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Abstract: The study of human behaviors aims to gain a deeper perception of stimuli that control
decision making. To describe, explain, predict, and control behavior, human behavior can be classified
as either non-aggressive or anomalous behavior. Anomalous behavior is any unusual activity;
impulsive aggressive, or violent behaviors are the most harmful. The detection of such behaviors
at the initial spark is critical for guiding public safety decisions and a key to its security. This paper
proposes an automatic aggressive-event recognition method based on effective feature representation
and analysis. The proposed approach depends on a spatiotemporal discriminative feature that
combines histograms of oriented gradients and dense optical flow features. In addition, the principal
component analysis (PCA) and linear discriminant analysis (LDA) techniques are used for complexity
reduction. The performance of the proposed approach is analyzed on three datasets: Hockey-Fight
(HF), Stony Brook University (SBU)-Kinect, and Movie-Fight (MF), with accuracy rates of 96.5%,
97.8%, and 99.6%, respectively. Also, this paper assesses and contrasts the feature engineering and
learned features for impulsive aggressive event recognition. Experiments show promising results of
the proposed method compared to the state of the art. The implementation of the proposed work is
available here.

Keywords: video surveillance; anomalous events; event analysis; traditional learning; deep learning;
transfer learning; features engineering; learned features; machine learning

1. Introduction

Impulsive aggression is characterized by abrupt reactions to situations that are more
emotional than is needed for the situation, in order to cause harm to another person. Peo-
ple frequently unconsciously imitate other people’s actions in a phenomenon known as
emotional contagion [1]. A group could unknowingly be affected by a group member, who
could cause the entire group to feel certain emotions, leading to misbehavior. Hatfield
et al. [2] traced the hysterical emotional contagion process. They inferred that negative emo-
tions have a more emotional impact than positive ones. Moreover, Slutkin and Ransford [3]
add that impulsive aggressive behavior is similar to a contagious disease in many ways,
including spreading. Impulsive aggressive behavior can occur in numerous situations,
such as a violent outbreak of riots among the masses. Once it is detected, its transmission
between people might be prevented. The detection of such behaviors at their initial spark
breaks their chain reaction, leads to public safety decisions, and is a key to security. Detect-
ing impulsive aggressive behavior in surveillance footage encounters challenges, as shown
in Figure 1.

Due to a variety of problems, including a lack of previous knowledge of what to look
for and an overwhelming number of video screens to monitor, human-based monitoring
does not support an effective security system. According to Green [4] most people’s
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attention drops below an acceptable level after only 20 min of observing video surveillance
screens. Combining computer vision and behavioral sciences provides a potential for
developing technology that helps in that aspect.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 2 of 17 
 

 
Figure 1. Impulsive aggressive-behavior detection challenges. 

Due to a variety of problems, including a lack of previous knowledge of what to look 
for and an overwhelming number of video screens to monitor, human-based monitoring 
does not support an effective security system. According to Green [4] most people’s 
attention drops below an acceptable level after only 20 min of observing video surveillance 
screens. Combining computer vision and behavioral sciences provides a potential for 
developing technology that helps in that aspect. 

Feature extraction is one of the major problems in computer vision for recognizing 
impulsive aggressive actions in video surveillance [5]. Most aggressive behaviors are 
related to bodily movement. A significant amount of raw data are needed to represent 
them. The raw data can be downsized into more manageable sets for processing by using 
a feature-extraction technique. Various methods tackle the problem: handcrafted features 
and deep learning are two approaches presented for feature extraction. The handcrafted 
features-based approach provides a way to visualize and analyze features. Still, feature 
representation has wide-ranging features that increase computational complexity [5]. The 
deep learning-based approach extracts features automatically, with no human interaction. 
However, due to its layered nature, it is hard to track [6]. The extracted features vary 
between appearance and motion features. The appearance feature-based method 
concentrates on the contour of human bodies. It is either through a set of interest points 
or local appearance. The motion feature-based method focuses on the direction of moving 
body parts. It extracts a motion vector per block of pixels, around a sample of points, or 
for each pixel in the frame [7]. 

The contribution of this paper is to present a method for impulsive aggressive-event 
recognition that provides an innovative solution to optimize accuracy and computational 
cost. To generate discriminative features, a fusion strategy is used. The appearance and 
motion features are combined in a single descriptive vector to gain advantages of both. 
The histograms of oriented gradients (HOG), and dense optical flow extract appearance 
and motion features, respectively. Regarding computational complexity, the extracted 
features are employed in principal component analysis (PCA), and linear discriminant 
analysis (LDA). They maintain the original key characteristics while downsizing them 
from a high-dimensional space to a lower one. Also, this paper provides a comparative 
analysis of impulsive aggressive behavior recognition based on feature engineering and 
learned features. Experimental results demonstrate that the proposed method performs 
favorably against state-of-the-art approaches. 

The structure of this paper is as follows: Section 2 includes a literature review of some 
prior work relevant to the current study. Section 3 describes the proposed approach, 
whereas Sections 4 and 5 present the results of the experimental work and the conclusion, 
respectively. 

  

Figure 1. Impulsive aggressive-behavior detection challenges.

Feature extraction is one of the major problems in computer vision for recognizing
impulsive aggressive actions in video surveillance [5]. Most aggressive behaviors are
related to bodily movement. A significant amount of raw data are needed to represent
them. The raw data can be downsized into more manageable sets for processing by using a
feature-extraction technique. Various methods tackle the problem: handcrafted features
and deep learning are two approaches presented for feature extraction. The handcrafted
features-based approach provides a way to visualize and analyze features. Still, feature
representation has wide-ranging features that increase computational complexity [5]. The
deep learning-based approach extracts features automatically, with no human interaction.
However, due to its layered nature, it is hard to track [6]. The extracted features vary
between appearance and motion features. The appearance feature-based method concen-
trates on the contour of human bodies. It is either through a set of interest points or local
appearance. The motion feature-based method focuses on the direction of moving body
parts. It extracts a motion vector per block of pixels, around a sample of points, or for each
pixel in the frame [7].

The contribution of this paper is to present a method for impulsive aggressive-event
recognition that provides an innovative solution to optimize accuracy and computational
cost. To generate discriminative features, a fusion strategy is used. The appearance and
motion features are combined in a single descriptive vector to gain advantages of both.
The histograms of oriented gradients (HOG), and dense optical flow extract appearance
and motion features, respectively. Regarding computational complexity, the extracted
features are employed in principal component analysis (PCA), and linear discriminant
analysis (LDA). They maintain the original key characteristics while downsizing them from
a high-dimensional space to a lower one. Also, this paper provides a comparative analysis
of impulsive aggressive behavior recognition based on feature engineering and learned
features. Experimental results demonstrate that the proposed method performs favorably
against state-of-the-art approaches.

The structure of this paper is as follows: Section 2 includes a literature review of
some prior work relevant to the current study. Section 3 describes the proposed approach,
whereas Sections 4 and 5 present the results of the experimental work and the conclu-
sion, respectively.

2. Literature Review

Human behavior refers to how individuals engage with their environment; it can be
usual or anomalous. The main objective of impulsive aggressive-event detection is to detect
the occurrences of events and classify them as non-aggressive or anomalous events. The
automatic detection of such events has a critical role in public safety and security. Several
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approaches have been proposed in the literature, varying between handcrafted features
and deep learning models.

2.1. Handcrafted Features

The handcrafted feature-based approach provides a way of visualizing and analyzing
features through appearance and motion features. The appearance features focus on the
contour of human bodies throughout actions. They vary between a set of interest points or
on a local appearance. The interest point-based methods extract features localized around
a point of interest in an image, while the local appearance describes the local object shape
within an image. Lejmi et al. [8] proposed a fusion strategy of feature-extraction algorithms,
a Harris corner detector (HCD), sped-up robust features (SURF), and a histogram of
oriented gradient (HOG), then submitted it to a classifier to determine whether the input
action was violent or non-violent. Khan et al. [9] employed the scale-invariant feature
transform method (SIFT), which focused on the local surroundings around a set of points
for violent content detection in animated cartoons. Das et al. [10] extracted features using
the HOG, which focused on the structure of the human body throughout the action by
using the magnitude and gradient angle to compute the features, and achieved an accuracy
rate of 86% for violence detection using the random forest (RF) classifier. Salman et al. [11]
used SURF for feature extraction and fed it into the SVM classifier, achieving an average
accuracy of 87% for violent-activity recognition. Lamba and Nain [12] used the HCD to
extract features that represented human body edges and corners during an action. Tests
were conducted on multiple publicly available benchmark datasets, achieving an average
accuracy of 95% on the violent-flows (VF) dataset. Nadeem et al. [13] compared SIFT, SURF,
and HOG features for discriminating between hot and cold fights using the SVM classifier.
The HOG features achieved the highest sensitivity. Jahagirdar and Nagmode [14] proposed
a new descriptor vector of salient wavelet features and a histogram of oriented gradients
(SWFHOG). It detected abnormal behaviors using a feed-forward neural network (FNN),
with an accuracy of 95% and 97% on the SBU and UT Interaction datasets, respectively.
Motion features focus on the direction of the moving body parts. The motion magnitude
and orientation represent a set of features. For motion features, the extraction of many
algorithms is used, such as extracting a motion vector for each pixel in the frame, extracting
a motion vector around a set of points of interest, or extracting a motion vector per block
of pixels. Mahmoodi and Salajeghe [15] extracted motion attributes for each pixel in the
frame and compared it to its adjacent frame to acquire meaningful changes in magnitude
and orientation. Chen et al. [16] proposed a global descriptor based on the optical flow to
estimate motion magnitude and orientation for each pixel in the frame. The accuracy rate of
the HF dataset employed in their experiments was 92%. Yao et al. [17] used a sparse optical
flow algorithm to extract motion magnitude and orientation features around key points
of interest. Khalil et al. [18] divided the frame into 108 blocks and used a block-matching
algorithm to extract one motion vector for each block, representing the displacement
of each block of pixels between two consecutive frames. This motion information has
been used as a feature for detecting violent material in cartoon videos that resulted in
violent and aggressive behavior in a youngster. Hybrid features combine the benefits of
both motion and appearance features to provide discriminative features. Tian et al. [19]
adopted local trinary patterns (LTP) to capture spatiotemporal features and provided an
adaptive sampling strategy based on a Shannon information measure in their study of action
recognition. Wang et al. [20] extracted features representing both appearance and motion
features via HOG and a histogram of optical flow (HOF). Deepak et al. [21] proposed
a hybrid feature vector of optical flow data and a set of statistical features such as the
mean, median, and mode. The extracted features were evaluated using different datasets,
achieving an accuracy of 91.50% and 84% on the HF and VF datasets, respectively. Deepak
et al. [22] extracted gradient-based autocorrelation features (STACOG) and evaluated its
performance using SVM and K-Nearest neighbor (KKN) classifiers. The HF was one of
the benchmark datasets used, and it achieved an accuracy of 83.4% and 90.4% using the
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KNN and the SVM, respectively. Febin et al. [23] combined optical flow feature, SIFT
descriptor, and motion boundary histogram to form the MoBSIFT descriptor. The SVM,
RF, and AdaBoost classifiers assessed the proposed model’s accuracy, with it achieving an
accuracy of 98.9% using the RF classifier on the MF dataset. Pujol and Pertegal [24] studied
accelerated movements as features for violent actions, as it is usually associated with high
activation states. The acceleration features were represented by calculating local eccentricity
(LE), calculating the histogram of optical acceleration (HOA), and the histogram of the
spatial gradient of acceleration (HSGA) using optical flow data, achieving an accuracy
of 97.85% using the SVM classifier on the SBU dataset. Lohithashva and Aradhya [25]
proposed a spatial–temporal approach based on a texture feature descriptor named the
local optimal oriented pattern (LOOP). Also, they provided a comparison between the
handcrafted features, which varied between spatial and spatiotemporal features such as
HOG, HOF, and LTP. The proposed features were evaluated on the HF and VF datasets
using SVM. The model achieved a 92.2% and 91.5% accuracy on the HF and VF datasets,
respectively. Detection based on handcrafted features suffers from wide-ranging features
that increase computational complexity.

2.2. Deep Learning

The self-learning representations of a deep learning model omit the manual feature-
extraction stage and work directly with the raw data. The deep learning model employs
several models to capture the deep features of impulsive aggressive behaviors. The com-
monly used models are convolutional neural network (CNN) models and recurrent neural
network (RNN) models. The MobileNet, ResNet, GoogleNet, VGGNet, DenseNet, 3D
convolutional neural networks (3D-CNN), and deep belief networks (DBN) are the most
often-used CNNs, whereas those of the RNNs are gated recurring units (GRUs), long-short
term memory (LSTM), and bi-directional LSTM (BiLSTM).

Serrano et al. [26] achieved 99% accuracy on the MF dataset using 2D-CNN. Khan
et al. [27] minimized time complexity by extracting features from the frame with the largest
saliency using the MobileNet model, achieving an accuracy of 87% and 99.5% on the HF
and MF dataset, respectively. Lejmi et al. [28] fed the optical flow information and HOG
features into the LSTM model, achieving an accuracy of 84.6% in detecting violence with
the SBU dataset. Su et al. [29] proposed a skeleton points interaction learning (SPIL) module
to extract both appearance and temporal features based on the interactions between human
skeleton points, achieving an accuracy rate of 98.5% on the MF dataset. She et al. [30]
extracted deep features and fed them into a simple recurrent unit (SRU) algorithm followed
by a global context-aware attention network (GCA-ST-SRU), achieving an overall accuracy
of 94.3% on the SUB dataset. Sharma et al. [31] employed the Xception model as a spatial
feature extractor followed by an LSTM model, achieving an accuracy of 96.55% and 98.32%
on the HF and MF datasets, respectively. Chatterjee and Halder [32] employed a CNN
to extract visual characteristics based on the first-level discrete wavelet transform (DWT),
followed by BiLSTM for spatiotemporal feature extraction, achieving 94% accuracy on
the HF dataset. Patel [33] produced a multi-deep network model to obtain discriminative
features. They fed the extracted features from the ResNet model into the LSTM model,
achieving an accuracy of 86.7% on the HF dataset. Similarly, Asad et al. [34] proposed a
hybrid deep network model where the spatial features are extracted using a wide dense
residual block with a 2D-CNN, followed by LSTM for the temporal feature extraction. The
proposed model was evaluated on different datasets, achieving an accuracy of 99.1% and
97.1% on the MF and Crowd Violence datasets, respectively. In Imah et al. [35] a similar
combination of DWT and gated recurrent units (GRU) achieved an accuracy of 96% on the
MF dataset. Vijeikis et al. [36] extracted spatial features with the MobileNet-v2, followed
by the LSTM model to extract temporal features. Results were obtained on several datasets,
with 96.1% and 99.5% accuracy on the HF and MF datasets, respectively. Lejmi et al. [37]
used the DBN model for automatic feature learning, achieving a 65.5% accuracy rate for
violent action recognition on the SBU-Kinect dataset. Aktl et al. [38] tackled the problem
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of detecting violence from a single still image. For comparison, they employed various
image-classification networks, such as ResNet-50 and Vision Transformer (ViT). Crowd
Violence was one of the benchmark datasets used, achieving an accuracy of 98% on ViT and
97% on ResNet-50. Da Silva and Pereira [39] compared the performance of handcrafted
MoSIFT features and deep VGG-19 features in detecting violence. The obtained results on
the HF dataset were 89.6% and 88.4% with MoSIFT and VGG-19, respectively. Fernando
et al. [40] detected violent activity using the CrimeNet model based on vision transformer
and neural structured learning, achieving a 99% accuracy rate on both the UCF Crime
and XD Violence datasets. Savadogo et al. [41] produced a dataset by collecting videos of
elder abuse, concentrating on actions that caused a person suffering. An 85% accuracy rate
was attained by applying a repeated frames extraction method using the 3D-CNN model.
Verma et al. [42] proposed a traversal-based primary three-layer neural network (TNN),
followed by a pairwise interaction framework (PIF) for human interaction recognition in
videos. One of the benchmark datasets utilized was SBU, which included eight interaction
classes, including violent ones like push, kick, and punch. It achieved a 93.9% accuracy rate
on overall actions, whereas the recognition accuracies of push, kick, and punch were 88.8%,
90.4%, and 100%, respectively. Viktor et al. [43] detected violent action in surveillance
footage based on extracting spatial and temporal features using the X3D model, achieving
an accuracy rate of 97.5%, 90.1, and 93.5 across the HF dataset, the UCFS dataset, and the XD
Violence dataset, respectively. Mohammadi and Nazerfard [44] proposed a semi-supervised
hard attention (SSHA) model for video violence recognition, achieving an accuracy rate
of 90.4% and 99.5% on the RWF and MF datasets, respectively. Elkhashab et al. [45] first
used the DenseNet-121 model to extract spatial information, then used the LSTM model to
extract spatial and temporal features, achieving 96% and 92% across the HF dataset and the
real-life violence situations (RLVS) dataset, respectively. Islam et al. [46] combined 2D-CNN
with ESN for feature representation and analysis. The proposed model was evaluated on
different datasets, achieving an accuracy of 95.8% on the surveillance fight dataset.

Detection based on a deep learning model depends on the quality and quantity of data.
It is also difficult to trace, because of its multilayer structure, whereas the detection based
on handcrafted features suffers from wide-ranging features that increase computational
complexity. Here, in this paper, we aim to present a comparative analysis of impulsive
aggressive-behavior recognition based on both models.

3. Proposed Work

The aim of this paper is to provide an innovative solution that optimizes accuracy
and computational cost for impulsive aggressive-event recognition. The accuracy rate
depends on the quality of the features generated from the data set, while computational
cost is affected by its length [5]. As a result, two methods for impulsive aggressive event
recognition are utilized, featuring an engineering method and the learned-features method.

3.1. Feature Engineering

The proposed feature engineering method focuses on producing discriminative fea-
tures that generate high accuracy with minimal computing cost. Figure 2 depicts the
workflow architecture.

Aggressive behaviors are related to the shape of the human body and the motion
information of the moving body parts during actions. So, the spatial and temporal features
complement each other in this case. Therefore, a combination of two feature-extraction
techniques into a single spatiotemporal (ST) descriptive vector is utilized here. Using the
HOG, Dalal and Triggs [47] captured the spatial shape of human bodies during the action
and the dense optical flow; Farnebäck [48] focused on the motion magnitude and direction
of moving body parts. However, each of these features requires a preprocessing step for
reducing their problems and extracting discriminative features.
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3.1.1. Preprocessing Step

Extracting features is challenging due to redundancy and lighting variations that may
lead to weak features. Therefore, to extract features with minimal error, a set of preprocess-
ing techniques was used to extract discriminative features. (1) The frame was resized to
64 × 128 pixels, then a histogram equalization was used to modify the illuminance and
contrast. (2) Subsequent frames contained redundant data due to minor alterations between
frames. For this problem, a skipping interval algorithm was proposed in [23]. It represents
a set of dropped frames bound to time by selecting a skipping interval dynamically for each
video. It is equal to the video frame rate × information rate. If the required information is
for every 0.2 s, and the video frame rate is 40 FPS, the skipping interval will be eight video
frames. The skipping interval algorithm helps in processing only a set of video frames,
which reduces redundant data without affecting the accuracy. Additional steps are needed
for temporal features as extracting temporal features is challenging due to complicated
backgrounds. So, we isolated the moving elements and eliminated the motionless parts.
The motion region was highlighted using a Gaussian Mixture model (GMM)-based back-
ground subtraction algorithm [49], which allows better adaptions to scene changes. Then, a
median filter of kernel size 9 was applied to eliminate the noise generated from the GMM
without affecting the extracted moving elements. To eliminate the unwanted background
pixels that are wrongly included in the extracted area, a morphological processing with a
structuring element of size 7 × 7 was utilized to solve this problem. An opening operation
removes the rest of the background noise points and smooth edges, followed by a closing
operation to connect separate parts and fill in the holes and gaps caused by noise removal.

3.1.2. Spatiotemporal (ST) Feature Vector

After preprocessing, each of spatial and temporal features was extracted independently,
then a fusion of these features was performed.

Spatial Features: The HOG [47] is a frame-based global descriptor, and describes the
entire action. The frame was split into 8 × 16 cells of 8 × 8 pixels each to reduce the noise
effect, and the nine bins of gradient orientation were used for computing the histogram.
The Sobel filter detected changes in the x and y directions for calculating the gradient
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magnitude and orientation for each pixel using Equations (1) and (2). In each cell, the pixel
casted a weighted vote for a histogram orientation bin based on the values found in the
gradient computation. For better illumination variation, every four cells were grouped into
larger blocks. The cell contributed more than once, yielding 7 × 15 overlapping blocks of a
36 × 1 element vector per block, where their local histograms were contrast-normalized by
dividing all the values in the vector with the square root of the sum of their squares. The
output was the HOG descriptor with a fixed vector size.

magnitude =
√

G2
x + G2

y (1)

orientation = tan−1 Gy

Gx
(2)

where Gx(r, c) = I(r, c + 1)− I(r, c− 1) and Gy(r, c) = I(r− 1, c)− I(r + 1, c).
r, c indicates the row and column respectivel and I indicates the pixel intensity.

• Temporal features: Optical flow is a commonly used method for temporal feature
extraction. It represents the luminance variation of the motion region. The optical
flow methods are made up of two types: sparse optical flow and dense optical flow.
Sparse optical flow extracts motion features around points of interest as edges within
the frame, while dense optical flow extracts motion features for all points in the frame.
Dense optical flow shows a higher accuracy at the cost of being computationally
expensive. After identifying the motion region in the video frame, the dense optical
flow components u(r, c) and v(r, c) are extracted using the Gunnar method [48] for
reliable accuracy. The temporal feature is the magnitude of vectors u and v for all
pixels calculated using Equation (3).

vectors magnitude =
√

u2(r, c) + v2(r, c) (3)

ST feature vector: Spatial features offer the relationship between persons within the
same frame, where each frame is valued separately. The temporal features provide the
relation between subsequent frames. To provide a representative element, a combination of
the HOG features with dense features gives a Spatiotemporal (ST) feature vector.

3.1.3. STPCA Feature Vector

The spatial and temporal feature fusion provides representative elements in a high-
dimensional space, which may cause overfitting and computational cost problems. So,
principal component analysis (PCA) [50] was applied to ST features. The PCA effectively
joins the features vector to reduce the feature space. It eliminates powerless characteristics
while keeping the most variation of all the data through the following steps:

• XC = input f eature−mean//. Center data by subtracting input feature from its mean.
• CM = 1

N ∗ ∑N
z=1 XT

Cz
∗ XCz //. Compute covariance matrix, where N is number of

features.
• Determined (CM − λI) = 0//. Compute eigenvalues.
• Select eigenvalues for PCA n features which sustain the needed variance.

• (CM − λI) ∗
→
X =

→
0 //. Compute the eigenvectors matrix according to their eigenvalues.

• PCA features = input f eatures ∗ eigenvectors matrix.

3.1.4. STPCA + LDA Feature Vector

After PCA, linear discriminant analysis (LDA) [51] was applied. LDA increases the
diversity between various classes and reduces it within a single class by the following steps.

• XC = input f eature−mean//Center data

Compute each class as mean M1 and M2, then subtract the input feature from its mean.
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• WCM = ∑n
i=1 WCMi //. Compute within-class covariance, where WCMi = 1

N ∗
∑N

z=1 XT
Cz
∗ Xz

• WCM
−1 ∗ (M1 −M2)//. Compute eigenvectors

• LDA features = input features ∗ eigenvectors matrix

PCA and LDA maintain key components while reducing the feature dimension from
a high- to a low-dimensional space.

3.1.5. Classification

For performance evaluation, the ST, STPCA, and STPCA + LDA features of the pro-
posed work were evaluated in terms of total training time (TR_t) for computational cost
comparison, classification accuracy (ACC), F1 score, precision (Pr), and true-positive rate
(TPR). The ACC, F1 score, Pr, and TPR were calculated using Equations (4)–(7), respectively.
To choose the optimum features, two machine learning classifiers were used: Support
vector machine (SVM) and Multi-Layer Perceptron (MLP). For the SVM classifier, the linear
kernel (LK) and radial bases kernel (RBF) were used. The MLP consists of three layers: an
input associated with the number of features, one hidden layer with 80 neurons, and an
output layer associated with the behavior labels. The initial weights were set to zero, a
sigmoid activation function was used and the number of training epochs was set to 100. In
addition, MLP backpropagation (BP) learning techniques and resilient backpropagation
(Rprop) were used for comparison.

ACC =
(TP + TN)

(TP + TN + FP + FN)
(4)

F1 =
2 ∗ TP

(2 ∗ TP + FN + FP)
(5)

Pr =
TP

(TP + FP)
(6)

TPR =
TP

(TP + FN)
(7)

3.2. Learned Features

The learned features were obtained after training the deep-learning model for classifi-
cation. Training a deep learning model requires lots of training data, powerful GPUs, and
memory space to achieve optimal performance. Training a deep-learning model from the
starting point is challenging. As a result, a pre-trained model of a similar problem expedites
the training process. It is known as the transfer learning method. It involves modifying
the last fully connected layer to represent the new classes and the remaining layers of
the architecture extract features for the new related problem. For impulsive aggressive
event detection, two CNN architectures were used—the GoogleNet model [52] and the
ResNet model [53]—which have been shown to be more robust than other models [54].
The learned-feature results of the GoogleNet model of 22 layers deep were compared to
the ResNet model of 50 layers deep, both of which were pre-trained on the ImageNet
dataset. Figure 3 represents the learned-feature model, where the input frames were re-
sized to 224 × 224 pixels to fit the model input, and the models were trained for 35 epochs
using SoftMax as the activation function, cross entropy as the loss function, and Adam as
the optimizer.
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4. Results and Discussion

This section clarifies the results of the different methods and compares them with the
literature. But firstly, we need to clarify the benchmark datasets used for assessing and
comparing the performances of various approaches. Therefore, three benchmark datasets,
the SBU Kinect dataset [55], the Hockey fight (HF) dataset [56], and the Movie fight (MF)
dataset [56], were used for evaluation. The SBU dataset consisted of 282 interaction clips
in eight categories of non-aggressive and aggressive actions, in a ratio of 60% to 40%,
respectively. The HF dataset is a sports dataset that incorporates significant amounts
of motion, even in non-aggressive actions. It contains 1000 clips from National Hockey
League games. The MF dataset contains close-ups of person-on-person combat from 200
action movie clips. The MF and the HF dataset clips were equally split into aggressive and
non-aggressive actions. Each dataset was divided into two sections: 70% was dedicated for
training, and 30% was for testing. The model was calibrated using training data, and its
performance was measured using test data. The following sections present the results of
the proposed methods and a comparison between them. Finally, a comparison was made
between the proposed methods and the state-of-the-art methodologies.

4.1. Feature Engineering Results

In the preprocessing step, the acquired information was for every 0.05 s, and the video
frame rate was 40 FPS. So, the skipping interval was two video frames. To eliminate the
motionless parts, GMM was applied to the input frame. However, its output had too much
noise, as shown in Figure 4b. So, a median filter was employed to eliminate noise while
preserving the extracted motion region, as shown in Figure 4c. Finally, opening and closing
morphological operations were applied to isolate the final moving element with smooth
edges and noise removal, as shown in Figure 4d.
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Then, the spatiotemporal (ST) feature vector was performed by concatenating spatial
and temporal features into a single vector. The spatial and temporal features were extracted
using the HOG descriptor, and dense optical flow, respectively. The overall size of the
HOG vector was 3780, while that of the dense optical flow was 8129. So, the fusion
ST feature vector was of a size of 11,972 features. After applying PCA and LDA, the
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STPCA + LDA feature space for the HF dataset became 1425 features, with around an 88%
feature reduction.

For classification, Table 1 shows the results of the MLP backpropagation (BP) learning
techniques vs. those of resilient backpropagation (Rprop), whereas Table 2 shows the
results of the support vector machine (SVM) classifier using a linear kernel (LK) vs. radial
bases kernel (RBF). The best accuracy for each benchmark is in bold and underlined in
Tables 1 and 2, to define the suitable learning. From the results, we deduced that the MLP
with Rprop performed better than the BP, and the SVM with the RBF kernel performed
better than the linear kernel.

Table 1. MLP accuracy comparison.

SBU HF MF

ST
BP 86.6% 94.4% 93.9%

Rprop 90.6% 95.5% 94.7%

STPCA
BP 83.6% 93.6% 91%

Rprop 93.3% 93.9% 96.4%

STPCA + LDA
BP 82.7% 93.8% 94%

Rprop 83.9% 95.2% 99.3%

Table 2. SVM accuracy comparison.

SBU HF MF

ST
LK 91.2% 95.9% 99%
RBF 91.5% 96.4% 98.9%

STPCA
LK 95.7% 95% 99%
RBF 94.5% 96.50% 99%

STPCA + LDA
LK 97.2% 95.1% 99.6%
RBF 97.87% 96.57% 99.5%

Figure 5 shows the comparison of results of the ST, STPCA, and STPCA + LDA
utilizing the two machine-learning classifiers. Figure 5a represents the accuracy results of
the extracted features using the MLP classifier. From the figure, the ST features had the best
accuracy for the HF dataset, while the STPCA + LDA features had the best results for the
MF datasets using MLP. Figure 5b shows the results of the SVM classifier for recognizing
impulsive aggressive events of the extracted features. The results show that STPCA + LDA
features performed better on the three benchmark datasets. Figure 6 illustrates the best
accuracy results of both classifiers for the three datasets. Although STPCA + LDA did not
perform best using the MLP classifier for the SBU and HF datasets, it achieved the best
results using the SVM classifier when compared to the other MLP results, indicating its
superiority among the extracted features. Other evaluation parameters, such as the total
training time (TR_t) for computational cost comparison, F1 score, precision (Pr), and true-
positive rate (TPR), were further used for the assessment of extracted features, as shown in
Table 3, using the SVM classifier with radial bases kernel (RBF). The assessment parameter
shows the superiority of STPCA_LDA features on both accuracy and computation cost.

Table 3. Feature engineering performance evaluation metrics.

SBU_Dataset HF_Dataset MF_Dataset

TR_t ACC F1 Pr TPR TR_t ACC F1 Pr TPR TR_t ACC F1 Pr TPR

ST 1.31 m 91.5% 0.897 0.89 0.9 22.08 m 96.4% 0.964 0.965 0.96 4.4 m 98.9% 0.989 0.984 0.99
STPCA 1.08 m 94.5% 0.93 0.93 0.92 9.45 m 96.5% 0.964 0.97 0.96 3.55 m 99.07% 0.99 0.98 0.99

STPCA_LDA 1.06 m 97.8% 0.974 0.97 0.977 9.3 m 96.57% 0.965 0.97 0.96 3.51 m 99.6% 0.99 0.99 1
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4.2. Learned Feature Results

The learning rate is critical: if it is too high, the best possible outcome is missed, and
if it is too low, too many iterations will be required. Therefore, several learning rates
were examined for achieving reliable results from the model. The best accuracy for each
benchmark is in bold and underlined in Table 4 to define the suitable learning rate.

Figure 7 shows the results of recognizing impulsive aggressive behaviors of the learned
features using ResNet and GoogleNet models under different learning rates. It demon-
strates the best accuracy obtained with the 10−5 learning rate of both models for the three
benchmark datasets. The further evaluation matrices average training time per epoch
(ATR_t), ACC, F1 score, Pr, and TPR, were used for the model assessment, as shown in
Table 5 with the 10−5 learning rate. From the results shown, the GoogleNet model had a
higher performance than the ResNet model for the SBU and the MF datasets, while the
ResNet performed better for the HF dataset.
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Table 4. Comparison of features of learned based on different learning rates.

Learning Rate Model SBU HF MF

10−1 ResNet 59.0% 65.0% 94.5%
GoogleNet 59.0% 50.0% 48.5%

10−3 ResNet 96.3% 99.3% 98.9%
GoogleNet 59.0% 99.1% 95.7%

10−5 ResNet 96.3% 99.6% 98.2%
GoogleNet 97.5% 98.9% 99.6%

10−7 ResNet 74.2% 98.2% 97.9%
GoogleNet 80% 96.5% 90.0%
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Table 5. Performance evaluation metrics of learned features.

SBU_Dataset HF_Dataset MF_Dataset

ATR_t ACC F1 Pr TPR ATR_t ACC F1 Pr TPR ATR_t ACC F1 Pr TPR

ResNet 14.1 m 96.36% 0.95 0.96 0.94 2.81 h 99.6% 0.99 0.99 0.99 46.37 m 98.28% 0.98 0.96 1
GoogleNet 5.26 m 97.5% 0.97 0.97 0.97 1.46 h 98.9% 0.98 0.98 0.99 21.86 m 99.6% 0.99 0.99 0.99

Table 6 shows the evaluation parameters of the learned features of the GoogleNet
model with the 10−5 learning rate vs. the feature engineering STPCA_LDA of SVM with
the RBF kernel. From the results shown, both showed an equal performance for the MF
dataset in terms of ACC, F1, and Pr, but the feature engineering outperformed the learned
features in terms of training time and TPR. The learned features performed better on the
HF dataset, while the feature engineering performed better on the SBU dataset. Figure 8
illustrates a comparison of the results of both methods for the three datasets. It reveals that
the two methods achieved comparable performances.

Table 6. Performance evaluation metrics of learned features vs. feature engineering.

SBU_Dataset HF_Dataset MF_Dataset

TR_t ACC F1 Pr TPR TR_t ACC F1 Pr TPR TR_t ACC F1 Pr TPR

GoogleNet 5.26 m 97.5% 0.97 0.97 0.97 1.46 h 98.9% 0.98 0.98 0.99 21.86 m 99.6% 0.99 0.99 0.99
STPCA_LDA 1.06 m 97.8% 0.974 0.97 0.977 9.3 m 96.57% 0.965 0.97 0.96 3.51 m 99.6% 0.99 0.99 1
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4.3. Comparison with the Literature

Following the result analysis of the proposed methods, Tables 7–9 compare the pro-
posed method with the state-of-the-art methodologies for the SBU, HF, and MF datasets,
respectively. The evaluation of the results indicates that the proposed method achieved
reliable accuracy. The tables also illustrate the increased effectiveness of the feature engi-
neering method compared with the learned features method in the SBU dataset, but they
performed equally on the MF dataset, while the learned features outperformed the feature
engineering method for the HF dataset.

Table 7. Accuracy comparison of the proposed model with others over SBU dataset.

Author Method Acc

Lejmi et al. [37] DBN 65.5%
Lejmi et al. [28] LSTM 84.62%
Verma et al. [42] TNN/PIF 93.9%

She et al. [30] GCA-ST_SRU 94%
Jahagirdar and Nagmode [14] SWFHOG_FNN 95.74%

Pujol et al. [24] LE + HOA + HSGA_SVM 97.85%
Learned features GoogleNet 97.5%

Feature engineering STPCA + LDA-SVM 97.87%

Table 8. Accuracy comparison of the proposed model with others over HF dataset.

Author Method Acc

Khan et al. [27] MobileNet 87%
Da Silva and Pereira [39] VGG-19 88.4%

Patel [33] ResNet-LSTM 89.5%
Deepak et al. [22] STACOG_SVM 90.4%
Deepak et al. [21] HoF + statistical features_SVM 91.5%

Chen et al. [16] optical flow_SVM 92.7%
Chatterjee and Halder [32] CNN-BiLSTM 94.06%

Elkhashab et al. [45] DenseNet_121-LSTM 96%
Vijeikis et al. [36] MobileNet-LSTM 96.1%
Learned features Resnet-50 99.6%

Feature engineering STPCA + LDA-SVM 96.57%
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Table 9. Accuracy comparison of the proposed model with others over MF dataset.

Author Method Acc

Imah et al. [35] DWT-GRU 96%
Sharma et al. [31] Xception-LSTM 98.32%

Su et al. [29] SPIL 98.5%
Febin et al. [23] MoBSIFT_RF 98.9%

Serrano et al. [26] 2D-CNN 99%
Asad et al. [34] 2D-CNN-LSTM 99.1%

Vijeikis et al. [36] MobileNet-LSTM 99.5%
Khan et al. [27] MobileNet 99.5%

Mohammadi and Nazerfard [44] SSHA 99.5%
Learned features GoogleNet 99.6%

Feature engineering STPCA + LDA-SVM 99.6%

5. Conclusions

The impact of impulsive aggression behaviors is detrimental to others since they are
unplanned and typically occur at the time of action. Furthermore, a group may inadver-
tently be impacted by the aggressive behavior of others, causing it to spread. The detection
of such behaviors at the initial spark breaks their chain reaction and prevents its spread-
ing among people. This paper offers an impulsive aggressive-event recognition method
that optimizes accuracy and computing cost. Because recognition performance depends
on the produced features from the dataset, we compared two methods that use feature
engineering and learned features, respectively. The traditional feature engineering method
requires a large memory capacity and computation cost. The experiments revealed that
combining spatial and temporal features with PCA and LDA provided discriminative features.
These discriminative features outperformed the original features and provided a solution that
optimized accuracy and computing cost. Even though the learned features method provided
an end-to-end problem solution, it was greedy for data as it worked more effectively on large
datasets than on small ones. Although it outperformed the feature engineering method on
the HF dataset, it did worse on the SBU dataset. One of the main challenges in recognizing
aggressive behaviors is the lack of positive samples compared to negative ones. Therefore,
the feature engineering method is more appropriate than the data-greedy method. As a
result, learned features cannot always be considered superior and cannot replace the feature
engineering method. Future research recommendations are based on experiments on hybrid
features, in which spatiotemporal features are given input into a deep learning model.
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