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Abstract: This paper aims to address the issue of evaluating the operation of electric vehicle charging
stations (EVCSs). Previous studies have commonly employed the method of constructing comprehen-
sive evaluation systems, which greatly relies on manual experience for index selection and weight
allocation. To overcome this limitation, this paper proposes an evaluation method based on natural
language models for assessing the operation of charging stations. By utilizing the proposed SimC-
SEBERT model, this study analyzes the operational data, user charging data, and basic information
of charging stations to predict the operational status and identify influential factors. Additionally,
this study compared the evaluation accuracy and impact factor analysis accuracy of the baseline
and the proposed model. The experimental results demonstrate that our model achieves a higher
evaluation accuracy (operation evaluation accuracy = 0.9464; impact factor analysis accuracy = 0.9492)
and effectively assesses the operation of EVCSs. Compared with traditional evaluation methods,
this approach exhibits improved universality and a higher level of intelligence. It provides insights
into the operation of EVCSs and user demands, allowing for the resolution of supply–demand
contradictions that are caused by power supply constraints and the uneven distribution of charging
demands. Furthermore, it offers guidance for more efficient and targeted strategies for the operation
of charging stations.

Keywords: electric vehicle; charging station; evaluation method; contrastive learning; natural
language models

1. Introduction

Due to the escalating issues of energy scarcity and environmental pollution, electric
vehicles (EVs) have received significant attention due to their advantages of high efficiency,
low carbon emissions, and cleanliness. Governments around the world have implemented
policies to promote the popularization of EVs. China has implemented the New Energy
Vehicle Industry Development Plan (2021–2035). The plan highlights China’s dedication
towards implementing a national strategy for the development of new energy vehicles
and fostering high-quality growth in the new energy vehicle industry. By the end of
2022, the number of new energy vehicles in China reached 13.1 million, with pure EVs
comprising 10.45 million, accounting for 79.78% of the total. However, the number of
public and private charging piles was 5.21 million, resulting in a comprehensive vehicle-
to-pile ratio of approximately 2.5. Despite a declining trend in this ratio over the years,
a significant gap still exists between the number of charging piles and the charging demands.
In addition, the inadequate planning of the charging station locations and the insufficient
provision of charging piles further aggravate the imbalance between charging supply and
demand at specific times or locations. The 2022 White Paper on Charging Behavior of Electric
Vehicle Users in China revealed that user satisfaction with the completeness of the charging
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network construction was only 63.06% [1]. The key factors restricting satisfaction include
limited charging network coverage, unreasonable charging station layouts, and inadequate
charging piles. In this context, it is imperative to conduct a comprehensive evaluation and
optimization of operation strategies for electric vehicle charging stations (EVCSs) to solve
the supply–demand dilemma [2].

However, most of the existing charging station operation assessments adopt the meth-
ods of constructing multi-criteria decision-making methods and simulation assessment
models [3,4]. Through a comparative analysis of the literature, it was found that the multi-
criteria decision-making method would be affected by subjective factors such as personal
preference during the process of indicator selection and weight determination; meanwhile, it
is difficult for the simulation model assessment method to simulate and restore the complex
real scene. To address these challenges, this paper proposes an evaluation method with
a higher level of automation and better generalization capability. Because large-scale EV
charging data is in line with the characteristics of big data, this paper argues that the opera-
tion evaluation of charging stations can apply big data processing and analysis methods,
which is regarded as a classification task. Because charging station operation assessment is
closely related to user charging data [5], charging station operation data [6], and charging
station basic data [7], these factors are used as inputs for the data analysis. Furthermore, by
recognizing that the operational performance of charging stations may vary, a hierarchical
assessment method is employed to measure these differences and capture the fundamen-
tal characteristics that are associated with different operational levels. To address these
objectives, this paper introduces a comparative learning approach that leverages natural
language modeling. Based on the BERT model, the SimCSE method is used to solve the
problem of heterogeneity among the charging station assessment indicators and to realize
the comprehensive assessment of charging stations and the analysis of influencing factors.

After analyzing the prevailing charging behaviors and charging station operations,
we constructed a comprehensive EVCS dataset. Subsequently, the dataset was employed to
perform evaluation experiments utilizing a range of natural language models. The experi-
mental results reveal that the BERT model with contrastive learning achieved the highest
evaluation accuracy. This may be because the pre-trained models based on bidirectional
transformers with complex architecture have a stronger ability to capture long-range de-
pendencies and analyze the dependencies between data. In summary, the contributions of
this paper are as follows:

(1) By inputting evaluation indicators into the model in textual form, it is possible to
uncover implicit information within the indicators and explore the essential factors
that impact the operation of EVCSs.

(2) Based on a series of natural language models, this paper proposes a new evaluation
model of EVCSs. The model demonstrates the ability to analyze heterogeneous data,
which enhances the automation and intelligence of the operation evaluation of EVCSs.

(3) Compared with other natural language models, the model proposed in this paper
exhibits superior evaluation accuracy. It can offer a vital reference for formulating
and optimizing the operation strategy of EVCSs.

The rest of the paper is organized as follows: In Section 2, we review the related
studies that are guided by the research questions. Section 3 introduces the model design.
Then, Section 4 conducts the empirical experiment and presents the experimental results.
In Section 5, we conduct the confusion matrix analysis to compare the performance of our
proposed model with other models that are commonly used in text classification tasks.
Finally, Section 6 concludes this study.

2. Related Work
2.1. Operation Strategy Evaluation of EVCSs

Currently, the evaluation of charging station operation strategies in related studies
have primarily employed two methods: the multi-criteria decision-making method and the
simulation model evaluation method. The multi-criteria decision-making method involves
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first identifying evaluation indexes, then determining the weight assigned to each index,
and finally scoring the EVCS based on the evaluation system. Various methods can be
employed in the process of determining the evaluation indexes, such as literature research,
expert interviews, and field research [8]. Similarly, different methods, including the entropy
weight method, expert evaluation, analytic hierarchy process, and mixed weighting, can be
employed to determine the weight of each index. Moreover, different evaluation methods,
such as the gray relational analysis, matter-element extension evaluation model, and data
envelopment analysis method, can be utilized in the operation strategy evaluation.

To enhance the objectivity of the evaluation of EVCSs, many studies have employed
the multi-criteria decision-making method (MCDM) to construct comprehensive evaluation
models [9]. The analytic hierarchy process was used to identify six primary indicators
and twenty secondary indicators. After determining the weight of each indicator and
the correlation between them using expert scoring, an evaluation system for charging sta-
tions was constructed [10]. The entropy weight method was combined with an improved
multi-objective particle swarm optimization (MOPSO) algorithm to address the problem
of charging station location selection. A set of Pareto-optimal solutions was calculated
using the particle swarm optimization algorithm, and the final solution was selected from
Pareto-optimal solutions using the entropy weight method [11]. Yan et al. integrated the
order relation method, entropy weight method, and improved matter-element extension
model to construct a comprehensive evaluation model for EVCSs [3]. In other evaluation
scenarios, Xu et al. determined the weight of assessment indicators using the revised inte-
grated weight method, which was evaluated using the gray relational analysis; the authors
verified the results using the fuzzy evaluation method, and they ultimately constructed a
comprehensive evaluation system [12].

The fundamental steps of the simulation model evaluation method involve initially
constructing a simulation model, which is followed by gathering input data for the model.
Subsequently, simulation experiments are conducted to simulate the functioning of charging
stations under various scenarios. Finally, the operational evaluation of charging stations
is accomplished by analyzing the simulation results. A dynamic co-evolution model was
developed to assess the relationship between the quantity of regional charging stations
and charging demands [13]. Yu et al. presented an EVCS planning and evaluation method
that considered the service range [14]. The authors selected constraints and employed the
particle swarm optimization algorithm to solve the model. Then, they introduced new
evaluation indexes to accomplish the evaluation. Charging stations were evaluated using
charging duration and waiting time in the queue. The Monte Carlo method was employed
to simulate user behavior according to the queuing model, and charging stations in urban,
suburban, and rural areas were analyzed [15]. A comprehensive evaluation model for
charging stations was constructed that considered the operator’s profits and waiting time.
It was suggested that by establishing appropriate charging prices, the waiting time in the
queue can be reduced and the profits of operators can be increased [16].

Furthermore, few studies have integrated deep learning models into the operation
strategy evaluation of EVCSs. However, deep learning models have been widely employed
in other operation scenarios, such as insales forecasting and marketing audits. These
models are trained on historical data and yield precise prediction and user portraits. For ex-
ample, a reinforcement learning-based deep attention network was introduced to address
the challenge of balancing the risk and return in stock trading investment strategies [17].
LSTM networks were employed for financial time series prediction, which predicted the
trends of constituent stocks [18]. A deep learning method of collaborative recommender
systems (DLCRS) was presented, which significantly improved the performance compared
with traditional recommendation algorithms [19]. Based on the contrast learning approach,
Wu et al. introduced Contrastive Learning for Sentence Representations (CLEAR), which
utilizes a range of sentence-level enhancement strategies to acquire noise-invariant sen-
tence representations [20]. In the domain of sales forecasting, Schmidt et al. employed
multiple machine learning models to forecast sales figures for a medium-sized restau-
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rant [21]; Ma et al. employed a deep learning model for an operational promotion task and
juxtaposed it against a conventional approach that utilized traditional statistics and econo-
metrics [22]. In order to more visually analyze and compare the existing research methods,
a comprehensive comparative analysis table was summarized as shown in the Table 1.

Table 1. Comparative analysis table of charging operation evaluation methods.

Method Category Evaluation Process Involved Methods

Multi-criteria
decision-making
method(MCDM)

(1) Construct the evaluation indicators
system.
(2) Calculate the weight of indicators.
(3) Standardize the indicators.
(4) Determine the evaluation method.
(5) Complete the evaluation of charging
stations.

(1) Evaluation indicators selection meth-
ods: literature review, expert/user inter-
view, questionnaire.
(2) Weight determination methods: AHP,
ordinal relation, entropy weight method.
(3) Evaluation methods: TOPSIS, matter-
element extension model, GIS.

Simulation
models

(1) Develop the simulation model, such
as the objective function and constraints.
(2) Collect relevant data as the model in-
put.
(3) Conduct experiments to simulate dif-
ferent scenarios that are related to charg-
ing station operations.
(4) Analyze the performance of charging
stations in different scenarios.

Monte Carlo analysis
Co-evolution approach
Particle swarm optimization

Deep learning
models

(1) Data collection, collecting data.
(2) Feature selection and extraction; pro-
cessing the raw data and extracting fea-
tures.
(3) Model selection and training; se-
lecting a suitable model and training
the model.
(4) Model evaluation and optimization:
using test sets to evaluate model perfor-
mance and optimize parameters.
(5) Deploying the application.

Intensive learning
Contrast learning
LSTM networks

In general, the following limitations remain in the current research on the evaluation
of charging station operational strategies: (1) The selection of indicators and determi-
nation of weights rely on human expertise, which may introduce individual bias and
subjectivity; (2) the evaluation process may involve the participation of experts, EV users,
and researchers at various stages, which requires a significant amount of manpower and
time costs; (3) in the operation of charging stations, there are complex relationships and
interactions among different factors. Traditional evaluation methods are unable to fully
explore the underlying connections between these factors; and (4) the inability to accurately
replicate complex real-world environments in simulations. With the advancement of deep
learning technology, deep learning models have demonstrated impressive performance in
various fields. These models have the ability to automatically extract meaningful feature
representations from raw data, learn through end-to-end training methods, and adaptively
adjust based on the input data features. However, their potential has not been fully utilized
in the research of charging station operation strategy evaluation. In this context, this paper
presents a contrastive learning-based evaluation method for the evaluation of charging
stations, and it integrates the deep learning model with the evaluation strategy. It solves
the challenge of comprehensive evaluation caused by index heterogeneity and improves
the evaluation accuracy.



Big Data Cogn. Comput. 2023, 7, 133 5 of 22

2.2. Operation Impact Factors of EVCSs

Previous studies on the operation impact factors of EVCSs reveal that the operation of
EVCSs involves a wide range of factors. Consideration should be given not only to various
stakeholders, including the operator of the charging station and EV users, but also to
government subsidy policies, the technological level, and the external environment. Many
studies have discussed the influence of single or multiple factors on the operation of EVCSs.
For example, the location of charging stations is related to the entire life cycle of charging
stations and will affect many aspects such as capital costs, service levels, and charging
demand, thereby affecting the operation of charging stations [23]. Under three different
charging infrastructure construction subsidy models (i.e., total investment subsidies, power
subsidies, and construction and operation subsidies), the charging service fees and charging
station utilization rates are the main factors that affect the operating efficiency of charging
stations [24]. Dynamic pricing strategies can affect users’ charging behavior and stimulate
the optimization of power grid load distribution, thereby improving the safety and stability
of power grids during the operation of charging stations [25]. Dynamic pricing strategies
can also improve the operating efficiency of charging stations [26]. Safety management is
one of the impact factors in the operation of charging stations [27]. Effective risk control
can maintain network security at the lowest cost and reduce economic losses caused by
risks. Charging monitoring systems also have an important impact on the operation of
charging stations [28]. Han et al. established an objective function to estimate the maximum
net benefit of the charging station [29]. The objective function considered parameters
such as charging price, charging service charge, subsidy income, initial investment cost,
and operation and maintenance cost. Zenginis et al. evaluated the operation performance
of charging stations based on the operator’s profits and customers’ waiting time in the
queue [16].

Furthermore, several studies have conducted a comprehensive and systematic analysis
of the impact factors and their interdependencies. The key factors affecting the operation of
charging stations were divided into direct and indirect factors, and the interaction between
them was analyzed [30]. Among them, the direct factors include the charging demand,
charging price, maintenance cost, electricity price, and location, among other factors. The
indirect factors include battery technology, technologies of the charging infrastructure,
policies on plug-in electric vehicles (PEVs), and more. A multilevel hierarchical system
of impact factors was constructed using the Delphi method [31]. The top-level factors
encompass charging price, gasoline price, electric vehicle battery, reliability of power
supply, and spare parts management. The second-level factors encompass the charging
monitoring system and safety management. The third level encompasses the charging
station’s address, charging station’s scale, regional power grid situation, government policy,
and more. The fourth level is the number of electric vehicles, which represents the most
basic factor influencing the operation of EVCSs.

In general, the operation impact factors of EVCSs are inherently complex and diverse
with varying degrees of impact. A comprehensive understanding and consideration of these
factors can aid operators and policymakers in optimizing the operational effectiveness.

2.3. Text Classification Model

Text classification is an important task in natural language processing, and it aims to
assign text data to a fixed number of predefined categories. The earliest methods include the
naive Bayes classifier, support vector machine, decision tree classifier, maximum entropy
model, and more. In recent years, with the development of deep learning, neural network
models have a remarkable performance in text classification tasks.

TextCNN utilizes convolutional and pooling layers to capture local features from
text [32]. This method offers the advantages of a simple structure, ease of implementa-
tion, and the ability to deal with short text data. However, its performance diminishes
when confronted with longer text sequences. TextRNN utilizes RNN to process sequential
data [33]. It offers the advantage of being able to process longer text sequences. However,
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it is constrained by the structure of RNN and has the vanishing gradient and gradient
explosion problem when processing long sequences. TextRNN Attention introduces the
attention mechanism based on the TextRNN model, allowing for adaptive focus on differ-
ent parts of the input sequence [34]. The advantage of TextRNN Attention is that it can
effectively capture key information when dealing with long text data despite its high com-
putational complexity. FastText utilizes character-based n-grams to learn word embeddings
and a linear classifier for text classification [35]. It stands out for its fast-training speed
and effectiveness with larger text datasets, although its performance diminishes when
dealing with long text data. DPCNN employs a deep pyramid structure to enhance feature
extraction and representation capabilities [36]; it performs admirably when processing
lengthy text data. Its advantage lies in it capturing local and global features at multiple
scales, which allow it to perform well when dealing with long text data. TextRCNN utilizes
both RNN and CNN to process text data, which allow for the simultaneous capture of
contextual information and local features in the text [33]. It is capable of handling long
text data but entails high computational complexity. Transformers utilize the self-attention
mechanism and positional encoding to encode an input sequence [37]. They demonstrate
excellent performance in dealing with long text data. However, this method requires
larger models and training datasets. BERT employs bidirectional transformer encoders,
pre-trained technology to learn the contextual information, and fine-tuning technology
to adapt to different text classification tasks [38]. BERT’s advantage is its competence for
various complex text classification tasks and its favorable processing performance.

2.4. Contrastive Learning

Contrastive learning is a method that is aimed at enhancing the quality of represen-
tation learning by learning the differences between samples. It was initially proposed
in the field of computer vision, and the early research was primarily based on the con-
text of descriptive geometry. Later on, contrastive learning was introduced into neural
networks. Hadsell et al. proposed momentum contrast, a simple contrastive learning
framework, and performed experiments on multiple computer vision datasets [39]. Typical
contrastive learning methods such as the simple framework for contrastive learning of
visual representations [40], bootstrap your own latent, swapping assignments between
multiple views of the same image [41], and simple Siamese networks [42] are based on the
Siamese neural network architecture. Deep contrastive learning compares and calculates
a large number of positive and negative samples, which further enhances the feature ex-
traction capability of the neural network model. Contrastive predictive coding [43] serves
as the fundamental work of deep contrastive learning, and the proposed InfoNCE loss
has found extensive utilization in contrastive learning research. Gunel et al. [44] proposed
the supervised contrastive learning loss, which extends the idea of contrastive learning to
supervised learning. Chen et al. designed a semi-supervised contrastive learning algorithm
and transferred knowledge of the pre-trained model to the new model using distillation
learning [45]. Qi et al. proposed a self-supervised reinforcement learning method that was
aimed at optimizing fuel efficiency in hybrid electric vehicles [46]. This method exhibits
accelerated training convergence and lower fuel consumption compared with conventional
strategies, allowing for a near-global optimum fuel economy under the newly proposed
driving cycle. Corinaldesi C et al. introduced an optimization algorithm to enhance electric
vehicle and stationary battery storage [47]. Furthermore, the authors applied this method
to a real case scenario, utilizing measured data and demonstrating the effectiveness of a
linear relationship.

Contrastive learning has gained widespread adoption in the field of computer vision.
For instance, contrastive learning is employed to learn feature representations with strong
generalization performance from extensive unlabeled data; this process is known as self-
supervised contrastive learning [40]. Moreover, contrastive learning can enhance both the
accuracy and robustness of models in tasks such as object detection and image segmentation.
In the field of natural language processing, contrastive learning can be used to learn
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the similarity between words, sentences, or documents, thereby enhancing the semantic
comprehension capability of models. In the field of recommendation systems, contrastive
learning can be utilized to learn the similarity between users and items, thus improving the
recommendation accuracy of recommendation systems.

In view of the success of contrastive learning in many fields, this paper intends to fur-
ther construct a better operation evaluation method of EVCSs through contrastive learning.

3. Materials and Methods

Deep learning models can emulate human rating thinking, comprehend the underlying
meaning of each evaluation index, and then accomplish the task of the comprehensive
grade evaluation of heterogeneity indexes. However, applying deep learning models to the
field of EVCS grade evaluation encounters the following problems:

• Input standardization problem: Deep learning models require standardized input
forms, whereas evaluation indexes manifest in diverse types and forms. The first prob-
lem we intend to solve is how to reconcile different types of evaluation indexes into
the format required for the deep learning model without losing their original meaning.

• Index comprehension problem: Given the multitude of evaluation indexes in terms
of both the quantity and type, each index possesses distinct modes of understanding.
Consequently, the evaluation index comprehension is the second problem we intend
to address.

• Comprehensive grade evaluation problem: In view of the heterogeneity of different
types of evaluation indexes, it is a significant challenge to comprehensively investigate
different indexes, distinguish the characteristics of index data of different charging
stations, and ultimately attain precise evaluation results. This is the third problem we
intend to solve.

Addressing the aforementioned three crucial issues, we have devised solutions for
each. Firstly, we designed a text normalization-based input method. Next, we developed a
comprehensive grade evaluation model leveraging the bidirectional self-attention mecha-
nism. Lastly, we introduced an evaluation model training approach that uses contrastive
learning and multiple impact factors. Building upon these advancements, we present SimC-
SEBERT, an evaluation model that incorporates bidirectional self-attention and contrastive
learning and allows for a comprehensive grade evaluation of EVCSs.

3.1. Text Normalization-Based Input Method

During the comprehensive evaluation of EVCSs, the evaluation index dataset D com-
prises two components: the evaluation index attribute set X and the attribute value set
Y = S(X), where X = x1, . . . , xn and S : X → Y is the mapping between the attributes and
their respective values. Due to the diversity of evaluation index attributes, the attribute val-
ues that are associated with different attributes exhibit significant variations. For instance,
charging quantity is typically expressed as a numerical value, whereas opening hours is
denoted as a period. Therefore, we chose to utilize the text form to ensure a consistent
representation of the different features of various evaluation indexes. This approach offers
the advantages of making full use of the richness of language expression and preserving
the implicit information in the original evaluation indexes to the maximum extent.

To enhance the model’s comprehension of the correspondence between attributes and
attribute values in the text representation, we normalized the text language by employing
the “evaluation index attribute-attribute value” key-value pair. Specifically, we expressed
the evaluation index dataset D as a sequence of text key-value pairs T = t1, . . . , tn, where
each text key-value pair ti is represented as follows:

ti = xi + “ : ” + yi (1)

where xi represents the attribute name of the i key-value pair and yi represents the attribute
value of the i key-value pair. Table 2 displays examples of inputs for evaluation indicators.
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Table 2. The example of an evaluation index input.

Evaluation Index Data Text Sequence

Charging volume 87,643.1 “charging volume: 87,643.1, charging fee:
0.83565,
service fee: 0.1411–0.5353, . . . , number of slow
charging piles: 4 ”

Charging fee 0.83565
Service fee 0.1411–0.5353

. . . . . .
Number of slow charging piles 4

All text key-value pairs ti are delineated by commas to form a comprehensive text sequence:

T = t1 + “, ” + t2 + “, ” + · · ·+ “, ” + tn (2)

This text representation offers the advantage of a consistent representation of different
characteristics of different evaluation indexes. It can utilize the richness of language
expression to maximize the retention of implicit information from the original evaluation
indexes. In addition, the utilization of text key-value pairs allows the model to enhance
its comprehension of the correspondence between attribute names and attribute values,
thereby facilitating a more precise capture of the meaning underlying the indexes. In other
words, the utilization of text key-value pairs enhances the model’s semantic interpretation
ability, consequently improving both its accuracy and interpretability.

3.2. Comprehensive Grade Evaluation Model Based on Bidirectional Self-Attention Mechanism

Given the multitude of evaluation attribute inputs, the model necessitates robust
language comprehension capability. The bidirectional self-attention mechanism allows
the model to comprehend the contextual relationship of the index text input and focus
on the strengths and weaknesses of each index. In pursuit of this objective, we intended
to employ BERT, a typical pre-trained model, as the comprehension model to extract
features from the evaluation index data text and transform them into high-dimensional
feature representations.

BERT is a pre-trained language model based on the Transformer structure. As a
well-known model in natural language processing, it has the following advantages:

Contextual understanding: BERT is a pre-trained language model with powerful con-
textual understanding capabilities. By learning from a large corpus of text data, it captures
the associations between words and sentences, allowing for the better comprehension and
handling of charging station-related factors.

Pre-training advantage: BERT’s pre-training on a large-scale corpus allows it to de-
velop rich language representations. This allows it to better analyze the underlying logical
relationships in the text of factors for charging station evaluations. BERT provides contex-
tual representations that enhance the accuracy and prediction capabilities in this domain.

Transfer learning capability: After pre-training, BERT can be fine-tuned for specific
tasks. This transfer learning ability allows it to adapt better to charging station evaluations
with minimal labeled data. This approach saves labor and time while improving the
accuracy and efficiency of the evaluation process.

Multi-domain applicability: BERT has demonstrated excellent performance across
different domains, which allows it to be used for charging station evaluation. BERT serves
as a robust foundation for modeling.

After acquiring a text sequence, the model converts each word into embedding vectors
and consolidates them into an embedding matrix, which serves as the input of the model.
Specifically, the BERT model processes the input text sequence to obtain token embedding,
segment embedding, and position embedding for each word. These are subsequently
added to yield the final embedding vector. The representation of the input text and three
embeddings is shown in Figure 1.
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Figure 1. The process of text input into the BERT model.

Token embedding represents the semantic information of each word. They map each
word to a vector representation through an embedding layer. Assuming a vocabulary size
of V, with each word being represented by a one-hot vector, the token embedding matrix
Etoken ∈ RV×d is defined as:

Etoken =
[−→e 1

−→e 2 · · · −→e V
]

(3)

where −→e i ∈ Rd represents the embedding vector of i word and d represents the dimension
of the embedding vector.

Segment embedding represents different paragraph information in the input text; its
purpose is to differentiate between different sentences or paragraphs in the input text. In the
BERT model, the input sequence typically comprises multiple sentences or paragraphs.
The inclusion of segment embedding allows the model to distinguish different sentences
or paragraphs more effectively. Assuming there are S unique paragraphs in the input
sequence, the segment embedding matrix Esegment ∈ RS×d is defined as:

Esegment =
[−→e 1

−→e 2 · · · −→e S
]

(4)

where −→e i ∈ Rd represents the embedding vector of i paragraph.
Position embedding represents the position information of each word in the sequence.

It can assist the model in better comprehending the order of information in the input
sequence. In the BERT model, the position embedding of each word is calculated by a
position encoder. Assuming the length of input sequence is L, the position embedding
matrix Eposition ∈ RL×d is defined as:

Eposition =
[−→e 1

−→e 2 · · · −→e L
]

(5)

where −→e i ∈ Rd represents the position embedding vector of i word, which is calculated by
the position encoder:

−→e i = PEi =

sin( i
10,0002j/d ) j = 2k

cos( i
10,0002k/d ) j = 2k + 1

(6)

where PEi ∈ Rd represents the original position embedding vector of i position; j represents
the dimension of the position embedding vector; and k represents the layer of the position
embedding vector. In the BERT model, the position encoder employs a combination of sine
and cosine functions, which enhances the model’s ability to learn the position information
in the input sequence.

The embedding matrix E ∈ RL×d that is obtained by summing the token embeddings,
segment embeddings, and position embeddings can be expressed as:

E = Etoken + Esegment + Eposition (7)

where L represents the length of the input sequence and d represents the dimension of the
embedding vector.
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This input structure enhances the model’s representation ability by effectively repre-
senting the semantic information of text sequences. Given the consideration of multiple
evaluation indexes and the diverse perspectives on comprehensive scores, refined scoring
is impractical. Therefore, we chose grade evaluation as the method for the comprehensive
evaluation. To achieve a grade evaluation of the model, we intended to employ the method
of text classification by connecting two linear layers, a multi-classification layer and a multi-
label classification layer, in the output section of the BERT model. Specifically, the output
of the multi-classification layer is the evaluation grade category of the EVCS, whereas the
output of the multi-label layer is the impact factor category. The detailed framework is
shown in Figure 2.

BERT

                      ...充 电 量 ： 8 7 开 放 ： 1[CLS]

                      ...... ... ... ... ... ... ... ... ... ... ...

Multi-Classification Layer

                                  ...

              ...

1      2     3           10

Index Text Sequence:

Language Understanding Model:

Language Features Sequence:

Linear Layers:

Classification probability sequence:               ...

1      2     3           9

Multi-label Classification Layer

Figure 2. The comprehensive grade evaluation model based on the bidirectional self-attention mech-
anism (The meaning of the Chinese character in “Index Text Sequence” is: “Charge: 87,643.1, . . . ,
Open: 1”).

3.3. Evaluation Model Training Method Based on Contrastive Learning and Multiple
Impact Factors

The evaluation indexes for charging stations are heterogeneous. To address the chal-
lenge of comprehensive evaluation that is caused by index heterogeneity, we proposed
employing contrastive learning. This approach allows the model to compare and analyze
the differences between feature representations of evaluation indexes for different grades
and uncover the underlying patterns across various grade classifications. In addition to
simply predicting the evaluation indexes based on EV charging data, we incorporated a
framework for predicting the “impact factor”, which could identify the main impact factors
that significantly impact the evaluation of EVCSs. The main impact factors vary among
different charging stations. For instance, users in urban areas prioritize charging stations
with superior services and features, whereas remote locations give more importance to
the location.

SimCSE is a straightforward and efficient method for the contrastive learning of
sentence embeddings [48]. The main idea is to learn the embedded representation of
sentences by contrasting similar and dissimilar sentences. Specifically, this method aims
to acquire a compact and semantically rich representation of evaluation indexes by maxi-
mizing the similarity among synonymous sentences and minimizing the similarity among
non-synonymous sentences.
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Specifically, the contrastive learning method extends the original BERT evaluation
model’s single evaluation index text input from (xi) to (xi, x+i , x−i ), where x+i represents
similar evaluation index text input and x−i represents dissimilar evaluation index text input.

yi, y+i , y−i = BERT(xi, x+i , x−i ) (8)

where yi represents the evaluation probability vector of xi; BERT represents the BERT
evaluation model.

To achieve training for the classification and contrasting of the evaluation model, we
adopted two loss calculation methods: cross-entropy loss and contrastive learning loss.
The cross-entropy loss hi is calculated by:

hi = −
M

∑
k=1

P(yi, j)log(Q(yi, j)) (9)

where M represents the grade category count; P represents the grade predicted value; and
Q represents the grade true value. The contrastive learning loss li is calculated by:

li(yi, y+i , y−i ) = − log
esim(yi ,y

+
i )/τ

∑N
j=1 (e

sim(yi ,y
+
j )/τ + esim(yi ,y

−
j )/τ)

(10)

where N represents a small batch sample size; τ represents the temperature coefficient; and
sim represents the cosine similarity calculation function. In addition to contrastive learning
and the basic evaluation classification task, we incorporated the objective of multi-label
classification for the impact factors. Each input text sequence would be associated with an
impact factor with multiple labels. The loss function that is commonly used for multi-label
classification problems is binary cross-entropy. Assume that there are N samples, each
with K labels, where the true value of label k is yi,k and the predicted value from the model
output is ŷi,k. Therefore, the binary cross-entropy loss function can be formulated as:

MultiSML = − 1
N

N

∑
i=1

K

∑
k=1

yi,k log ŷi, k + (1− yi, k) log(1− ŷi,k) (11)

where the first term represents the loss of the positive sample and the second term represents
the loss of negative sample; log represents the natural logarithm.

This loss function means that, for each sample, the gap between the predicted value
and the true value for each label is calculated, and then the gap is averaged across all
labels. The loss function equals 0 when the predicted and true value are perfectly aligned;
conversely, a large gap between the predicted and true value results in a large loss function.
Finally, during the model loss calculation process, we combined the classification cross-
entropy loss, contrastive learning loss, and binary cross-entropy classification loss to derive
the final loss function, which is as follows:

y1 = Linear1(yi)

y2 = Linear2(yi)

loss = CrossEntropy(y1) + li(yi, y+i , y−i )

+ MultiSML(y2)

(12)

where CrossEntropy represents the cross-entropy loss function; MultiSML represents the
multi-label classification loss function with a boundary; and Linear1 and Linear2 represent
two different linear layers.

3.4. Bidirectional Self-Attention Evaluation Model Based on Contrastive Learning

The SimCSEBERT model is a general contrastive learning evaluation model that is
based on the text input, the general language model BERT, and the contrastive learn-
ing method SimCSE. To address the issue of heterogeneity among evaluation indexes,
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the SimCSEBERT model employs the BERT model to conduct representation learning on
the evaluation index text. Furthermore, it utilizes a simple linear layer to convert the eval-
uation representation into a grade probability sequence. Subsequently, the SimCSEBERT
model uses the contrastive learning method for training, in which the grade probability
sequences of similar data and dissimilar data are used as references. Simultaneously,
by incorporating real label data, the model calculates its loss and subsequently performs
backward propagation to adjust the model parameters. This iterative process facilitates the
training and evaluation of the model. Specifically, the training process of the SimCSEBERT
model is shown in Figure 3.

SimCSEBert

BERT Linear 
Layer

Evaluation 
Data

Predicted 
Result

Ground Truth

Evaluation 
Text

Evaluation Text

Dataset

Features

Data 
Process

PredictInput

Loss Calculation

Training

Probability matrix

Probability 
matrix

Data 
Process

Figure 3. The flowchart of SimCSEBERT.

Firstly, representation learning is conducted on the evaluation index text:

hi = BERT(xi), (13)

where xi represents the i evaluation index text; hi represents its representation vector.
Then, the representation vector is transformed into a grade probability sequence using

a linear layer:
pi = softmax(Whi + b), (14)

where W and b represent the weight and bias of the linear layer; pi represents the grade
probability sequence of the i evaluation index.

Subsequently, the SimCSEBERT model employs a contrastive learning method to
train the model. Specifically, for each evaluation index, we randomly selected a similar
evaluation index and a dissimilar evaluation index and calculated their grade probability
sequences, respectively:

pi = softmax(Whi + b),

p+j = softmax(Wh+j + b),

p−k = softmax(Wh−k + b),

(15)

where j represents the similar evaluation index; k represents the dissimilar evaluation index;
and h+j and h−k represent their representation vectors, respectively.
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Next, the SimCSEBERT model calculates the difference between the grade probability
sequences of similar and dissimilar data as the loss function and combines it with the
cross-entropy classification loss and binary cross-entropy classification loss:

p1 = Linear1(pi)

p2 = Linear2(pi)

L =
N

∑
i=1

[
log pT

i p+j − log
N

∑
k=1

exp(pT
i p−k )

]
L = L+ CrossEntropy(p1) + MultiSML(p2),

(16)

where N represents the evaluation index count.
The prediction process of the SimCSEBERT model is straightforward, where the final

grade prediction is determined by maximizing the grade prediction probability:

ŷ = arg
M

max
i=1

N

∑
j=1

pij, (17)

where M represents the grade count; pij represents the j garde’s prediction probability of
the i evaluation index.

The flowchart of the SimCSEBERT model is shown in Figure 3. The SimCSEBERT
model exhibits high accuracy and interpretability.

4. Experiment and Results
4.1. Data Collection and Processing

During the data collection phase, we collected equipment and operation information
from Wuhan State Grid charging stations along with partial data on the user charging
behavior between the first and second quarters of 2021 and the first quarter of 2022. By in-
tegrating user charging data, we obtained charging information for a total of 97 State
Grid charging stations over a period of 271 days, which resulted in a cumulative count of
26,287 records.

In the data processing phase, we employed various evaluation criteria for manual
grade evaluation, including the daily charging volume, charging fee, service fee, and
average user charging percentage, as well as location, surrounding charging stations,
and opening hours of each charging station. The grading scale ranged from 1 to 10.
Furthermore, we incorporated the main impact factors of each charging station as indexes
for multi-label classification. For example, factors such as fast charging have a significantly
larger influence in urban centers compared with suburban areas that have limited charging
stations. We treated the daily charging information text of each charging station, along with
its associated grade and relevant impact factors, as a unit sample to construct the training
and evaluation datasets.

4.2. Baseline Models

The grade evaluation process for EVCSs can be viewed as a text classification task.
To tackle this challenge, we selected widely used text classification models as baseline
models, including the TextCNN, TextRNN Attention, TextRCNN, FastText, DPCNN, self-
attention model Transformer, and BERT models.

TextCNN is a CNN-based model that utilizes multiple convolutional kernels to extract
features of different lengths, which effectively captures local information in the text. It
offers high computing efficiency and performs well in certain text classification tasks.

BiLSTM is a model that is based on RNN. It is capable of processing variable-length
sequence data and capturing long-term dependencies in the sequence. TextRNN is a funda-
mental BiLSTM model. TextRNN Attention integrates the attention mechanism to augment
the model’s representational capability. TextRCNN leverages the advantages of LSTM and
CNN [33]; it utilizes bidirectional LSTM for extracting sequence features and subsequently
captures global information from the text through pooling and concatenation operations.
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FastText is a rapid text classification model that relies on both the bag-of-words model
and n-gram model, and it demonstrates commendable performance in certain tasks.

DPCNN is a deep text classification model based on CNN that captures multi-level
information in the text by utilizing multiple convolutional and pooling layers, and it
achieves efficient text classification.

Transformer is a neural network model that utilizes a self-attention mechanism and
has shown remarkable performance in machine translation and text classification tasks.
The Transformer model computes relationships between different positions in the text by
using the self-attention mechanism.

BERT, a pre-trained language model based on Transformer, has achieved significant
success in NLP by learning language representations through a combination of pre-training
and fine-tuning processes. It demonstrates good performance in text classification tasks
and other domains.

4.3. Experimental Results

According to the experimental results presented in Table 3, the SimCSEBERT and
BERT models achieved high accuracy in both the evaluation and impact factor analysis
tasks, with both exceeding values of 0.9 and significantly surpassing other models.

Table 3. The comparison of each model’s accuracy.

Model Evaluation
Accuracy

Impact Factor
Analysis Accuracy Model Interpretation

TextCNN 0.7808 0.8138 Typical CNN text classification model

TextRNN 0.7679 0.8147 Bidirectional RNN: Bi-LSTM

TextRNN_Attention 0.7762 0.8195 Bi-LSTM + Attention

TextRCNN 0.7762 0.8195 Convolutional recurrent neural network

FastText 0.7743 0.8195 Fast text classification algorithm proposed
by Facebook

DPCNN 0.7720 0.8173 Deep pyramid convolutional neural network

Transformer 0.7663 0.8195 Typical model of attention mechanism

BERT 0.9308 0.9265 Bidirectional self-attention model

SimCSEBERT 0.9464 0.9492 Our model

Particularly, the SimCSEBERT model achieved the highest accuracy in both tasks
with scores of 0.9464 and 0.9492, respectively, which were considerably higher than those
obtained by other typical text classification models. These results indicate that SimCSE-
BERT has outstanding performance and holds significant potential in the domains of the
performance evaluation and main impact factor analysis of EVCSs. Furthermore, both the
SimCSEBERT and BERT models, which are based on pre-trained techniques, exhibited
remarkable performance compared with other models. This superiority could be attributed
to the adoption of a transfer learning strategy in the pre-trained models of BERT and
SimCSEBERT. By undergoing pre-training on extensive corpora, these models acquire com-
prehensive language knowledge, which is then fine-tuned for specific tasks. This strategy
allows the models to leverage the knowledge acquired during pre-training and enhance
their performance on downstream tasks, demonstrating the advantages of employing the
transfer learning strategy. Moreover, it establishes the significant research value of such
methods in the field of EVCS evaluation and analysis. SimCSEBERT, compared with the
original BERT model, exhibits superior performance due to the incorporation of a con-
trastive learning method. This outcome validates the effectiveness of contrastive learning
in capturing similarities and dissimilarities among various evaluation indexes of EVCSs,
thereby enhancing the overall model performance.
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5. Comparisons and Discussion

To further analyze the details of the comprehensive evaluation of each model for
EVCSs, we conducted the confusion matrix analysis of each model in the evaluation task.
Additionally, we performed the analysis of precision, recall, and F1 score in the impact
factor analysis task.

5.1. Confusion Matrix Analysis

Through the confusion matrix analysis of each model evaluated in Figure 4, we found
the outstanding performance of SimCSEBERT in the evaluation process.

TextCNN TextRNN TextRNN_Attention

TextRCNN FastText DPCNN

Transformer Bert SimCSEBert

0

0.2

0.4

0.6

0.8

1

Figure 4. The confusion matrix of each model. Thevertical axis represents the true value, the horizon-
tal axis represents the predicted value, and the depth of the cell represents the level of the predicted
hit rate. The deeper the cell is, the higher the hit rate is, and vice versa.

Specifically, SimCSEBERT accurately hit the target evaluation values in the majority
of evaluations. Even in cases of certain deviations, the deviations were mostly within
the range of the target evaluation values, with variations of not more than one grade.
Upon scrutinizing the confusion matrix, the other models, except for BERT and SimCSE-
BERT, demonstrated relatively accurate evaluations solely for the first three categories. This
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occurrence stemmed from the imbalanced distribution of data, with the dataset primarily
consisting of data from these three categories [49]. In dealing with imbalanced, multi-label
classification problems, traditional natural language processing algorithms often struggle
to fully capture the deep semantic information of samples, which leads to the identification
of only the most frequent categories within the sample set. However, the BERT model,
based on its larger architecture and semantic learning approach using bidirectional atten-
tion mechanisms, exhibits strong generalization capabilities, even with limited sample
data. SimCSEBERT and BERT exhibited a higher overall proportion of correctly hit grades,
which mostly could hit the correct grade accurately. This result indicates the relatively
superior ability of these kinds of pre-trained models in mitigating the challenges posed by
imbalanced data distribution. Notably, SimCSEBERT had an improvement in the overall
hit rate compared with BERT. These findings show that SimCSEBERT is capable of superior
adaptability to the evaluation scope, heightened evaluation accuracy, and an effective
utilization of contrastive learning to comprehend the similarity between text pairs.

In comparison witho the BERT model, SimCSEBERT possesses the advantage of lever-
aging a larger volume of data for learning, thereby enhancing the model’s generalization
capability. The incorporation of the contrastive learning method allows for the exploration
of similarities across diverse text pairs. It leads to the acquisition of more comprehensive
and precise representations. Consequently, SimCSEBERT can make better use of the infor-
mation in data, better adapt the evaluation range, and improve the evaluation accuracy.
The results of the confusion matrix experiments for each model are individually detailed
in Appendix A.

5.2. Performance Comparison of Each Model in the Impact Factor Analysis Task

Table 4 illustrates the comparative experimental results of each model in the main
impact factor analysis task. From the table, it can be observed that, except for SimCESBERT
and BERT, the other models only demonstrated satisfactory analytical performance for
factors 1, 2, 3, and 6; however, they encountered challenges when attempting to accurately
analyze the remaining factors. This limitation could be attributed to the infrequent oc-
currence of these factors in the dataset and the imbalanced distribution of positive and
negative samples. In contrast, SimCSEBERT and BERT exhibited superior adaptability to
such imbalanced distributions. These results indicate the models’ ability to effectively learn
the underlying relationships between these less frequent factors and the corresponding
grade evaluation rules. The comparative analysis between SimCSEBERT and BERT reveals
that SimCSEBERT outperforms BERT in predicting various factors, thereby highlighting
the efficacy of contrastive learning.

Table 4. The comparison of model performance in impact factor analysis tasks. Nan represents that
the model has never predicted this impact factor. Impact factors 1–9 represent the “number of fast
charging piles”, “number of slow charging piles”, “payment method”, “charging fee”, “service fee”,
“opening hours”, “charging volume”, “charging percentage”, and “number of low-battery-EVs in the
vicinity”, respectively.

Model Model Indicators
Impact Factor

1 2 3 4 5 6 7 8 9

TextCNN
Precision 0.7994 0.7805 0.8704 / / 0.8374 / / /

Recall 0.9808 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
F1 score 0.8809 0.8767 0.9307 0.0 0.0 0.9115 0.0 0.0 0.0

TextRNN
Precision 0.8048 0.7805 0.8704 / / 0.8374 / / /

Recall 0.9798 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
F1 Score 0.8837 0.8767 0.9307 0.0 0.0 0.9115 0.0 0.0 0.0
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Table 4. Cont.

Model Model Indicators
Impact Factor

1 2 3 4 5 6 7 8 9

TextRNN_Attention
Precision 0.808 0.7805 0.8704 / / 0.8374 / / /

Recall 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
F1 score 0.8938 0.8767 0.9307 0.0 0.0 0.9115 0.0 0.0 0.0

TextRCNN
Precision 0.808 0.7805 0.8704 / / 0.8374 / / /

Recall 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
F1 score 0.8938 0.8767 0.9307 0.0 0.0 0.9115 0.0 0.0 0.0

FastText
Precision 0.808 0.7805 0.8704 / / 0.8374 / / /

Recall 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
F1 score 0.8938 0.8767 0.9307 0.0 0.0 0.9115 0.0 0.0 0.0

DPCNN
precision 0.808 0.837 0.8704 / / 0.8374 / / /

Recall 1.0 0.8021 1.0 0.0 0.0 1.0 0.0 0.0 0.0
F1 score 0.8938 0.8191 0.9307 0.0 0.0 0.9115 0.0 0.0 0.0

Transformer
Precision 0.808 0.7805 0.8704 / / 0.8374 / / /

Recall 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
F1 score 0.8938 0.8767 0.9307 0.0 0.0 0.9115 0.0 0.0 0.0

BERT
Precision 0.9925 1.0 0.972 0.8926 0.6 0.9829 0.9242 0.8895 0.98

Recall 0.9819 0.8854 0.986 0.8975 0.0185 0.9927 0.9059 0.6538 0.3427
F1 score 0.9871 0.9392 0.979 0.895 0.0359 0.9878 0.915 0.7537 0.5078

SimCSEBERT
Precision 0.993 1.0 0.9605 0.9474 0.8776 0.9847 0.9611 0.9448 0.9298

Recall 0.9824 0.8646 0.9873 0.8975 0.7963 0.9923 0.9183 0.6581 0.7413
F1 score 0.9877 0.9274 0.9737 0.9218 0.835 0.9885 0.9392 0.7758 0.8249

5.3. Practical Implications

This paper demonstrates that analyzing charging station operation data through natu-
ral language models can accurately predict charging station operation and impact factors
and provide insights for operation evaluation. The prediction results can assist practitioners
or policymakers in the field of EVCSs to better understand the operations. Based on our
findings, we propose the following recommendations for practitioners or policymakers:

(1) The operation evaluation and impact factor analysis can provide valuable information
to policymakers. The insights gained from this analysis can guide policy decisions
that are related to the expansion of charging infrastructure and the promotion of
electric vehicle adoption. Policymakers can use this information to develop targeted
policies and incentives that support the growth of charging infrastructure.

(2) Different charging stations are affected by different impact factors, and their opera-
tional strategy design would also be different. The results of our impact factor analysis
can provide a directional reference for practitioners or policymakers to design and
optimize operational strategies. For instance, through the impact factor analysis,
it was found that service fee is the main factor affecting the operation of a certain
charging station. Practitioners can use this information to design pricing strategies
that incentivize optimal usage patterns, thus improving the economic benefits of this
charging station.

6. Conclusions

Through the in-depth exploration of the operation of EVCSs, we constructed an EVCS
dataset. Next, we utilized NLP models to learn and analyze charging data, and we achieved
a grade evaluation of EVCSs and an analysis of the main impact factors.

This paper innovatively applies deep learning-based NLP models to the field of EVCSs
operation. By analyzing the charging data using natural language models and by incor-
porating contrastive learning, we predicted the operation performance. This approach
facilitates the evaluation of their operation status and the identification of the main im-
pact factors. The experimental results show that the BERT model, which incorporates
contrastive learning, achieves superior evaluation and analysis accuracy. This exploration
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of EVCSs operation problems holds significant importance, and the methods and tech-
nologies employed have broad application prospects. By employing NLP technology for
the analysis and prediction of charging data, a comprehensive understanding of market
demands and user preferences can be acquired. This technology facilitates operators in de-
veloping more effective and targeted strategies for operating EVCSs. Additionally, the NLP
models utilized in this paper can be extended to tackle marketing challenges in diverse
business domains.

In conclusion, this study provides a new insight and method to address EVCS opera-
tion problems. Furthermore, it serves as a practical case for the application of NLP models
in the business domain within the field of deep learning. It is expected that this research
will inspire researchers in relevant fields and make a valuable contribution to the growth
and dissemination of the market of EVCSs.

Regarding the limitations of this study, on the one hand, we did not fully access the
comprehensive feature information about the charging station operations, such as incorporating
environmental data; the analysis of influencing factors could be more insightful with the
inclusion of this data. On the other hand, in terms of model selection, this paper did not
assess the experimental effectiveness of large-scale language models (e.g., ChatGPT) in the
field of charging station operation evaluation. For future research, we plan to incorporate
more relevant information about charging stations to comprehensively evaluate and analyze
the factors influencing the operational effectiveness of charging stations. These factors may
include the proximity and congestion of traffic around the charging stations, the distribution of
commercial and residential areas nearby, the branding of the charging stations, and the rate of
facility malfunctions. Additionally, we intend to explore the application of large-scale language
models in such evaluative tasks. For instance, we aim to use the ChatGPT model to extract
feature factors and leverage the model’s understanding of general knowledge to enhance its
comprehension of feature semantics, thereby improving the model’s performance.
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Appendix A

Figure A1. The confusion matrix of TextCNN (L) and TextRNN (R).
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Figure A2. The confusion matrix of TextRNN_Attention (L) and TextRCNN (R).

Figure A3. The confusion matrix of FastText (L) and DPCNN (R).

Figure A4. The confusion matrix of Transformer (L) and BERT (R).
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Figure A5. The confusion matrix of SimCSEBERT.
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