
Citation: Győrödi, C.A.; Turtureanu,

T.; Győrödi, R.Ş.; Zmaranda, D.R.

Implementing a Synchronization

Method between a Relational and a

Non-Relational Database. Big Data

Cogn. Comput. 2023, 7, 153. https://

doi.org/10.3390/bdcc7030153

Academic Editor: Alberto Abelló

Received: 16 August 2023

Revised: 13 September 2023

Accepted: 14 September 2023

Published: 18 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Implementing a Synchronization Method between a Relational
and a Non-Relational Database
Cornelia A. Győrödi * , Tudor Turtureanu, Robert Ş. Győrödi * and Doina R. Zmaranda

Department of Computers and Information Technology, University of Oradea, 410087 Oradea, Romania;
ttudor93@gmail.com (T.T.); dzmaranda@uoradea.ro (D.R.Z.)
* Correspondence: cgyorodi@uoradea.ro (C.A.G.); rgyorodi@uoradea.ro (R.Ş.G.)

Abstract: The accelerating pace of application development requires more frequent database switch-
ing, as technological advancements demand agile adaptation. The increase in the volume of data and
at the same time, the number of transactions has determined that some applications migrate from
one database to another, especially from a relational database to a non-relational (NoSQL) alternative.
In this transition phase, the coexistence of both databases becomes necessary. In addition, certain
users choose to keep both databases permanently updated to exploit the individual strengths of each
database in order to streamline operations. Existing solutions mainly focus on replication, failing to
adequately address the management of synchronization between a relational and a non-relational
(NoSQL) database. This paper proposes a practical IT approach to this problem and tests the fea-
sibility of the proposed solution by developing an application that maintains the synchronization
between a MySQL database as a relational database and MongoDB as a non-relational database. The
performance and capabilities of the solution are analyzed to ensure data consistency and correctness.
In addition, problems that arose during the development of the application are highlighted and
solutions are proposed to solve them.

Keywords: NoSQL; MySQL; MongoDB; database synchronization; database replication

1. Introduction

Databases play an essential role in managing and storing data in an application. Two
of the most popular and widely used types of databases are relational and non-relational.

Relational databases are effective in handling structured data and complex relation-
ships between tables. But, because relational databases have a more restrictive and rigid
data model and, sometimes, some limitations when scaling, a different approach to data
storage, namely NoSQL (Not Only SQL (Structured Query Language)) databases, has
emerged [1–3]. Unlike SQL databases, NoSQL databases are not based on tables, using doc-
uments or other models, therefore being more flexible and having capabilities of handling
large volumes of unstructured or semi-structured data [4,5].

Therefore, to cope with the large volume of data, many companies that formerly used
only relational databases in their operations have decided to migrate to NoSQL databases
to solve certain operations that require time [6].

By synchronizing these two types of databases, one can benefit from the advantages
of both [7]. As stated in [8], in massive scale and high concurrency applications like search
engines relational databases are complemented by specifically designed NoSQL databases.
Although these two types of databases have different approaches to data storage and access,
there are situations in practice where migration or replication is necessary to exploit the
specific capabilities of each database [6].

By synchronizing a relational database with a non-relational database, one can use
the scalability and performance capabilities of the non-relational database for specific
operations, such as searching or displaying data, while the relational database can be

Big Data Cogn. Comput. 2023, 7, 153. https://doi.org/10.3390/bdcc7030153 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7030153
https://doi.org/10.3390/bdcc7030153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-7815-4355
https://orcid.org/0000-0002-7027-5750
https://orcid.org/0000-0002-3344-5714
https://doi.org/10.3390/bdcc7030153
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7030153?type=check_update&version=1

Big Data Cogn. Comput. 2023, 7, 153 2 of 17

used for more complex query operations or to ensure data integrity. For example, in
a typical sales application, a relational database could represent the best solution for
storing data about products, users, orders, etc. But, if the application has, for example, a
recommendation system that wants to suggest similar products available after a search, a
non-relational database that has the ability to connect nodes together for faster navigation
could allow fast search of chained products; moreover, it could provide short search time
between objects without links when used in searches for products by different keywords. In
such an approach, synchronization between the two databases becomes an important issue.

Another situation is the transition from one model to another. Sometimes an organiza-
tion may have an existing relational database and wants to move to a non-relational model
to meet scalability or flexibility needs. By synchronizing these two databases, data and
applications can be gradually transferred to the new non-relational database without affect-
ing functionality and existing users. This process has to allow for a smoother transition
and reduces the risks associated with completely changing the data infrastructure.

In this context, the paper proposes a practical IT approach to this problem and tests
the feasibility of the proposed solution by developing an application that maintains the
synchronization between the MySQL database as a relational database and MongoDB as a
non-relational database.

The paper is organized as follows: The Section 1 contains a short introduction empha-
sizing the motivation of the paper, followed by Section 2 which reviews related work. The
description of the implementation, the solution architecture, and the system configuration
used in this work are described in Section 3. The experimental results and their analysis
regarding the latency, data consistency, and operations replication performance on the
two databases in an application that uses large amounts of data are presented in Section 4.
Finally, some conclusions regarding the analysis are revealed.

2. Related Work

Many studies have been carried out in recent years on replication solutions of a
relational database with a non-relational database, but search efforts have produced no
works specifically addressing the synchronization of a relational database with a non-
relational database.

In [4], the authors address MySQL and Elasticsearch’s performance as databases in
the case where an application’s data are replicated. In [9], a way to integrate two relational
databases for the same application is presented. The method implies translating XQuery
queries into a ‘mediator’ program which then applies these queries to the databases.

Some papers address the ways to preserve relationships when inserting data into a
non-relational database. In [6], a solution is provided to process the relational database
schema, which is to insert it into a columnar non-relational database. In [10], the authors
define solutions to map relations from a relational database to a non-relational one. They go
through all types of relationships, one-to-one, one-to-many and many-to-many, and explain
the construction of the format of the data using JSON to achieve an equivalent structure in
the non-relational database. In [11], an alternative mapping solution is proposed, suggest-
ing the utilization of a list of IDs within the NoSQL database field to establish associations
between entities in cases of many-to-many relationships.

In [12], the authors describe the synchronization of two databases in a heterogeneous
environment, however, the authors talk about an environment that contains two relational
databases: Oracle and MSSQL. The method implies that changes in one database are
captured, processed, and then applied in the other database. After that, a correlation
between the data types and functions is made for the two databases. Here, capturing
statements to a database is achieved by intercepting the SQL code.

The work presented in [13] details a functional system that replicates a MySQL
database to a MongoDB database. Although it is a comprehensive solution that also
addresses more advanced mechanisms than CRUD operations, such as triggers, indexes,

Big Data Cogn. Comput. 2023, 7, 153 3 of 17

and integrity constraints, data migration solely facilitates the unidirectional replication of
data. Synchronization requires changes to flow in real time and in both directions.

Various papers related to non-relational databases were found. Reference [14] de-
scribes a pipeline to collect, prepare, and store Big Data. In [15], the authors show how Big
Data analysis helps companies make more informed decisions, based on the data that are
produced and what tools can be used for the purpose of analysis. In [16], the advantages
of using a non-relational database when developing an application are presented. It also
highlighted why non-relational databases will be used more and more in the future.

In this idea, the method of synchronization between MySQL as a relational database
and MongoDB as a non-relational database proposed in this paper becomes a promising
research direction, due to the increasing amount of data to be processed and queried as fast
as possible.

3. Description of the Implementation

The testing architecture’s centerpiece is a Java-based application that executes syn-
chronization logic. MySQL [17] was used as a relational database and MongoDB [18] was
used as a non-relational database. MongoDB is the most popular type of NoSQL database,
with a continuous and steady rise in popularity since its launch [7]. It is a cross-platform,
open-source NoSQL database that is document-based (which is written in C++), completely
schema-free, and manages JSON-style documents [16].

During the actual implementation, Debezium [19] was used, a CDC (Change Data
Capture) platform that looks in database logs, to detect changes, and then writes the details
of the changes to a JSON that is then put on a Kafka [20] topic. Synchronization logic,
implemented in Java [21], implies reading the Kafka messages and applying the changes
to the databases. For portability, Kafka [22], Debezium [23], and their dependencies are
installed as Docker [24] images.

3.1. The Solution Architecture

The proposed solution has the following components:

- The Java application, which has the role of receiving and processing messages through
Kafka queues. The processing consists of reading the message, determining the
operation type from the op field, then applying an insert, update, or delete using the
data from the data field. The application’s connections are with Apache Kafka [22],
MongoDB [18] and MySQL [17].

- Apache Kafka, whose role is primarily to provide an environment for transmitting
messages in a robust way, in which information is not lost and a large volume of
data can be processed. Through Debezium [23] connectors, changes in databases are
detected and messages are posted on Kafka topics.

- The relational database, MySQL [17] to which the Java [21] application connects, the
Debezium connector for MySQL and, in a business environment, a client application
that makes changes to the data.

- The non-relational database, MongoDB, to which the Java application connects the
Debezium connector for MongoDB and, in a business environment, a client application
that makes changes to the data.

These components and connections are highlighted in Figure 1.

Big Data Cogn. Comput. 2023, 7, 153 4 of 17Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 4 of 17

Figure 1. Application architecture.

3.2. Application Description
The Java synchronization application is a Spring Boot-based application that uses

Spring Data and the Spring Boot Starter Web package, along with Kafka Streams and
Jackson Core. When the application is started, the Kafka topics are retrieved from Kafka,
one topic corresponds to one table or collection. A processor for each topic is instantiated,
and the processor then listens for messages on its topic. When a message is consumed, the
payload is deserialized, the operation is detected as Debezium writes it on the message, and
depending on that, that operation is then reapplied to the other database through the
persistence layer.

If the operation fails, a retry mechanism will re-attempt it a configurable number of
times using exponential backoff as a backoff strategy. A common reason for failure is
when trying to synchronize two or more inserts that have a foreign key constraint between
each other. If the dependent row is inserted before the row it is depending on, the
application will throw a ConstraintViolationException. Notable checks are made both in the
processor and in the persistence layer for redundant operations. For example, it will not
insert an already inserted row, delete an already deleted row or update a row using its
current data. These checks are carried out to detect and avoid infinite loops. In case an
application erroneously inserts into MongoDB an entry that has a primary key that
already exists in that table, the operation will fail due to a ConstraintViolationException, and
the retry mechanism will eventually stop. The same case does not apply to MySQL, since
the operation will fail before the insert is executed.

3.2.1. Primary Key Synchronization Problem
The problem involves the databases that are kept in synchronization, which face a

conflict when they simultaneously insert a record with the same ID but different data. This
creates a collision and leads to errors, as the system cannot distinguish between the two
entries. The system needs to ensure that the same ID is not used to represent different
records in the two databases.

Figure 1. Application architecture.

3.2. Application Description

The Java synchronization application is a Spring Boot-based application that uses
Spring Data and the Spring Boot Starter Web package, along with Kafka Streams and
Jackson Core. When the application is started, the Kafka topics are retrieved from Kafka,
one topic corresponds to one table or collection. A processor for each topic is instantiated,
and the processor then listens for messages on its topic. When a message is consumed, the
payload is deserialized, the operation is detected as Debezium writes it on the message,
and depending on that, that operation is then reapplied to the other database through the
persistence layer.

If the operation fails, a retry mechanism will re-attempt it a configurable number of
times using exponential backoff as a backoff strategy. A common reason for failure is when
trying to synchronize two or more inserts that have a foreign key constraint between each
other. If the dependent row is inserted before the row it is depending on, the application
will throw a ConstraintViolationException. Notable checks are made both in the processor
and in the persistence layer for redundant operations. For example, it will not insert an
already inserted row, delete an already deleted row or update a row using its current
data. These checks are carried out to detect and avoid infinite loops. In case an application
erroneously inserts into MongoDB an entry that has a primary key that already exists in that
table, the operation will fail due to a ConstraintViolationException, and the retry mechanism
will eventually stop. The same case does not apply to MySQL, since the operation will fail
before the insert is executed.

3.2.1. Primary Key Synchronization Problem

The problem involves the databases that are kept in synchronization, which face a
conflict when they simultaneously insert a record with the same ID but different data. This
creates a collision and leads to errors, as the system cannot distinguish between the two
entries. The system needs to ensure that the same ID is not used to represent different
records in the two databases.

The first solution involves using Globally Unique Identifiers (GUIDs) for all IDs in the
databases. GUIDs are 128-bit numbers that are designed to be unique across all systems,

Big Data Cogn. Comput. 2023, 7, 153 5 of 17

thus practically eliminating the risk of duplicate IDs. Since the two databases would now
generate their own unique IDs, the chance of a collision between them would be minimized.

The second solution, assigning an ID range to each database involves allocating specific
ranges of IDs to each database, ensuring that they will not overlap. For instance, the first
database could use IDs from 1 to 1000, while the second uses 1001 to 2000.

The third solution involves configuring each database to increment its IDs by the same
amount but starting them at different values, such as even numbers for one database and
odd numbers for the other.

Of the three solutions, assigning GUIDs to all IDs is the most attractive option. While
it may entail more storage and some complexity in implementation, it offers a scalable
and robust solution. In contrast, the ID range solution would require database clients to
coordinate with the application for ID ranges, adding unnecessary complexity. The incre-
menting solution, although elegant, requires extra configuration. The first two solutions
only work with integer IDs. Using GUIDs provides the most reliable way to ensure that
both databases can insert unique records without collisions, making it the best solution.

3.2.2. Update Collision Resolution

Another situation where two operations would cause ambiguous results is when an
update in one of the databases is made at the same time as an update in the other database
on the same row. One strategy could be ‘last one wins’, where the update that has the
latest timestamp is persisted. Another strategy is to ‘merge effects’, which only applies
to updating amounts. For example, in an account balance, one update adds USD 10 and
another adds USD 20. After the collision is detected and resolved, the total amount should
be USD 30 higher than before the updates. We chose the first strategy for our application.

3.3. System Configuration

For the whole ensemble to work, some notable configurations need to be made. First,
MongoDB has to run as a replica set, or it will not write its changes to the oplog. This is
important as Debezium looks for changes in Mongo’s oplog. For Debezium to have access
to MySQL, it will need a user with all read rights. When creating the Debezium workers
using Kafka Connect, it will need the name of the database, and the prefix it will use
to name topics. For the MongoDB connector, the capture.mode setting needs to be set to
change_streams_update_full_with_pre_image or else the messages for updates will not contain
both the data before and after the update. This is important when avoiding infinite loops.

The structure of the relational database used in this paper is composed of three entities:
flight, ticket, and passenger, as shown in Figure 2.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 6 of 17

Figure 2. MySQL database structure.

For MongoDB, the structure is described in Figure 3.

Figure 3. MongoDB database structure.

4. Method and Testing Architecture
To test the application, two sets of REST APIs were used: one for MongoDB and one

for MySQL. Several aspects of the application were tested: synchronization, latency,
performance in batch operations. How long it takes to perform the synchronization was
measured according to the number of processed entities. The ability to synchronize tables
bound by FOREIGN KEY constraints was also tested. When changes are applied to the
same table, correct succession is assured by the order of logs in each databases’ query log
file, which is read by Debezium and because Kafka consumers always read messages from
a topic in order. The mechanism described in Application description section guarantees
that entities are inserted into MySQL in the correct sequence and that no data are lost. If a
row that has missing dependencies is inserted, this throws an error which is handled by
waiting for an amount of time for the dependencies to be inserted by the other threads
and then the insertion is retried. For each test, the databases were reset, i.e., all data were
deleted. For modification and deletion, the tests started from the same state. Data for the
tests were generated using the com.github.java.faker library.

The test runs were triggered by performing a GET on the tests’ corresponding
endpoint. After performing tests for MongoDB, the databases were purged.

Figure 2. MySQL database structure.

For MongoDB, the structure is described in Figure 3.

Big Data Cogn. Comput. 2023, 7, 153 6 of 17

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 6 of 17

Figure 2. MySQL database structure.

For MongoDB, the structure is described in Figure 3.

Figure 3. MongoDB database structure.

4. Method and Testing Architecture
To test the application, two sets of REST APIs were used: one for MongoDB and one

for MySQL. Several aspects of the application were tested: synchronization, latency,
performance in batch operations. How long it takes to perform the synchronization was
measured according to the number of processed entities. The ability to synchronize tables
bound by FOREIGN KEY constraints was also tested. When changes are applied to the
same table, correct succession is assured by the order of logs in each databases’ query log
file, which is read by Debezium and because Kafka consumers always read messages from
a topic in order. The mechanism described in Application description section guarantees
that entities are inserted into MySQL in the correct sequence and that no data are lost. If a
row that has missing dependencies is inserted, this throws an error which is handled by
waiting for an amount of time for the dependencies to be inserted by the other threads
and then the insertion is retried. For each test, the databases were reset, i.e., all data were
deleted. For modification and deletion, the tests started from the same state. Data for the
tests were generated using the com.github.java.faker library.

The test runs were triggered by performing a GET on the tests’ corresponding
endpoint. After performing tests for MongoDB, the databases were purged.

Figure 3. MongoDB database structure.

4. Method and Testing Architecture

To test the application, two sets of REST APIs were used: one for MongoDB and
one for MySQL. Several aspects of the application were tested: synchronization, latency,
performance in batch operations. How long it takes to perform the synchronization was
measured according to the number of processed entities. The ability to synchronize tables
bound by FOREIGN KEY constraints was also tested. When changes are applied to the
same table, correct succession is assured by the order of logs in each databases’ query log
file, which is read by Debezium and because Kafka consumers always read messages from
a topic in order. The mechanism described in Application description section guarantees
that entities are inserted into MySQL in the correct sequence and that no data are lost. If
a row that has missing dependencies is inserted, this throws an error which is handled
by waiting for an amount of time for the dependencies to be inserted by the other threads
and then the insertion is retried. For each test, the databases were reset, i.e., all data were
deleted. For modification and deletion, the tests started from the same state. Data for the
tests were generated using the com.github.java.faker library.

The test runs were triggered by performing a GET on the tests’ corresponding endpoint.
After performing tests for MongoDB, the databases were purged.

All the tests presented were conducted on a computer with the following configura-
tion: Windows 10 Pro 64-bit, Intel Core processor i9-9900K CPU@3.60 GHz, 16 GB RAM,
and a 512 GB SSD being used for MySQL version 8.0.32 and for MongoDB version 6.0.4.
The networking hardware is not specified since all the systems were deployed on the
same machine.

4.1. Latency Testing

Data latency was measured by determining the time that elapsed from the time an
insert was made in one database to the time that the change arrived in the other database.
Tests were performed on both sides.

For a change to be carried out from MongoDB to MySQL, the average time in millisec-
onds obtained by repeating, is 89 ms; the other way, from MySQL to MongoDB, it is 93.5 ms.
The time obtained as a result of the individual tests performed is shown in Figure 4. For
the times obtained, which are under 100 milliseconds, it can be said that no latencies that
can be felt by a user were introduced for the vast majority of existing applications.

Big Data Cogn. Comput. 2023, 7, 153 7 of 17

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 7 of 17

All the tests presented were conducted on a computer with the following configuration:
Windows 10 Pro 64-bit, Intel Core processor i9-9900K CPU@3.60 GHz, 16 GB RAM, and a 512
GB SSD being used for MySQL version 8.0.32 and for MongoDB version 6.0.4. The networking
hardware is not specified since all the systems were deployed on the same machine.

4.1. Latency Testing
Data latency was measured by determining the time that elapsed from the time an

insert was made in one database to the time that the change arrived in the other database.
Tests were performed on both sides.

For a change to be carried out from MongoDB to MySQL, the average time in
milliseconds obtained by repeating, is 89 ms; the other way, from MySQL to MongoDB, it
is 93.5 ms. The time obtained as a result of the individual tests performed is shown in
Figure 4. For the times obtained, which are under 100 milliseconds, it can be said that no
latencies that can be felt by a user were introduced for the vast majority of existing
applications.

Figure 4. Insert synchronization delay for both directions.

4.2. Data Consistency
In the process of synchronizing the two databases, avoiding constraint errors,

especially the foreign key ones, in the relational database represents a major issue.
The proper functioning of this mechanism was tested by inserting rows in the

passenger table, rows in the flight table, and rows in the ticket table. The ticket table contains
foreign keys that refer to the primary keys to the passenger and flight tables. Starting with empty
databases, the data were inserted initially into MongoDB, then the existence of the data in
MySQL was checked by checking the foreign key constraints, and the delay was recorded.

For each table, the primary keys were assigned sequentially to the to-be-inserted entities
such that no primary key constraint violations would arise during testing: from 1 to n, where
n is the number of rows to be inserted for each test. The tables were purged between tests.

This test demonstrates the ability to keep the data consistent by avoiding foreign key
constraint violations. Moreover, this test also measures the performance when inserting
multiple rows.

First, it was observed that all the rows inserted in MongoDB were also inserted into
MySQL, there were no missing data. Some rows from the tickets table were tentatively
inserted before the rows it depended on. The retry mechanism handled this successfully.
Analyzing the data in Figure 5, it can be seen that for under 100 rows for each table, the

Figure 4. Insert synchronization delay for both directions.

4.2. Data Consistency

In the process of synchronizing the two databases, avoiding constraint errors, espe-
cially the foreign key ones, in the relational database represents a major issue.

The proper functioning of this mechanism was tested by inserting rows in the passenger
table, rows in the flight table, and rows in the ticket table. The ticket table contains foreign
keys that refer to the primary keys to the passenger and flight tables. Starting with empty
databases, the data were inserted initially into MongoDB, then the existence of the data in
MySQL was checked by checking the foreign key constraints, and the delay was recorded.

For each table, the primary keys were assigned sequentially to the to-be-inserted
entities such that no primary key constraint violations would arise during testing: from
1 to n, where n is the number of rows to be inserted for each test. The tables were purged
between tests.

This test demonstrates the ability to keep the data consistent by avoiding foreign key
constraint violations. Moreover, this test also measures the performance when inserting
multiple rows.

First, it was observed that all the rows inserted in MongoDB were also inserted into
MySQL, there were no missing data. Some rows from the tickets table were tentatively
inserted before the rows it depended on. The retry mechanism handled this successfully.
Analyzing the data in Figure 5, it can be seen that for under 100 rows for each table, the
sync time is similar and below one second. For a number of rows greater than 100, the
delays seem to grow linearly.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 17

sync time is similar and below one second. For a number of rows greater than 100, the
delays seem to grow linearly.

Figure 5. Time until the two databases are in sync after inserting multiple rows in different tables
bound by FK constraints.

4.3. Operation Replication Performance
Performance was tested for the following operations: insert, update and delete. The tests

were two-way, i.e., the performance of replicating changes from MongoDB to MySQL was
measured as well as the performance of replicating changes from MySQL to MongoDB. All
tests were performed with 6 data sets. The essential difference between the data sets was given
by the number of records. The tests were carried out with 30, 60, 100, 500, 1000 and 2000
records, respectively. In the code, these values are found in an array called testSizes. The testing
procedure is detailed in Algorithms 1–3 for each of the operations tested. The tests follow the
same pattern: the data are prepared, the operation is executed in the first database, and a timer
is started. When the synchronization is complete, as noted by a continuous polling of the
second database, the timer is stopped and the result is printed. Basically, the time-to-sync that
is recorded is the time between the end of the execution of an operation in the first database
and the moment its effect is mirrored in the second database. The polling interval is set to 20
ms using the static variable, POLLING_SLEEP_TIME_IN_MS. The tests were run multiple times
to ensure that the results were consistent.

4.3.1. Insert Operation
The insertion operation for MySQL and MongoDB was performed as shown in

Algorithm 1.

Algorithm 1. Insert operations.
MongoDB Insert Operation

@GetMapping(“/testMongoBulkInsert”)
 String testMongoBulkInsert() throws InterruptedException {
 // First, we prepare the data to be inserted into MongoDB
 List<Map<String, Object>> objects = new ArrayList<>();
 int id = 0;
 for (int i = 0; i < testSizes.length; i++) {
 objects = new ArrayList<>();
 for (int j = 0; j < testSizes[i]; j++) {
 id++;
 Map<String, Object> entity = new HashMap<>();

Figure 5. Time until the two databases are in sync after inserting multiple rows in different tables
bound by FK constraints.

Big Data Cogn. Comput. 2023, 7, 153 8 of 17

4.3. Operation Replication Performance

Performance was tested for the following operations: insert, update and delete. The
tests were two-way, i.e., the performance of replicating changes from MongoDB to MySQL
was measured as well as the performance of replicating changes from MySQL to MongoDB.
All tests were performed with 6 data sets. The essential difference between the data sets
was given by the number of records. The tests were carried out with 30, 60, 100, 500,
1000 and 2000 records, respectively. In the code, these values are found in an array called
testSizes. The testing procedure is detailed in Algorithms 1–3 for each of the operations
tested. The tests follow the same pattern: the data are prepared, the operation is executed
in the first database, and a timer is started. When the synchronization is complete, as
noted by a continuous polling of the second database, the timer is stopped and the result
is printed. Basically, the time-to-sync that is recorded is the time between the end of
the execution of an operation in the first database and the moment its effect is mirrored
in the second database. The polling interval is set to 20 ms using the static variable,
POLLING_SLEEP_TIME_IN_MS. The tests were run multiple times to ensure that the
results were consistent.

4.3.1. Insert Operation

The insertion operation for MySQL and MongoDB was performed as shown in
Algorithm 1.

Algorithm 1. Insert operations.

MongoDB Insert Operation

@GetMapping(“/testMongoBulkInsert”)
String testMongoBulkInsert() throws InterruptedException {

// First, we prepare the data to be inserted into MongoDB
List<Map<String, Object>> objects = new ArrayList<>();
int id = 0;
for (int i = 0; i < testSizes.length; i++) {

objects = new ArrayList<>();
for (int j = 0; j < testSizes[i]; j++) {

id++;
Map<String, Object> entity = new HashMap<>();
entity.put(“_id”, id);
entity.put(“name”, faker.name().firstName());
entity.put(“surname”, faker.name().lastName());
entity.put(“SSN”, faker.number().digits(9));
entity.put(“age”, faker.number().numberBetween(1,80));

objects.add(entity);
}
// Here, we insert the data using bulk operations
BulkOperations bulkOps = mongoTemplate.bulkOps(BulkMode.UNORDERED,

“passenger”);
for (Map<String, Object> document: objects) {

bulkOps.insert(document);
}
bulkOps.execute();
// Here, we poll MySQL to detect the synchronization timing
long start = System.currentTimeMillis();
String query = “select count(*) from” + “passenger”;
Integer res = 0;
while (res != finalCount[i]) {

Thread.sleep(POLLING_SLEEP_TIME_IN_MS);

Big Data Cogn. Comput. 2023, 7, 153 9 of 17

Algorithm 1. Cont.

res = jdbcTemplate.queryForObject(query, Integer.class);
if (res == null) {

res = 0;
}

}
System.out.println(“done” + testSizes[i] + “in” + (System.currentTimeMillis() − start));

}
return “done”;

}

MySQL Insert Operation

@GetMapping(“/testSqlBulkInsert”)
String testSqlBulkInsert() throws InterruptedException {

// First, we prepare the data to be inserted into MySQL
List<Object[]> objects = new ArrayList<>();
int id = 0;
for (int i = 0; i < testSizes.length; i++) {

objects = new ArrayList<>();
for (int j = 0; j < testSizes [i]; j++) {

id++;
Object[] o = new Object[5];
o[0] = id;
o[1] = faker.name().firstName();
o[2] = faker.name().lastName();
o[3] = faker.number().digits(9);
o[4] = faker.number().numberBetween(1, 80);
objects.add(o);

}
// Here, we insert the data into MySQL using a batch statement
String sql = “INSERT INTO passenger (id, name, surname, ssn, age) VALUES (?, ?, ?, ?,

?)”;
jdbcTemplate.batchUpdate(sql, objects);
// Here, we poll MongoDB to detect the synchronization timing
long start = System.currentTimeMillis();
Query q = new Query();
long count = mongoTemplate.count(q, “passenger”);
while (count != finalCount[i]) {

Thread.sleep(POLLING_SLEEP_TIME_IN_MS);
count = mongoTemplate.count(q, “passenger”);

}
System.out.println(“done” + testSizes[i] + “in” + (System.currentTimeMillis() − start));

}
return “done”;

}

Analyzing the results for the insert operation shown in Figure 6, it can be noted that
the time needed to synchronize the two databases is similar in both parts; even if the
discrepancy increases with the number of entries, it is not an impediment to the proper
operation of an application that uses the synchronization system described in this paper.
For a small number of entries, i.e., 30 or 60, the times are similar. This shows us that
there is a minimum required processing time; even if the latency for one input is under
100 milliseconds, from a certain number of inserted records, the processing time grows linearly.

Big Data Cogn. Comput. 2023, 7, 153 10 of 17

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 10 of 17

 return “done”;
 }

Analyzing the results for the insert operation shown in Figure 6, it can be noted that
the time needed to synchronize the two databases is similar in both parts; even if the
discrepancy increases with the number of entries, it is not an impediment to the proper
operation of an application that uses the synchronization system described in this paper.
For a small number of entries, i.e., 30 or 60, the times are similar. This shows us that there
is a minimum required processing time; even if the latency for one input is under 100
milliseconds, from a certain number of inserted records, the processing time grows
linearly.

Figure 6. Execution times for the insert operation showing the source and destination of the change.

The ratio between the time to synchronization and the number of rows/entries, as can
be seen in Figure 7, decreases depending on the number of entries. For a few entries, we
have an unfavorable ratio and then the performance increases and the ratio reach a value
of 2.9 ms/entry for MongoDB to MySQL replication, and for MySQL to MongoDB
replication, the ratio reaches a value of 4.3 ms/entry.

Figure 6. Execution times for the insert operation showing the source and destination of the change.

The ratio between the time to synchronization and the number of rows/entries, as can
be seen in Figure 7, decreases depending on the number of entries. For a few entries, we
have an unfavorable ratio and then the performance increases and the ratio reach a value of
2.9 ms/entry for MongoDB to MySQL replication, and for MySQL to MongoDB replication,
the ratio reaches a value of 4.3 ms/entry.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 10 of 17

 return “done”;
 }

Analyzing the results for the insert operation shown in Figure 6, it can be noted that
the time needed to synchronize the two databases is similar in both parts; even if the
discrepancy increases with the number of entries, it is not an impediment to the proper
operation of an application that uses the synchronization system described in this paper.
For a small number of entries, i.e., 30 or 60, the times are similar. This shows us that there
is a minimum required processing time; even if the latency for one input is under 100
milliseconds, from a certain number of inserted records, the processing time grows
linearly.

Figure 6. Execution times for the insert operation showing the source and destination of the change.

The ratio between the time to synchronization and the number of rows/entries, as can
be seen in Figure 7, decreases depending on the number of entries. For a few entries, we
have an unfavorable ratio and then the performance increases and the ratio reach a value
of 2.9 ms/entry for MongoDB to MySQL replication, and for MySQL to MongoDB
replication, the ratio reaches a value of 4.3 ms/entry.

Figure 7. Ratio of time over number of rows for insert.

4.3.2. Update Operation

The update operation for MySQL and MongoDB was performed as shown in
Algorithm 2.

Big Data Cogn. Comput. 2023, 7, 153 11 of 17

Algorithm 2. Update operations.

MongoDB Update Operation

@GetMapping(“/testMongoUpdate”)
String testMongoUpdate() throws InterruptedException {

// First, we prepare the data to be updated into MongoDB
int id = 0;
for (int i = 0; i < testSizes.length; i++) {

BulkOperations bulkOps = mongoTemplate.bulkOps(BulkMode.UNORDERED,
“passenger”);

for (int j = 0; j < testSizes[i]; j++) {
id++;
Query query = new Query();
query.addCriteria(Criteria.where(“_id”).is(id));
Update update = new Update();
update.set(“name”, “Anthony”);
bulkOps.updateOne(query, update);

}
// Here, we execute the update in MongoDB using a batch statement
bulkOps.execute();
// Here, we poll MongoDB to detect the synchronization timing
long start = System.currentTimeMillis();
String query = “select count(*) from” + “passenger where name = “Anthony”;
Integer res = 0;
while (res != finalCount[i]) {

Thread.sleep(POLLING_SLEEP_TIME_IN_MS);
res = jdbcTemplate.queryForObject(query, Integer.class);
if (res == null) {

res = 0;
}

}
System.out.println(“done” + testSizes[i] + “in” + (System.currentTimeMillis() − start));

}
return “done”;

}

MySQL Update Operation

@GetMapping(“/testSqlUpdate”)
String testSqlUpdate() throws InterruptedException {

// First, we prepare the data to be updated in MySQL
for (int j = 0; j < testSizes.length; j++) {

int[] wj = new int[]{j}; // only final(non-modifiable) variables allowed in lambdas, we
used a single value array to bypass the restriction

String sql = “UPDATE passenger SET name = ? WHERE id = ?”;
// Here, we update the data in MySQL using a batch statement
jdbcTemplate.batchUpdate(sql, new BatchPreparedStatementSetter() {

@Override
public void setValues(PreparedStatement preparedStatement, int i) throws

SQLException {
int myId;
if (wj[0] == 0) {

myId = i + 1;
} else {

myId = finalCount[wj[0] - 1] + i + 1;
}
preparedStatement.setString(1, “Kelly”);
preparedStatement.setInt(2, myId);

}

@Override

Big Data Cogn. Comput. 2023, 7, 153 12 of 17

Algorithm 2. Cont.

public int getBatchSize() {
return testSizes[wj[0]];

}
});
// Here, we poll MongoDB to detect the synchronization timing
long start = System.currentTimeMillis();
Query q = new Query(Criteria.where(“name”).is(“Kelly”));

long count = mongoTemplate.count(q, “passenger”);
while (count != finalCount[j]) {

Thread.sleep(POLLING_SLEEP_TIME_IN_MS);
count = mongoTemplate.count(q, “passenger”);

}
System.out.println(“done” + testSizes[j] + “in” + (System.currentTimeMillis() − start));

}
return “done”;

}

When using MongoDB, there are different methods for modifying one or more items,
as well as inserting them. Multiple entries should be updated in batch. We constructed a
query that does this. First, we add a criterion to the query, functioning as a filter, through
which the elements to be modified are obtained, then we set the name of the field to be
updated and provide the update value. Another approach can be seen in [25].

Analyzing the results shown in Figure 8, it can be observed that these are very similar
to those of the insert operation. The ratio between the time to synchronization and the
number of entries also follow the pattern seen in measuring the insert synchronization
performance (Figure 9).

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 12 of 17

 } else {
 myId = finalCount[wj[0] - 1] + i + 1;
 }
 preparedStatement.setString(1, “Kelly”);
 preparedStatement.setInt(2, myId);
 }

 @Override
 public int getBatchSize() {
 return testSizes[wj[0]];
 }
 });
 // Here, we poll MongoDB to detect the synchronization timing
 long start = System.currentTimeMillis();
 Query q = new Query(Criteria.where(“name”).is(“Kelly”));

 long count = mongoTemplate.count(q, “passenger”);
 while (count != finalCount[j]) {
 Thread.sleep(POLLING_SLEEP_TIME_IN_MS);
 count = mongoTemplate.count(q, “passenger”);
 }
 System.out.println(“done” + testSizes[j] + “in” + (System.currentTimeMillis() − start));
 }
 return “done”;
 }

When using MongoDB, there are different methods for modifying one or more items,
as well as inserting them. Multiple entries should be updated in batch. We constructed a
query that does this. First, we add a criterion to the query, functioning as a filter, through
which the elements to be modified are obtained, then we set the name of the field to be
updated and provide the update value. Another approach can be seen in [25].

Analyzing the results shown in Figure 8, it can be observed that these are very similar
to those of the insert operation. The ratio between the time to synchronization and the
number of entries also follow the pattern seen in measuring the insert synchronization
performance (Figure 9).

Figure 8. Execution times for the update operation showing the source and destination of the change. Figure 8. Execution times for the update operation showing the source and destination of the change.

Big Data Cogn. Comput. 2023, 7, 153 13 of 17Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 13 of 17

Figure 9. Ratio of time over number of rows for update.

4.3.3. Delete Operation
The delete operation for MySQL and MongoDB was performed as shown in

Algorithm 3.

Algorithm 3. Delete operation.
MongoDB Delete Operation

@GetMapping(“/testMongoDelete”)
String testMongoDelete() throws InterruptedException {
 // First, we prepare the data to be deleted from MongoDB

 int id = 0;
 List<Integer> ids;
 for (int i = 0; i < testSizes.length; i++) {
 ids = new ArrayList<>();
 for (int j = 1; j <= testSizes[i]; j++) {
 id++;
 ids.add(id);
 }
 Query query = Query.query(Criteria.where(“_id”).in(ids));
 // Here, we delete the data from MongoDB using a single query
 mongoTemplate.remove(query, “passenger”);

 long start = System.currentTimeMillis();
 // Here, we poll MySQL to detect the synchronization timing
 String queryString = “select count(*) from” + “passenger”;
 Integer res = −1;
 while (res != finalCountForDelete[i]) {
 Thread.sleep(POLLING_SLEEP_TIME_IN_MS);
 res = jdbcTemplate.queryForObject(queryString, Integer.class);
 if (res == null) {
 res = 0;
 }
 }
 System.out.println(“done” + testSizes[i] + “in” + (System.currentTimeMillis() − start));
 }
 return “done”;
 }

MySQL Delete Operation
 @GetMapping(“/testSqlDelete”)

String testSqlDelete() throws InterruptedException {
 // First, we prepare the data to be deleted from MySQL

Figure 9. Ratio of time over number of rows for update.

4.3.3. Delete Operation

The delete operation for MySQL and MongoDB was performed as shown in Algorithm 3.

Algorithm 3. Delete operation.

MongoDB Delete Operation

@GetMapping(“/testMongoDelete”)
String testMongoDelete() throws InterruptedException {

// First, we prepare the data to be deleted from MongoDB
int id = 0;
List<Integer> ids;
for (int i = 0; i < testSizes.length; i++) {

ids = new ArrayList<>();
for (int j = 1; j <= testSizes[i]; j++) {

id++;
ids.add(id);

}
Query query = Query.query(Criteria.where(“_id”).in(ids));
// Here, we delete the data from MongoDB using a single query
mongoTemplate.remove(query, “passenger”);

long start = System.currentTimeMillis();
// Here, we poll MySQL to detect the synchronization timing
String queryString = “select count(*) from” + “passenger”;
Integer res = −1;
while (res != finalCountForDelete[i]) {

Thread.sleep(POLLING_SLEEP_TIME_IN_MS);
res = jdbcTemplate.queryForObject(queryString, Integer.class);
if (res == null) {

res = 0;
}

}
System.out.println(“done” + testSizes[i] + “in” + (System.currentTimeMillis() − start));

}
return “done”;

}

Big Data Cogn. Comput. 2023, 7, 153 14 of 17

Algorithm 3. Cont.

MySQL Delete Operation

@GetMapping(“/testSqlDelete”)
String testSqlDelete() throws InterruptedException {

// First, we prepare the data to be deleted from MySQL
for (int j = 0; j < testSizes.length; j++) {

String sql = “DELETE FROM passenger WHERE id = ?”;
int[] wj = new int[]{j}; // only final(non-modifiable) variables allowed in lambdas, we

used a single value array to bypass the restriction
// Here, we delete the data from MySQL using a batch statement
jdbcTemplate.batchUpdate(sql, new BatchPreparedStatementSetter() {

@Override
public void setValues(PreparedStatement preparedStatement, int i) throws

SQLException {
int myId;
if (wj[0] == 0) {

myId = i + 1;
} else {

myId = finalCount[wj[0] − 1] + i + 1;
}
preparedStatement.setInt(1, myId);

}
@Override
public int getBatchSize() {

return testSizes[wj[0]];
}

});
// Here, we poll MongoDB to detect the synchronization timing
long start = System.currentTimeMillis();
Query q = new Query();

long count = mongoTemplate.count(q, “passenger”);
while (count != finalCountForDelete[j]) {

Thread.sleep(POLLING_SLEEP_TIME_IN_MS);
count = mongoTemplate.count(q, “passenger”);

}
System.out.println(“done” + testSizes[j] + “in” + (System.currentTimeMillis() − start));

}
return “done”;

}

The deletion of a passenger is performed using predefined methods—command delete
when using MySQL, and remove() method when using a MongoDB database, as shown in
Algorithm 3.

Analyzing the results shown in Figure 10 for the deletion operation, it can be seen
that the synchronization times obtained in the case of the deletion operation are similar in
both directions for MySQL and MongoDB. Thus, we can say that a favorable result was
obtained. This ensures that the synchronization system described in this paper can be used
in a real-world application. For a small number of entries, i.e., 30 or 60, the times are similar.
This shows that there is a minimum required processing and deletion time. The ratio
between the time to synchronization and the number of entries decreases according to the
number of entries, as shown in Figure 11. For a few entries, we have an unfavorable ratio
but afterwards, the performance increases and tends towards 2.7 ms/entry for MongoDB
to MySQL replication and to 4.3 ms/entry for MySQL/MongoDB.

Big Data Cogn. Comput. 2023, 7, 153 15 of 17Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 15 of 17

Figure 10. Execution times for the delete operation showing the source and destination of the change.

Figure 11. Ratio of time over number of rows for delete.

5. Conclusions
In this paper, a synchronization method between relational and non-relational

databases was presented. The proposed approach was tested by creating an application
in Java that is based on Spring Boot that uses Spring Data. The practical tests that were
carried out have shown how this synchronization can be achieved in the case of tables
with relationships between them for different CRUD operations.

The paper has explored the method and technology behind the proposed
synchronization method between MySQL as a relational database and MongoDB as a non-
relational database, showing that that synchronization between the two databases,
MySQL and MongoDB, is not only possible but also efficient.

As revealed in the study, the tests carried out have highlighted that the
synchronization between MySQL as a relational database and MongoDB as a non-
relational database occurs with an acceptable delay.

The present work is a proof of concept that can be the basis of a complete
synchronization solution, which could also take into account the more complex
functionalities of a relational database, such as triggers.

Figure 10. Execution times for the delete operation showing the source and destination of the change.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 15 of 17

Figure 10. Execution times for the delete operation showing the source and destination of the change.

Figure 11. Ratio of time over number of rows for delete.

5. Conclusions
In this paper, a synchronization method between relational and non-relational

databases was presented. The proposed approach was tested by creating an application
in Java that is based on Spring Boot that uses Spring Data. The practical tests that were
carried out have shown how this synchronization can be achieved in the case of tables
with relationships between them for different CRUD operations.

The paper has explored the method and technology behind the proposed
synchronization method between MySQL as a relational database and MongoDB as a non-
relational database, showing that that synchronization between the two databases,
MySQL and MongoDB, is not only possible but also efficient.

As revealed in the study, the tests carried out have highlighted that the
synchronization between MySQL as a relational database and MongoDB as a non-
relational database occurs with an acceptable delay.

The present work is a proof of concept that can be the basis of a complete
synchronization solution, which could also take into account the more complex
functionalities of a relational database, such as triggers.

Figure 11. Ratio of time over number of rows for delete.

5. Conclusions

In this paper, a synchronization method between relational and non-relational databases
was presented. The proposed approach was tested by creating an application in Java that is
based on Spring Boot that uses Spring Data. The practical tests that were carried out have
shown how this synchronization can be achieved in the case of tables with relationships
between them for different CRUD operations.

The paper has explored the method and technology behind the proposed synchroniza-
tion method between MySQL as a relational database and MongoDB as a non-relational
database, showing that that synchronization between the two databases, MySQL and
MongoDB, is not only possible but also efficient.

As revealed in the study, the tests carried out have highlighted that the synchronization
between MySQL as a relational database and MongoDB as a non-relational database occurs
with an acceptable delay.

The present work is a proof of concept that can be the basis of a complete synchro-
nization solution, which could also take into account the more complex functionalities of a
relational database, such as triggers.

Big Data Cogn. Comput. 2023, 7, 153 16 of 17

The solution proposed in this paper, due to the fact that the Debezium CDC (Change
Data Capture) system was used, can be easily extended to provide synchronization between
other databases such as PostgreSQL, SQL Server, Db2, Cassandra, Vitess, and Spanner.

Although a solid foundation has been laid for achieving synchronization between
a relational and a non-relational database, there are several improvements that can be
made to the system to make it faster, more robust, or more applicable. For example, in the
situation where more than 1000 entities are created and immediately deleted, an infinite
processing cycle arises because the checks implemented in code do not foresee this case. A
solution would be to insert the entities’ IDs into a collection where entries that have been
added and deleted in the last 5 min are kept and, before executing an insert, check if the
to-be-inserted ID exists in that collection.

In the application developed, when a new table is created in MySQL, it is not created
automatically in MongoDB, so its topic will not be listened to. The list of topics should
be periodically checked and consumers should be instantiated for new topics. In the case
of deleting a table or collection, it is necessary to query the database directly and, if it is
found that the table is missing, stop the consumer. If new fields are added to MongoDB,
the application will throw an exception. In this case, its data type should be determined
and the structure of the MySQL table altered to include a column matching the field’s type.

Some SQL tables may not have an id field. The developed application does not
handle this case. In future iterations, to handle this case, the primary key field needs to
be determined and an index created for that field in MongoDB. In the case of a composite
primary key, a solution is to create a composite index for those columns. For UNIQUE
fields with other names than an ID, since Debezium does not provide information about
constraints, the application will have to check for them when a table is created or when an
ALTER TABLE statement is executed and triggers a message on the schema topic. After it
detects the unique column, it can create an index in MongoDB for that column.

The tests showed good performance and reliability in the synchronization operations.
The application is capable of processing moderate volumes of data, which means that it
could be used in many real-world scenarios where synchronization is needed, though its
applicability may depend on the specifics of each project. It should also be noted that
setting up synchronization between MySQL and MongoDB requires a solid understanding
of each database’s data structures.

Consequently, the proposed synchronization method between MySQL and a Mon-
goDB database is a viable and efficient process. The proposed solution is not only capable
of synchronizing a relational database with a non-relational one but is performant and
feasible to use in real scenarios.

Author Contributions: Conceptualization, C.A.G., T.T. and D.R.Z.; methodology, C.A.G., T.T. and
D.R.Z.; software, T.T. and R.Ş.G.; validation, C.A.G. and R.Ş.G.; writing—original draft preparation
T.T., D.R.Z. and C.A.G.; writing—review and editing, C.A.G. and R.Ş.G.; All authors have read and
agreed to the published version of the manuscript.

Funding: The publication of this research was supported by the University of Oradea.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Islam, S. Techniques for Converting Big Data from SQL to NoSQL Databases. Available online: https://www.academia.edu/2979

3008 (accessed on 2 June 2023).
2. Rutujakonde. MongoDB Use Cases|How eBay implemented MongoDB? Available online: https://rutujakonde210.medium.

com/mongodb-use-cases-how-ebay-implemented-mongodb-32ad6eb890fc (accessed on 21 May 2023).
3. NoSQL vs SQL. Available online: https://www.mongodb.com/nosql-explained/nosql-vs-sql (accessed on 10 April 2023).
4. Zmaranda, D.R.; Moisi, C.I.; Győrödi, C.A.; Győrödi, R.Ş.; Bandici, L. An Analysis of the Performance and Configuration Features

of MySQL Document Store and Elasticsearch as an Alternative Backend in a Data Replication Solution. Appl. Sci. 2021, 11, 11590.
[CrossRef]

https://www.academia.edu/29793008
https://www.academia.edu/29793008
https://rutujakonde210.medium.com/mongodb-use-cases-how-ebay-implemented-mongodb-32ad6eb890fc
https://rutujakonde210.medium.com/mongodb-use-cases-how-ebay-implemented-mongodb-32ad6eb890fc
https://www.mongodb.com/nosql-explained/nosql-vs-sql
https://doi.org/10.3390/app112411590

Big Data Cogn. Comput. 2023, 7, 153 17 of 17

5. Győrödi, C.A.; Dumşe-Burescu, D.V.; Győrödi, R.Ş.; Zmaranda, D.R.; Bandici, L.; Popescu, D.E. Performance Impact of Optimiza-
tion Methods on MySQL Document-Based and Relational Databases. Appl. Sci. 2021, 11, 6794. [CrossRef]

6. Zaidi, N.; Ishak, I.; Sidi, F.; Affendey, L.S. An Efficient Schema Transformation Technique for Data Migration from Relational to
Column-Oriented Databases. Comput. Syst. Sci. Eng. 2021, 43, 1175–1188. [CrossRef]

7. Damodaran, B.D.; Salim, S.; Vargese, S.M. Performance evaluation of MySQL and MongoDB databases. Int. J. Cybern. Inform.
2016, 5, 387–394. [CrossRef]

8. Acharya, B.; Pandey, M.; Rautaray, S.S. Survey on Nosql Database Classiffication: New Era of Databases for Big Data. Available
online: https://www.academia.edu/26405577 (accessed on 2 June 2023).

9. Wu, X.; Yao, Y. XML-based heterogeneous database integration system design and implementation. In Proceedings of the 3rd
International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; pp. 547–550.
[CrossRef]

10. Čerešňák, R.; Dudáš, A.; Matiaško, K.; Kvet, M. Mapping rules for schema transformation: SQL to NoSQL and back. In
Proceedings of the 2021 International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, 22–24 June
2021; pp. 52–58. [CrossRef]

11. Stanescu, L.; Brezovan, M.; Burdescu, D.D. Automatic mapping of MySQL databases to NoSQL MongoDB. In Proceedings of the
2016 Federated Conference on Computer Science and Information Systems (FedCSIS), Gdansk, Poland, 11–14 September 2016;
pp. 837–840.

12. Hossain, M.I.; Ali, M.M. SQL query based data synchronization in heterogeneous database environment. In Proceedings of
the International Conference on Computer Communication and Informatics, Coimbatore, India, 10–12 January 2012; pp. 1–5.
[CrossRef]

13. Rocha, L.; Vale, F.; Cirilo, E.; Barbosa, D.; Mourão, F. A Framework for Migrating Relational Datasets to NoSQL. Procedia Comput.
Sci. 2015, 51, 2593–2602. [CrossRef]

14. Di Martino, B.; Aversa, R.; Cretella, G.; Esposito, A.; Kołodziej, J. Big data (lost) in the cloud. Int. J. Big Data Intell. 2014, 1, 3–17.
[CrossRef]

15. Debortoli, S.; Müller, O.; vom Brocke, J. Comparing Business Intelligence and Big Data Skills. Bus. Inf. Syst. Eng. 2014, 6, 289–300.
[CrossRef]

16. Tauro, C.J.M.; Patil, B.R.; Prashanth, K.R. A comparative analysis of different nosql databases on data model, query model and
replication model. In Proceedings of the International Conference on ERCICA, Yelahanka, Bangalore, India, 2–3 August 2013.

17. MYSQL Documentation. Available online: https://dev.mysql.com/doc/ (accessed on 3 February 2023).
18. MongoDB Documentation. Available online: https://www.mongodb.com/docs/ (accessed on 2 February 2023).
19. Debezium Documentation. Available online: https://debezium.io/documentation/ (accessed on 7 March 2023).
20. Confluent Blog. Kafka Listeners—Explained. Available online: https://www.confluent.io/blog/kafka-listeners-explained

(accessed on 4 June 2023).
21. Java SE 19 Platform. Available online: https://jdk.java.net/19/ (accessed on 24 March 2023).
22. Kafka 3.4.0. Available online: https://kafka.apache.org/downloads (accessed on 7 March 2023).
23. Debezium Connector for MongoDB Documentation. Available online: https://debezium.io/documentation/reference/stable/

connectors/mongodb.html#change-streams (accessed on 4 June 2023).
24. Docker Desktop. Available online: https://docs.docker.com/desktop/install/windows-install/ (accessed on 11 April 2023).
25. Győrödi, C.A.; Dumşe-Burescu, D.V.; Zmaranda, D.R.; Győrödi, R.Ş. A Comparative Study of MongoDB and Document-Based

MySQL for Big Data Application Data Management. Big Data Cogn. Comput. 2022, 6, 49. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app11156794
https://doi.org/10.32604/csse.2022.021969
https://doi.org/10.5121/ijci.2016.5241
https://www.academia.edu/26405577
https://doi.org/10.1109/ICCSIT.2010.5564745
https://doi.org/10.1109/IDT52577.2021.9497629
https://doi.org/10.1109/ICCCI.2012.6158818
https://doi.org/10.1016/j.procs.2015.05.367
https://doi.org/10.1504/IJBDI.2014.063840
https://doi.org/10.1007/s12599-014-0344-2
https://dev.mysql.com/doc/
https://www.mongodb.com/docs/
https://debezium.io/documentation/
https://www.confluent.io/blog/kafka-listeners-explained
https://jdk.java.net/19/
https://kafka.apache.org/downloads
https://debezium.io/documentation/reference/stable/connectors/mongodb.html#change-streams
https://debezium.io/documentation/reference/stable/connectors/mongodb.html#change-streams
https://docs.docker.com/desktop/install/windows-install/
https://doi.org/10.3390/bdcc6020049

	Introduction
	Related Work
	Description of the Implementation
	The Solution Architecture
	Application Description
	Primary Key Synchronization Problem
	Update Collision Resolution

	System Configuration

	Method and Testing Architecture
	Latency Testing
	Data Consistency
	Operation Replication Performance
	Insert Operation
	Update Operation
	Delete Operation

	Conclusions
	References

