburst prediction [17,36], and the comparison checked for 

improvements. The three boosting classifiers were the gradient boosting classifier (GBC) 

[37], adaptive boosting (AdaBoost) [38], and light gradient boosting machine (LGBM) [39]. 

All three models were trained on the same data after PCA, and their hyper-parameters 

were also optimised using the GS-CV method with the same process used for PCA-CGB. 

For GBC and LGBM, two crucial parameters, max_depth and n_estimators, were adopted 

with the same tuning range as that used for PCA-CGB. However, the parameters used for 

AdaBoost were slightly different; therefore, n_estimators and learning_rate were selected. 

The selected hyper-parameter range and obtained values are shown in Table 7. 

Table 7. Parameter selection for GBC, AdaBoost and HGBT. 

Classifier Hyperparameters Parameter Range Interval Optimal Value 

GBC 
max_depth (2, 15)  5 

n_estimators (10, 200) 10 30 

Adaboost 
learning_rate 0.1–1, 0.001, 0.01, 0.005, 0.03  0.6 

n_estimators (10, 200) 10 130 

LGBM 
max_depth (2, 15)  2 

n_estimators (10, 200) 10 100 

Once the optimal hyper-parameters were tuned, classifiers with optimal hyper-pa-

rameters were employed to predict the previously unseen test samples. Table 8 shows the 

confusion matrices for GBC, AdaBoost, and LGBM. Among the three classifiers, GBC and 

LGBM show be�er results than AdaBoost. GBC misclassified one none as slight risk and 

two slight risks as moderate risk, whereas LGBM and AdaBoost incorrectly classified 

some other intensity classes as moderate risk. The F1 scores of the three classifiers are 

shown in Figure 11. The figure indicates that all classifiers yield be�er results for none/no 

risk and intense risk; however, all have very low scores for slight and moderate risk. GBC, 

AdaBoost, and LGBM generated F1 scores of 0.7952, 0.6407, and 0.7368, respectively. 

Figure 10. F1 score for PCA-CGB.

https://stephenallwright.com/good-f1-score/


Big Data Cogn. Comput. 2023, 7, 172 15 of 19

Table 6. Description of model performance based on F1 score. Created by author based on https:
//stephenallwright.com/good-f1-score/ (accessed on 11 August 2023).

F1 Score Performance Measure

Above 0.9 Very good
0.8–0.9 Good
0.5–0.8 Ok
Below 0.5 Not good

4. Performance Comparison

To check the feasibility of using the PCA-CGB, its performance was compared with
those of three conventional boosting classifiers on the same dataset. These other classifiers
have often been utilised in rockburst prediction [17,36], and the comparison checked for im-
provements. The three boosting classifiers were the gradient boosting classifier (GBC) [37],
adaptive boosting (AdaBoost) [38], and light gradient boosting machine (LGBM) [39]. All
three models were trained on the same data after PCA, and their hyper-parameters were
also optimised using the GS-CV method with the same process used for PCA-CGB. For
GBC and LGBM, two crucial parameters, max_depth and n_estimators, were adopted
with the same tuning range as that used for PCA-CGB. However, the parameters used for
AdaBoost were slightly different; therefore, n_estimators and learning_rate were selected.
The selected hyper-parameter range and obtained values are shown in Table 7.

Table 7. Parameter selection for GBC, AdaBoost and HGBT.

Classifier Hyperparameters Parameter Range Interval Optimal Value

GBC
max_depth (2, 15) 5
n_estimators (10, 200) 10 30

Adaboost
learning_rate 0.1–1, 0.001, 0.01, 0.005, 0.03 0.6
n_estimators (10, 200) 10 130

LGBM
max_depth (2, 15) 2
n_estimators (10, 200) 10 100

Once the optimal hyper-parameters were tuned, classifiers with optimal hyper-parameters
were employed to predict the previously unseen test samples. Table 8 shows the confusion
matrices for GBC, AdaBoost, and LGBM. Among the three classifiers, GBC and LGBM show
better results than AdaBoost. GBC misclassified one none as slight risk and two slight risks
as moderate risk, whereas LGBM and AdaBoost incorrectly classified some other intensity
classes as moderate risk. The F1 scores of the three classifiers are shown in Figure 11. The
figure indicates that all classifiers yield better results for none/no risk and intense risk;
however, all have very low scores for slight and moderate risk. GBC, AdaBoost, and LGBM
generated F1 scores of 0.7952, 0.6407, and 0.7368, respectively.

Table 8. Confusion matrices for GBC, AdaBoost, and LGBM.

Predicted

GBC AdaBoost LGBM

0 1 2 3 0 1 2 3 0 1 2 3

Tr
ue

0 9 1 0 0 9 0 1 0 9 0 1 0
1 0 1 2 0 0 0 3 0 0 2 1 0
2 0 0 5 0 0 1 4 0 0 1 4 0
3 0 0 0 2 0 0 0 2 0 0 1 1

https://stephenallwright.com/good-f1-score/
https://stephenallwright.com/good-f1-score/
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Finally, the results of PCA-CGB were compared with those of these three classifiers.
In various ways, the predictive performance of the proposed work is better than those of
other traditional boosting classifiers when used for imbalanced rockburst data. Although
GBC, AdaBoost, and LGBM seem reasonably accurate, their F1 scores are relatively low,
meaning they are less robust to the above problem of class imbalance. However, the overall
performance of PCA-CGB is superior concerning precision, recall, and F1 score measure,
indicating that it is more reliable and possesses greater predictive power than the other
boosting classifiers.

Further, in terms of F1 scores, we can discuss the performance in relation to previous
work on the subject, including [18,22,40], which acquired F1 scores of 0.66, 0.8779, and
0.8631, respectively. However, the results are not directly comparable due to differences
in the dataset sizes because samples for training and variables that appear in the different
studies vary marginally. However, to make class distribution more diverse in this study,
more cases were gathered to expand the dataset size, and a larger dataset was used com-
pared to those in other studies. When the data are more complex, feeding a lower quantity
of data for training may cause an underfitting problem, and the model loses generalisation.
Therefore, more samples were used during training to ensure the model obtained enough
records to learn the pattern between inputs and output. Overall, the final result for the
previously unseen test set reveals that in unequally distributed data, the F1 score of the
proposed approach still yields better results for all types of risk severity compared to other
works, which have a low error rate even for the datasets that are mostly complex and
consist of relatively few data points for particular class.

5. Field Data Validation

After the model’s reliability in prediction was verified, the model was employed
to predict new engineering data extracted from [24]. The data were obtained from the
underground hydropower tunnelling project after the MS activities of rockbursts were
examined. After transformation using PCA, this dataset is provided as input to the model.
The prediction and actual results are shown in Table 9. Cases include a slight rockburst and
a moderate rockburst, and the model also predicted the correct level, confirming that this
classifier effectively classifies events from new, previously unseen samples.

Table 9. Prediction of events in a new sample by PCA-CGB.

S. N PN PE PV PNR PER PVR Actual Predicted

1. 7 5.269 4.817 0.7 4.269 3.817 1 1
2. 9 1.723 4.993 1.28 0.877 4.147 1 1
3. 23 4.408 4.873 2.556 3.454 3.918 2 2
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6. Discussion and Limitations

Prediction of rockbursts in underground engineering using intelligent models should
focus on correctly classifying each class equally. Generally, classical ML methods assume
that all classes are equally distributed. However, when a dataset has a problem of class
imbalance, relying on a single accuracy measure could be misleading because the model
may correctly classify members of the majority class but fail to identify members of the
minority class. In this scenario, relying on a single measure of accuracy may not be
entirely reliable. For the purposes of controlling economic losses and promoting safety, the
prediction of each intensity class is equally important. Section 3.3 shows that the model
is highly accurate for the majority class (none/no risk) and minority class (intense risk).
However, there are some inaccurate outcomes for two other minority classes, slight risk and
moderate risk. If we rely on accuracy alone, the model may seem highly accurate. However,
the model may fail to classify other minority classes equally, and the misclassification of
these types of low-risk events as high-risk rockburst events could have serious implications.
Most previous approaches that used classical ML methods relied on a single accuracy
measure to evaluate the classifier’s performance. Rather than depending on a single metric,
this study used precision, recall, and F1 scores because they indicate how robust the
classifier is when applied to imbalanced classes. If the model’s performance is compared
using the F1 score, it is reasonable and acceptable to suggest that it is not susceptible
to performance problems associated with imbalanced cases and has greater power to
distinguish among classes. The model’s performance can also be confirmed when it is
applied to rockburst classes that constitute a less extreme minority, as it can accurately
identify events in such classes. Nevertheless, the model yields a slightly lower F1 score for
slight and moderate rockbursts, the primary reason for which might be uncertainties and
overlap between the two cases, which in turn might have led to misclassifications. Despite
this issue, PCA-CGB is still more powerful than traditional boosting classifiers because
while they seem accurate, they have lower scores in other metrics, indicating that their
performance in predicting rockburst data is weak.

Although the proposed method yielded satisfactory results, the dataset size is still
relatively small compared to those seen in common ML tasks. In common practice, ML
methods rely heavily on huge datasets for better generalisation. Very small datasets can
significantly lower performance by underfitting or overfitting the model. Thus, future
research should focus on enhancing the model’s robustness by developing a model from
larger datasets.

7. Conclusions

Predicting short-term rockburst risk accurately has always been important, as it di-
rectly threatens the safety of personnel, equipment, and subsurface structures. Equally,
classifying risk severity is essential to allowing the adoption of efficient control measures
to avoid economic loss and ensure personnel safety. However, reliably distinguishing
among risk levels is often challenging due to class-imbalance issues. Most existing work
relies on models with high accuracy, but some of them cannot perform well with imbal-
anced data. Hence, this work proposes a simple, intelligent predictive method combining
unsupervised learning, principal component analysis (PCA), and supervised categorical
gradient-boosting (CGB) approaches to intelligently predict rockburst risk levels. The value
of this method is that it can generate predictions on unequally distributed classes more
efficiently than classical ML models can. The real engineering data based on microseismic
information were as assembled into a supportive database comprising six features. The
variables have high correlation; therefore, PCA reduces redundancy among variables. After
reducing the original dimension into three components, the CGB is adopted to create a
PCA-CGB model to predict rockburst risk. To ensure that the optimal model is produced,
hyper-parameters are tuned to obtain the best output. The model’s predictive performance
was evaluated using precision, recall, and F1 score and further compared with three tra-
ditional boosting techniques to check for feasibility. The results showed that, regarding
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multiple performance measures, CGB with PCA data surpassed all conventional techniques
and achieved precision, recall, and F1 scores of 0.9286, 0.8917, and 0.8952, respectively.
In particular, when dataset have higher degree of correlation and classes are unevenly
distributed, the output of PCA-CGB is more stable and effectively identifies majority
and minority classes at higher rates than do the conventional methods. The final model
also predicts new cases collected from the underground engineering project, accurately
matching the corresponding actual events. The proposed work supports the management
of rockburst risk because it can categorise and classify various risk levels with a degree
of accuracy.
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