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Abstract: As the number of layers of deep learning models increases, the number of parameters and
computation increases, making it difficult to deploy on edge devices. Pruning has the potential to
significantly reduce the number of parameters and computations in a deep learning model. Existing
pruning methods frequently require a specific distribution of network parameters to achieve good
results when measuring filter importance. As a result, a feature map similarity score-based pruning
method is proposed. We calculate the similarity score of each feature map to measure the importance
of the filter and guide filter pruning using the similarity between the filter output feature maps to
measure the redundancy of the corresponding filter. Pruning experiments on ResNet-56 and ResNet-
110 networks on Cifar-10 datasets can compress the model by more than 70% while maintaining a
higher compression ratio and accuracy than traditional methods.

Keywords: network pruning; redundant filters; similarity; ResNet

1. Introduction

Artificial intelligence based on deep learning is one of the most promising and full-
of-potential technologies today. It can use big data and powerful computing power to
automatically learn from data, extract useful features, and make predictions and decisions
through models to realize various intelligent applications. Artificial intelligence based on
deep learning can play a role in healthcare, transportation, finance, energy, education, and
other fields to achieve more accurate and efficient decision-making and prediction and
promote the progress of science and technology. For example, in the medical field, artificial
intelligence based on deep learning can improve the accuracy and efficiency of medical
diagnosis by analyzing a large amount of medical data and helping doctors formulate more
reasonable and personalized treatment plans. In terms of daily life, intelligent analysis of
human health status and human–machine interaction can be carried out through wearable
devices and information theory [1–4]. In the field of transportation, artificial intelligence
based on deep learning can optimize traffic flow and improve traffic safety and efficiency
by analyzing traffic data.

At this stage, deep learning networks such as AlexNet, GoogleNet, VGG-16, ResNet-
152, etc., have hundreds of model layers and have continuously achieved excellent results
in various tasks such as recognition and classification. However, as the depth of the deep
learning network model increases, the number of parameters and calculations increases
dramatically. For example, when ResNet-152 performs forward inference on 224× 224-sized
images, the number of model parameters reaches 138 million, the amount of floating-point
operations reaches 15.5 billion, and the storage footprint reaches 528 MB. This puts forward
higher requirements for model deployment. In some scenarios wherein resources, power
consumption, and computing power are limited, it is difficult to deploy algorithms into
applications [5,6].
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Therefore, it is necessary to study how to compress the model in order to improve its
efficiency. The researchers found that, although the number of depth model parameters
at this stage is large, there is a large amount of redundancy [7]. If you remove some
parameters, you can make the model smaller while keeping its performance from being
greatly affected. This makes it easy to deploy models on resource-constrained devices. The
current research mainly focuses on three aspects: model pruning, knowledge distillation,
and model quantification; it also designs new lightweight networks from the model itself.
This paper mainly studies the solution to the model’s pruning direction.

In this paper, the problem that the heuristic filter importance metric may not correctly
reflect the importance of the filter and the problem that the cluster-based pruning method
selects the number of cluster centers are complex. A similar pruning scheme is proposed,
and the similarity of each feature mapped to all other feature maps is calculated according
to the feature mapping diagram output by the filter. The similarity score for each feature
map is then calculated to measure the similarity of each filter, removing those with low
similarity. This method combines the output of the filter and uses feature map similarity to
guide the removal of redundant features.

2. Related Works

The general pruning process is to pre-train a network model, then measure the impor-
tance of the parameters in the model, remove some parameters according to their impor-
tance, and finally fine-tune the network to restore its accuracy. Therefore, a key research
aspect of pruning is how to measure the importance of parameters or filters. According
to the different pruning objects, it is divided into structured pruning and unstructured
pruning.

2.1. Unstructured Pruning

Unstructured pruning removes some of the neuronal parameters in the filter, which
is a more fine-grained pruning. The importance of a weight is measured primarily by
the absolute value of the parameter. Han et al. [8,9] use the L1 norm and the L2 norm
to measure the importance of weight values and believe that weight values with small
norm values have little effect on the results of the network. Han compresses the model by
more than 10 times, and the network performance is basically undegraded. Guo et al. [10]
improved Han’s method by dynamically connecting pruning in the fine-tuning stage,
resetting the value of mask, and reducing the important weight of erroneous pruning.
Finally, pruning on LeNet-5 and AlexNet can compress the number of parameters to
108 and 17.7 times, respectively, without loss of network performance. N. Lee and
M. Alizadeh perform one-shot pruning before the network model is initialized [11,12].
Based on the importance of the weight connection, determine the importance of the weight
and remove the weight with low importance. It can save time spent on fine-tuning.

2.2. Structured Pruning

Unstructured pruning results in sparse filters that do not allow for acceleration on
general-purpose hardware. Although the number of parameters is reduced, they cannot
be effectively accelerated [13]. Structured pruning, on the other hand, is the removal
of a filter or some channels of the convolutional layer, or even the entire convolutional
layer. Although the number of parameters removed is large, the impact on the accuracy
of the model is still small. And it is convenient for hardware acceleration implementation.
Therefore, structured pruning is more popular with researchers. Li et al.’s [14] pruning
method is similar to Han’s, using the sum of the weight values of the entire filter to measure
the importance of a filter and setting a threshold. If the sum of all the weights of the filter
falls below the threshold, the filter is considered redundant and removed. He et al. [15]
modeled channel pruning as an optimization problem. Channel selection is performed
by LASSO regression and least squares to remove unimportant filters. Liu et al. [16] used
the scaling factor of the BN layer to measure the importance of the corresponding channel.
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If a certain amplification factor tends to 0, then the channel is considered unimportant.
Luo et al. [17] propose the ThiNet method to guide filter pruning based on the minimum
reconstruction error, and model filter selection as an optimization problem. This method
guides the pruning of the current layer network based on the statistics output of the next
layer. He et al. [18] proposed the FPGM method, arguing that the filter near the geometic
median can be represented by other filters and that the importance of the filter is measured
relatively. Lin et al. [19] proposed an HRank pruning method. The pruning method
mainly relies on the feature map output of the convolutional layer, and the filter of the
convolutional layer is removed with the rank guidance of the feature map. Sui et al. [20]
propose the CHIP method. The core idea is to use the independence of the feature map to
measure its importance to the response filter. The importance of the channel is measured
using the difference in the kernel norm of the feature map matrix before and after a feature
map is removed. If the independence of a feature map is low, the feature map is considered
dependent on other feature maps and can be removed. Zhuo and Wang prune based on
clustering [21,22]. The filter or the feature map of the filter output is clustered, and the filter
or feature map that is aggregated into a cluster is considered to be related, so some filters or
feature maps in the same cluster can be removed. The summary of related works is shown
in Table 1.

Table 1. Summary of related works.

Article Structure Criterion Method

[8,9] weights weights magnitude train, prune and fine-tune
[10] weights weights magnitude mask learning
[11] weights weights magnitude prune and train
[12] weights weights magnitude prune and train
[14] filters L1 norm train, prune and fine-tune
[15] filters filters magnitude group-LASSO regularization
[16] filters magnitude of batchnorm parameters train, prune and fine-tune
[17] filters output of the next layer train, prune and fine-tune

[18] filters geometric median of common
information in filters train, prune and fine-tune

[19] filters average rank of feature map train, prune and fine-tune
[20] filters channel independence train, prune and fine-tune

[21,22] filters Lp norm train, prune, and fine-tune

Traditional pruning algorithms use zero-value pruning when measuring the impor-
tance of the filter, and heuristic metrics are used to measure the importance of the filter.
Such methods often require a certain distribution of network parameters to achieve good
results. There is another type pruning method based on similarity analysis, considering the
similarity between the output feature maps of convolutional layer. This type of method
clusters the features output from the convolutional layer, preserves representative feature
maps, and then removes filters and channels corresponding to redundant feature maps.
However, this type of method often fails to select an appropriate number of cluster centers.
Based on existing research, a pruning method based on feature map similarity score is
proposed in this paper.

3. Method
3.1. Algorithmic Thinking

In this paper, the proposed pruning algorithm is based on similarity calculation
between the feature maps of each filter output. The idea of the algorithm is that the feature
map output by the filter can reflect the feature extraction effect of the filter, and if some
feature maps are similar, it means that the feature extraction effect of these filters is similar,
and these filters are redundant. Figure 1 is the visualization of the feature map of the
first convolutional layer of the ResNet-50 network, and it can be intuitively seen from
the figure that there is similarity between the feature maps output by each filter of the
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convolutional layer. The two feature maps marked by the red box in the figure have very
similar visual performances in terms of light and shade, texture, etc. This means that the
filter that outputs these two feature maps extracts similar features such as light and dark,
texture, etc. If multiple filters all extract the same or similar features, then these filters are
redundant in terms of feature extraction. If the redundant filters corresponding to some
similar feature maps are removed, the recognition accuracy of the original network can still
be maintained. Due to the fact that the output of these redundant filters has a certain type
of characteristic, it can still be output by retaining similar filters [23].

Figure 1. Visualization of the feature map of the first convolutional layer of ResNet50 (It can be seen
intuitively from the feature map that some feature maps are very similar. As shown in the figure, the
visual observation between the two sets of feature maps marked by the red and green boxes is very
similar).

3.2. Algorithmic Framework

Based on the pruning method of similarity metrics between the filter output feature
maps, the pruning process of each convolutional layer is shown in Figure 2 for the pre-
trained model to be pruned. It mainly includes three stages: the first stage involves using
convolution to calculate the feature map of the current layer; in the second stage, the
similarity of each feature map and other feature maps is calculated according to the obtained
feature map of the current layer. In the third stage, the similarity score is calculated, and
pruning is achieved.
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Figure 2. Pruning process for each convolutional layer.

The pruning algorithm process is shown in Algorithm 1, and the pruning process
includes the following four steps:

(1) Similarity calculation: For a convolutional layer, calculate the similarity between the
feature map output of each filter and the feature map output of other filters.

(2) Similarity score calculation: calculate the similarity score for each feature map.
(3) Distance sorting: The similarity score calculated for each feature map is sorted.
(4) Filter and channel pruning: According to the set pruning rate, the feature map

with low redundancy is retained to map the corresponding convolution kernels,
and the unimportant convolution kernels are removed. Also remove the channel
corresponding to the next layer.

(5) Prune the next convolutional layer: Repeat steps 1–4 to prune the next convolutional
layer, until all convolutional layers have been pruned.

Algorithm 1 Pruning method based on feature map similarity score.

Require: pre-trained model, feature map mapping for each layer output, purning rate for
each layer Pi

Ensure: Pruned model
1: for i in Layers : do
2: #Calculate similarity
3: for j in f eatures_maps : do
4: Calculate the similarity and similarity score SR of the jth feature map and all
5: other feature maps
6: end for
7: #Pruning
8: Sort the filters by the sum of similarities
9: Remove unimportant filters

10: Remove the corresponding channel of layer i + 1
11: end for
12: #Fine-tuning
13: Fine-tune the pruned model
14: Return pruned model
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3.3. Similarity Calculation

In this paper, the similarity degree is selected to measure the similarity between one
feature map Fi,j and other feature maps Fi,m 6=j. To evaluate the performance of evaluating
the importance of filters with similarity between feature map maps, multiple feature map
similarity indicators are selected for experiments. A total of three indicators were selected:
Euclidean Distance (Odist), Difference hashing (dHash), and Structural Similarity (SSIM) to
measure the similarity between feature map mappings. These metrics are described below.

(1) Euclidean distance

Euclidean distance is used to measure the distance between two sample spaces. If the
Euclidean distance value is smaller, the two individuals are more similar, and the larger the
difference, the greater the difference between the two individuals. An n-dimensional Eu-
clidean space is a set of points, each point of which can be represented as x = (x1, x2, . . . , xn),
and the distance between two samples x and y is defined as Odist(x, y). The distance be-
tween two points in n-dimensional space is defined as shown in the equation.

Odist(x, y) =

√
n

∑
i=1

(xi − yi)2 (1)

(2) Difference hash

The difference hash algorithm is used in similar image retrieval, which can calculate
arbitrary pictures and output a fixed-length hash string. Comparing two picture hash
strings, the closer the results, the more similar the two pictures are. The difference hash
algorithm calculates the hash value through an interpixel gradient. The calculation first
converts the image to grayscale and reduces it to 8× 8 pixels. Arranges, in row-first order,
the grayscale values of each pixel into a one-dimensional array I8×8 that Ii,j represents
the grayscale values of the pixels in the i row j column. Each pixel is then traversed to
calculate its gray difference di,j from the pixel on the right, which can be calculated using
the following formula:

di,j = Ii,j − Ii,j+1 (2)

Next, convert these differences to binary values: 0 if the difference is less than or
equal to the threshold, otherwise 1, resulting in a binary array B8×7 of binary values Bi×j
representing the grayscale difference between the pixels in the i row j column and the
pixels on the right. Due to the fact that there are only seven differences in a row, each row
only needs to be converted to 7 bits of binary value.

Finally, these binary values are combined into a 64-bit hash code H that Hi represents
the binary value of the first i bit. It can be calculated using formulas:

H =
64

∑
i=1

2i−1 × Bi (3)

where the Bi value of the first i bit in the binary array B.
In this way, we obtain a 64-bit hash code, which can be used for image similarity

comparison, and the similarity of two images can be calculated by comparing the Hamming
distance of their hash codes.

(3) Structural similarity

When comparing the similarity of two pictures, the brightness, contrast, and structure
of the picture are considered at the same time. The higher the value of the structural
similarity indicator, the higher the similarity of the two signals. It is calculated as shown in
the equation and is a multiplicative combination of three contents.
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SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ,

l(x, y) = 2µxµy + C1

µ2
x+µ2

y+C1
,

c(x, y) = 2σxσy + C2

σ2
x+σ2

y+C2
,

s(x, y) = σxy + C3
σxσy+C3

(4)

3.4. Similarity Score

Use the formula to calculate the sum i j Fi,j Fi,m, m = 1, 2..M, s.t.m 6= j of the
similarities from the feature map output of the first filter output to all other feature maps.

Sj =
M

∑
m=1

similarity(Fi,j, Fi,m) (5)

where similarity(x, y) is the similarity between the sample x and y. m indicates the serial
number of the first i convolutional layer output feature map.

The larger the value of Sj, the more similar the current map is to all the other feature
maps. The greater the redundancy of all output feature maps of the current layer, the
filter of layer i and the channel of layer i + 1 corresponding to this feature map should be
removed. After removal, other filters can still extract similar feature maps, which has little
impact on the accuracy of the model. Conversely, if the Sj value is smaller, we believe that
this feature map is less similar Fi,j is to all other feature maps, and the features extracted by
the corresponding filter are more important. The corresponding filters and channels should
be retained.

In order to prevent individual differences, we take N image samples as input, calculate
the sum of Euclidean distances from one feature map to other feature maps multiple times
according to the formula, and take the average of the results as a similarity score to measure
the feature map SR.

SRj = mean(Sj)

=
1
N

N

∑
1

M

∑
m=1

similarity(Fi,j, Fi,m)
(6)

3.5. Sorting and Pruning

For the first i convolutional layer, the similarity score of each feature map
{SR1, SR2, . . . , SRNF } can be calculated according to the formula. These similarity score
results are then sorted in order from largest to smallest to obtain the ordinal index vec-
tor of the feature map. Then, combined with the current layer pruning rate Pi and the
current layer feature map NF, the number of feature maps to be pruned is determined
Np = int(Pi × NF).

Then, the pruning process can be expressed as formula (7) and (8), and a mask matrix
is constructed according to the number of feature maps to be pruned NP and the index
vectors sorted by similarity scores. The mask M corresponding to the filter that needs to be
pruned is set to 0, and the mask M corresponding to the filter that needs to be retained is
set to 1. The filter of the first i layer and the channel of the first i + 1 layer is then pruned
according to the mask matrix.

W
′
= M�W (7)

C
′
= M� C (8)

where � is the Hadamard Product (multiplication of the corresponding positional elements
of the matrix). Formula (7) represents the process of pruning the weight of the filter, where
M is the mask matrix obtained by the method in this paper, and controls the pruning of the
filter weight W. Formula (8) represents the process of pruning the channel.
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In this paper, the pruning of the ResNet network uses a residual connection because
the input channel number of the next layer of residual blocks is fixed, so different strategies
for pruning the residual structure are different. When pruning, only the first convolutional
layer is pruned for the BasicBlock block, and the change in the output dimension of the
convolutional layer after pruning will not affect the output dimension of the current residual
block. When pruning the second convolutional layer in the residual block, that is, the last
convolutional layer, the original output dimension is changed, so the second convolutional
layer is not convolved. Similarly, for Bottleneck blocks, only the first two convolutional
layers are pruned. The last layer is not pruned, and the dimension of the residual block
output is fixed. The pruning position of the residual structure is shown in Figure 3.

(a)

(b)

Figure 3. Pruning strategy for different residual blocks. (a) BasicBlock residual block, with two
convolutional layers, prunes only the filter of its first layer. The BasicBlock residual block has two
convolutional layers, and only the filter of its first layer is pruned. (b) Bottleneck residual block with
three convolutional layers pruned only of its first two convolutional layers. The Bottleneck residual
block has three convolutional layers, and only the first two convolutional layers are trimmed.

4. Experiments
4.1. Experimental Environment and Dataset

Experimental environment: The pre training and pruning algorithm implementation
of all basic network models in this article are based on the PyTorch framework. The GPU
uses A100-SXM4-40 GB of Google Colab Pro platform and 40 GB of graphics memory.
The virtual machine RAM size is 81 G. The experimental environment used is Python 3.7,
PyTorch version 1.12.1 + cu113. Select SDG as the optimizer, with a batch size of 128, a
weight attenuation value of 0.005, and an initial learning rate of 0.01. Randomly select
5 batch sizes with a total of 640 images as samples to calculate similarity redundancy.
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Dataset: This article evaluates the method using two datasets. They are the CIFAR-10
dataset and the ISCX-VPN-NonVPN (VPN2016) dataset. CIFAR-10 is a small color image
dataset with a total of 100 subcategories. There are 600 images in each category, with sizes of
32 pixels in length and width. 500 images per category are used for training and 100 images
are used for validation. The VPN2016 dataset is an encrypted traffic classification dataset
that has been processed, with samples uniformly processed to a length of 784 bytes.

4.2. Evaluation Indicators

In this paper, three parameters of the model are selected to evaluate the pruning effect.
These three indicators are accuracy, parameter amount, and calculation amount, which are
explained below.

(1) Accuracy: Accuracy is calculated according to the formula (9). It is used to evaluate
the recognition performance of the model. During the pruning process, we are
concerned about the change that pruning brings to the accuracy of the model. Use the
formula (10) to calculate the change in accuracy of the model after pruning and
compression AccDrop(Acc ↓).

Base Acc =
Npos

Nall
(9)

where Npos is the number of samples that were correctly identified; Nall is the total
number of samples.

Acc Drop(Acc ↓) = Accbaseline − Accpruned (10)

where Accbaseline is benchmark model accuracy; Accpruned is model accuracy after
pruning.

(2) Parameters: The number of parameters refers to the number of parameters that the
model can train, and it can also be expressed by the size of the storage space occupied
by the actual model. Filter pruning is the filter that removes the convolutional layer,
and also removes the trainable parameters of the corresponding convolutional layer.
The amount of parameters of the ith convolutional layer is calculated according to the
formula (11).

Param = CF × (K× K× CI + 1) (11)

where CF represents the number of filters, K represents the size of the filter, and CI
represents the number of the channel.

(3) Floating-point operations (FLOPs): Floating-point operations are the number of
floating-point operations required in the model, and the calculation method is a
formula (12), which can reflect the complexity of the model. Floating-point operations
in the model are mainly addition and multiplication operations. It directly affects the
speed of the model and reflects the proportion of model speedup.

FLOPs = H ×W × CF × (2× K× K× CI) (12)

where H and W represent the height and the width of the outputting feature, respec-
tively.

After pruning according to the pruning rate P, the number of channels for outputting
the feature map becomes CF × (1− Pi), and FLOPs correspondingly decreases. The calcu-
lation is shown in Equation (13).

FPi = FOi × (1− Pi)

= H ×W × CF × (1− Pi)× (2× K× K× CI)
(13)
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If the pruning rate of each layer is specified, the compression rate of FLOPs, i.e., the
acceleration ratio Rc of the model, can be calculated using the following formula:

Rc =
∑Nl

i=1(FOi − FPi)

∑Nl
i=1 FOi

= 1− ∑Nl
i=1 H ×W × CF × (1− Pi)× (2× K× K× C1)

∑Nl
i=1 H ×W × CF × (2× K× K× CI)

= 1−
Nl

∑
i=1

(1− Pi)

(14)

In the formula, Nl is the number of convolutional layers.

4.3. Similarity Experiment

Firstly, the pruning algorithm in this paper is experimentally verified on the CIFAR-10
dataset, and the two network architectures of ResNet-56 and ResNet-110 are pruned. Prun-
ing uses three measures of similarity: Euclidean distance, difference hash, and structural
similarity. Pruning does not use the global pruning rate but sets a different pruning rate for
each layer of the network. Set two types of pruning rates: Similarity-Acc and Similarity-
Flops: The accuracy priority strategy has a low pruning rate, which can maintain the high
accuracy of the network. The compression ratio priority policy pruning rate setting is
higher, which can compress more on the network. The pruning rate is determined using the
CHIP experiment. A total of 12 sets of experiments were conducted. The pruning results
are shown in Table 2.

Table 2. Pruning results based on similar redundancy on CIFAR-10 dataset.

Model Method Base Acc (%) Pruned Acc (%) Acc ↓ (%) FLOPs ↓ (%) Param ↓ (%)

ResNet-56

Odist-Acc 93.26 93.68 −0.42 47.4 42.8
dHash-Acc 93.26 94.20 −0.94 47.4 42.8
SSIM-Acc 93.26 93.86 −0.60 47.4 42.8

Odist-Flops 93.26 92.58 +0.68 72.3 71.8
dHash-Flops 93.26 92.67 +0.59 72.3 71.8
SSIM-Flops 93.26 92.66 −0.60 72.3 71.8

ResNet-110

Odist-Acc 93.50 94.58 −1.08 52.1 48.3
dHash-Acc 93.50 94.53 −1.03 52.1 48.3
SSIM-Acc 93.50 94.35 −0.85 52.1 48.3

Odist-Flops 93.50 93.29 +0.21 71.6 68.3
dHash-Flops 93.50 93.53 −0.03 71.6 68.3
SSIM-Flops 93.50 93.37 +0.13 71.6 68.3

ResNet-56 network: Under the strategy of accuracy first, the pruning rate of model
FLOPs was 47.4% and the pruning rate of parameters was 42.8%. Based on the three
similarity calculation methods, the accuracy of the pruning model was improved. Among
them, the pruning method based on a difference hash to measure similarity has the best
pruning effect. The accuracy after pruning reached 94.2%, which improved by 0.94%
compared with the benchmark model. Under the pruning strategy with compression ratio
first, the pruning rate of model FLOPs was 72.3% and the pruning rate of parameters was
71.8%. The accuracy of the model after pruning decreased to 0.68%. After pruning, it has
little effect on the accuracy of the model.

ResNet-10 network: Under the strategy of accuracy first, the pruning rate of model
FLOPs was 52.1% and the pruning rate of parameters was 48.3%. Based on the three
similarity calculation methods, the accuracy of the pruning model was improved. Among
them, the pruning method based on Euclidean distance measurement similarity has the
best pruning effect. The accuracy after pruning reached 94.58%, which improved by 1.08%
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compared with the benchmark model. Under the pruning strategy with compression ratio
first, the pruning rate of model FLOPs was 71.6% and the pruning rate of the parameters
was 68.3%. The pruning model based on a difference hash to measure similarity still
improves the accuracy by 0.21%.

It can be seen from the experimental results that the pruning methods based on
similarity scores can restore or even improve the model’s performance through model fine-
tuning based on pruning compression. The maximum accuracy loss of the three methods
is 0.68%. It is proven that the pruning method based on similarity score can effectively
remove redundant filters, reduce model size, and maintain network recognition accuracy.

4.4. Comparative Experiments

In similarity-based pruning methods, difference hash has achieved relatively good
results in both accuracy first and compression first strategies in ResNet-56 and ResNet-110
networks. Among them, pruning based on the similarity of the difference hash method
has the best performance. In order to verify the superiority of this method, it is compared
with existing methods. The comparison results of evaluation indicators such as decreased
accuracy and FLOPS pruning rate are shown in Table 3.

Table 3. Comparison of pruning results on CIFAR-10 dataset.

Model Method Base Acc (%) Pruned Acc (%) Acc ↓ (%) FLOPs ↓ (%) Param↓ (%)

ResNet-56

L1 [14] 93.04 93.06 −0.02 27.6 13.7
HRank [19] 93.26 93.52 −0.26 29.3 16.8

GAL-0.6 [24] 93.26 93.38 −0.12 37.6 11.8
CHIP [20] 93.26 94.16 −0.90 47.4 42.8

dHash-Acc(Ours) 93.26 94.20 −0.94 47.4 42.8
GAL-0.8 [24] 93.26 91.58 +1.68 60.20 65.9

CHIP [20] 93.26 92.05 +1.21 72.3 71.8
CCEP [25] 93.48 93.72 −0.24 63.42 -

dHash-Flops(Ours) 93.26 92.67 +0.59 72.3 71.8

ResNet-110

GAL-0.5 [24] 93.50 92.74 0.76 48.5 44.8
CHIP [20] 93.50 94.44 −0.94 52.1 48.3

dHash-Acc(Ours) 93.50 94.53 −1.03 52.1 48.3
CHIP [20] 93.50 93.63 −0.13 71.6 68.3
CCEP [25] 93.68 93.90 −0.22 67.09 -

dHash-Flops(Ours) 93.50 93.53 −0.03 71.6 68.3

For ResNet-56, under the accuracy first strategy, FLOPs can achieve a pruning rate of
47.4%, Param can achieve a pruning rate of 42.8%, and the model accuracy is improved
by 0.94%. Compared with the L1, GAL-0.6, HRank, and CHIP methods, the dHash-Acc
method achieves the highest accuracy improvement (0.94%) and the highest pruning rate
(47.4% on FLOPs and 42.8% on Param). When the pruning rate is higher, the dHash-Flops
method still achieves a higher pruning rate (72.3% on FLOPs, 71.8% on Param) compared
to GAL-0.8 and CHIP and a lower accuracy decrease (0.59%).

For ResNet-110, FLOPs can achieve a pruning rate of 52.1% under the accuracy priority
strategy, while the model accuracy is improved by 1.03%. Compared with the GAL-0.5
and CHIP methods, the dHash-Acc method achieves the highest accuracy (94.53%) and the
highest pruning rate (FLOPs reached 52.1% and 48.3% in Param). Compared with CCEP,
the accuracy improvement of the dHash-Flops method is only 0.19% lower than that of
CCEP, but it has a higher FLOP pruning rate (71.6%).

5. Conclusions

In this paper, a pruning method based on feature map similarity score is proposed.
We use Euclidean distance, difference hash, and structural similarity to measure simi-
larity between convolutional layer output feature map maps. According to the “similar-
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unimportant” principle, redundant filters are removed to reduce the amount of calculation
and parameters of the model. Experimental validation was performed on the CIFAR-10
dataset. The three similarity measurement methods can guide filter pruning, and based on
model compression, the accuracy of the model can be kept within 1%. The effectiveness of
the pruning method based on similar redundancy is proven. Compared with the existing
algorithm, the pruning effect has been improved. The proposed pruning method still has
room for improvement, such as further improving the compression ratio of the model while
ensuring that the accuracy of the model decreases less. Future work will mainly focus on
these two aspects.
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