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Abstract: In the last few decades, structural health monitoring has gained relevance in the context of
civil engineering, and much effort has been made to automate the process of data acquisition and
analysis through the use of data-driven methods. Currently, the main issues arising in automated
monitoring processing regard the establishment of a robust approach that covers all intermediate
steps from data acquisition to output production and interpretation. To overcome this limitation,
we introduce a dedicated artificial-intelligence-based monitoring approach for the assessment of the
health conditions of structures in near-real time. The proposed approach is based on the construction
of an unsupervised deep learning algorithm, with the aim of establishing a reliable method of
anomaly detection for data acquired from sensors positioned on buildings. After preprocessing, the
data are fed into various types of artificial neural network autoencoders, which are trained to produce
outputs as close as possible to the inputs. We tested the proposed approach on data generated from an
OpenSees numerical model of a railway bridge and data acquired from physical sensors positioned
on the Historical Tower of Ravenna (Italy). The results show that the approach actually flags the data
produced when damage scenarios are activated in the OpenSees model as coming from a damaged
structure. The proposed method is also able to reliably detect anomalous structural behaviors of
the tower, preventing critical scenarios. Compared to other state-of-the-art methods for anomaly
detection, the proposed approach shows very promising results.

Keywords: artificial intelligence; structural health monitoring; autoencoders; deep learning; OpenSees
numerical model; sensors; civil engineering; numerical simulations; data-driven methods

1. Introduction

In the last few decades, structural health monitoring (SHM) has benefited greatly from
the outstanding progress made in the field of outlier detection-oriented algorithmic theory
and from the considerable increase in CPU velocity and GPU performance in parallel
computing. Such progress has paved the way for anomaly detection in the context of
civil engineering, making fast data collection, transmission, and processing methods for
near-real-time response of the overall structural state available [1,2]. In particular, artificial
intelligence (AI), especially deep learning (DL) anomaly detection techniques entirely based
on the analysis of real data, can enable the recognition of hidden patterns embedded in the
data flow and reporting of any anomalous streams of information that indicate possible
damage that would otherwise be undetectable. This reflects the foundational assumption
of automated monitoring methods, which is that damage, whether cracks, collapses, local
mechanisms, or gradual deterioration, are present as data anomalies that can be recognized.
Whenever data analysis detects possible outliers, dedicated algorithms can be employed for
damage localization and to evaluate the type and extent of damage. Then, in the decision-
making phase, the remaining lifetime of the structure is assessed, and expert engineers
can promptly establish whether or not to restrict access to the facility as a precautionary
measure [3,4].
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Currently, the main issues arising in automated monitoring processing regard the
establishment of a robust framework that covers all the intermediate steps from data
acquisition to output production and interpretation. The civil engineering community has
offered many suggestions that may fit very specific cases [2,5], but an objective standard
for SHM is still lacking. This is an especially pivotal issue in SHM, although there is a
general agreement about the techniques recommended for supervised and unsupervised
learning. This general agreement regards the employment of deep autoencoders (AEs)
and their variations to accomplish designed tasks in the flow of operations, especially
when a damage-labeled dataset is not available to run supervised learning [6]. We refer
to fairly recent works [7,8] in which vanilla and variational autoencoders (VAEs) were
employed to extract features from raw data consisting of windowed accelerometric time
series. The authors used autoencoders as non-linear tools for data reduction. Similarly,
in [9] damage-sensitive features extracted from data through a VAE were input into a
support vector machine (SVM), establishing a decision boundary surface to distinguish
regular from anomalous instances. In this context, a very important research problem is
also related to data anomaly detection in wireless sensor networks (WSNs). Accordingly,
Cauteruccio et al. [10] proposed a new approach for monitoring of heterogeneous WSNs in
order to find anomalous behaviors. The approach is based on finding (hidden) correlations
between sensors and using this knowledge to track their behavior over the course of
their working lives. Significant changes in this correlation over time may lead to the
belief that an anomaly has occurred. Another new method for automatically detecting
anomalies spanning short periods of time vs. anomalies spanning long periods of time in
heterogeneous WSNs was presented in [11]. The proposed method combines edge and
cloud data processing using the multiparameterized edit distance approach and a fully
unsupervised artificial neural network algorithm.

To overcome the limitations of the previously mentioned works, in this paper, we
propose an integrated approach for managing strictly data-driven contexts in SHM, from
data collection to output emission, with the aim of providing a robust solution for applica-
tion in real monitoring cases. The main advantage of our approach is that it intelligently
self-adapts to the widest set of structures equipped with sensors, covering all possible
environmental and external conditions and providing unsupervised solutions. In this
regard, we used artificial neural network autoencoders for anomaly detection on data
acquired from structures to monitor their health status. Nevertheless, what we present here
slightly differs from popular methods introduced in the context of SHM to date, especially
concerning the role AI plays in the process. First, we perform features extraction and
reduction before any AI technique is used. Additionally, in [7], the approach was taken
to the limit, as independent AEs were trained for each sensor, and the healthy state was
evaluated after collecting single performances. On the contrary, our proposal is a hybrid
method, since the features independently deduced from each time series are concatenated
before being standardized, projected, and provided as input to the AI module. Finally,
since our preprocessing sequence helps catch relevant information from the signal and
remove environmental effects, our scheme better fits cases in which windowed sequences
are highly non-homogeneous due to the impulsive nature of possible external forces and is
more appropriate for high-rate, continuous monitoring in the most varied, real cases.

We tested our method on accelerometric time series obtained by running railway
bridge dynamics for a finite-element method (FEM) model created using the Scientific
ToolKit for OpenSees (STKO), an advanced GUI for OpenSees [12], for both the training
and test phases. We also tested our method on real data acquired from the Historical Tower
of Ravenna (Italy), on which physical sensors have been mounted to assess its health status.
Analysis of the obtained results shows that our approach is reliable and very promising
in correctly identifying anomalous behaviors in data, favoring structural maintenance,
and preventing critical scenarios. Finally, compared to other state-of-the-art methods for
anomaly detection, the proposed approach has shown very promising results.
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The paper is organized as follows. Section 2 presents the materials used in terms
of the railway bridge model and simulation setup, the data collected from numerical
simulations, and the data acquired from the tower. It also describes the methods used
for data preprocessing, feature extraction, and the adopted autoencoder neural networks.
Section 3 is dedicated to the presentation of the results, and we illustrate how the algorithm
correctly classifies undamaged and damaged data series and compare it to other state-of-
the-art methods for anomaly detection. Section 4 discusses the obtained results. Finally, in
Section 5, we present our conclusions and suggest further developments.

2. Materials and Methods
2.1. Materials

In the following subsections, we describe the two case studies on which we tested
our proposed approach in terms of data generation and/or acquisition. In particular, we
present a railway bridge FEM and provide information on the simulation setup and data
generated from numerical simulations. Then, we describe the data acquired from the
physical sensors mounted on the Historical Tower of Ravenna (Italy).

When referring to data, we intend the time series of monitored quantities to be
collected within a fixed time window. The length of a single time window is a user-
defined parameter, although it is recommended to adopt a value greater than or equal to
100 times the fundamental period of the reference structure for optimal modal parameter
estimation [13]. Time windows can be immediately consecutive or partially overlapping.

2.1.1. Data from Numerical Simulations

The simulation model used for the generation of synthetic data was created using the
STKO interface for OpenSees [12] and reproduces a steel truss railway bridge with riveted
connections consisting of 3 spans (Figure 1). The structure is approximately 93 m long and
5 m wide and has two piers that are 4.8 m high. Each lateral span measures ∼28 m, while
the central span is ∼35 m long. Further information about the model is provided below:

- The braces were modeled using T-profile truss elements;
- Piers were modeled using 4-node shell elements (ASDShellQ4);
- The ballast was modeled using springs;
- Tracks were modeled using IPE beam elements;
- Both top and bottom chords were modeled using double-T beam elements;
- Verticals were modeled using IPE300 beam elements;
- Diagonals were modeled using double-C beam elements.

Regarding boundary conditions, the piers were fixed to the base; one of the two
abutments blocks linear displacements along the x, y, and z directions and rotations about
the x axis, while the other abutment blocks linear displacements along the y and z axes.
The spans are attached to the piers by means of rigidLinks OpenSees elements.

The monitoring system of the bridge consists of a network of 12 triaxial accelerometric
sensors, which sample at a rate of 1 kHz and are located at highly representative nodes, as
depicted in Figure 1.

Figure 1. Schematic representation of the bridge and sensor positions.
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Damage scenarios can be introduced by reducing the elastic moduli of 32 different
structural elements by modifying them as a percentage from 0 to 100, enabling the possibil-
ity of determining which elements to damage. Figure 2 shows the elements for which the
user can reduce the elastic modulus, consisting of 8 diagonals in compression, 8 diagonals
in tension, 8 chords in compression, and 8 chords in tension.

Figure 2. Locations of the 32 elements whose elastic modulus the user can reduce. Legend: DC,
diagonal in compression; DT, diagonal in tension; CC, chord in compression; CT, chord in tension.

Numerical simulations were performed for the railway bridge model as follows. A
single time window refers to the passage of one train across the railway bridge, which
generates a single instance in terms of the AI algorithm. Partially following the strategy
described in [14], trains were modeled using their mass and velocity, which were repre-
sented as random variables extracted from log-normal distributions with parameters of
µmass = 62 ton, σmass = 5 ton, µvelocity = 8.33 m/s, and σvelocity = 1 m/s, while the length
of the trains was fixed at 40 m. A single time window lasts for T = 50 s, regardless of the
exact moment the caboose of the train crosses the last bridge element, in order to obtain
consistent time windows for processing. The output of the STKO program consists of
accelerometric time series considering the components along the x, y, and z axes for each of
the 12 control points, for a total of 36 time series for each time window.
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2.1.2. Real-World Data

We also registered data from sensors formerly installed on the Historical Tower of
Ravenna (Italy) to monitor the evolution of its inclination over time and prevent possible
critical scenarios. The tower stands in the northwest area of the city, within the ancient city
walls, and its construction dates back to the 12th century. It has a parallelepiped shape,
with an approximately squared base ≈20 m in width and an original height of ≈38 m,
although the top of the tower was removed in the 2000s during some consolidation work,
meaning the entire building is currently ≈28 m high.

Data were collected during a period from 1 January 2009 to 31 December 2021 and
consist of five time series registered at a rate of a single measurement per hour each.
Specifically, the following data types are available:

- Three temperature time series labeled as follows:

- T1: The air temperature (in Celsius) measured by a sensor placed outside
the tower;

- T2: The core temperature of the masonry measured by a sensor placed within
the wall at a depth of 15 cm from the external surface;

- T3: The air temperature measured by a sensor placed inside the tower.

- Two inclinometer time series labeled as follows:

- Ix: The inclination of the tower along the east–west direction (x axis) measured
at a height of 21.0 m from the ground;

- Iy: The inclination of the tower along the north–south direction (y axis) measured
at the same height.

Positive values of Ix and Iy indicate westward and southward displacement, respectively.
Using the measurements described above, we obtained a total of 5 time series for each

time window. We set the size of the time window to 1 week, which we proved to obtain the
best performance in the anomaly detection task.

2.2. Methods

In the following subsections, we describe the different steps of data analysis and
anomaly detection composing our approach.

2.2.1. Flow chart of the Proposed Approach

Figure 3 shows the main steps that characterize our approach. Despite the origin of the
dataset, which consists of a collection of time series, the data follow the same path, provided
that any potential time gaps in the real case are suitably filled. Data collected during the
training phase are divided into fixed-length windows, which, in our case, do not overlap.
Trends are then removed from time series in each window to make the dataset stationary.
Then, a set of features is extracted for each time window, concatenated, standardized, and
projected onto a subspace of lower dimensions using principal component analysis (PCA),
which retains a given amount of information, eventually obtaining an instance to train
the algorithm. In the inference phase, the same process of feature extraction, aggregation,
standardization, and reduction is performed every time there are enough data to fill a
time window. Standardization and reduction, which consist of feature standardization
and projection, are completed with the same standardization and projected mathematical
objects obtained in the training phase to maintain data consistency. The obtained instance
is then fed as input into the trained model, and the corresponding reconstruction error
is calculated so that statistics come into play to establish whether current data should be
classified as satisfactory or anomalous. In the following section, we cover each phase of the
flow chart in more depth.
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Figure 3. Flow chart of the comprehensive process described in the text, from data acquisition to
decision making.

2.2.2. Gap Filling and Trend Removal

Due to occasional malfunctions of the acquisition systems, time series can contain gaps
that have to be suitably filled before applying any data analysis technique. This is achieved
by predicting missing values using a SARIMAX regression method, which maintains the
inner periodicity of data [15].

Time derivatives can also be computed and considered instead of original signals for
the time series showing a trend in order to reduce the trend component. As for the tower,
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time derivatives of the two inclinometer series were computed and considered instead of
original signals (Ix and Iy), whereas temperature time series were left untouched.

2.2.3. Feature Extraction and Aggregation

Univariate analysis was applied to each time series to aggregate the information
embedded in the entire time window through a minimal set of parameters. This is the first
step in eliminating redundant data.

In particular, for a given time window:

• For any 1-d time series (i.e., for each physical quantity), a set of temporal, spectral,
and statistical quantities is computed. Following the work of [16], we exploited the
TSFEL library for Python in our setup for feature extraction [17] (See 1 May 2023,
https://tsfel.readthedocs.io/en/latest/ for a complete list of computed features),
cutting all Fourier coefficients above 30 Hz. By default, TSFEL computes a rich
list of univariate indicators, which are split into temporal, statistical, and spectral
features. Table 1 reports the features the user can extract from a single time series.
Some of them are composed of multiple coefficients. In that list, ECDF stands for
empirical cumulative distribution function, FFT refers to fast Fourier transform, MFCC
stands for mel frequency cepstrum coefficient, and LPCC refers to linear predictive
cepstrum coefficient.

• Alternatively, features are arranged as follows:

- Unpacked: To construct independent classifiers, features extracted from different
devices are kept apart to feed separate algorithms;

- Compacted together: Information from devices is mixed to feed a single algorithm;

• Temperature (and any other information about environmental conditions, if measured)
is added to features in both cases.

Table 1. List of the features computed by the TSFEL library divided into statistical, temporal, and
spectral categories.

Statistical Temporal Spectral

ECDF Absolute energy FFT mean coefficients
ECDF percentile Area under the curve Fundamental frequency
ECDF percentile count Autocorrelation MFCC
ECDF slope Centroid LPCC
Histogram Entropy Max power spectrum
Interquantile range Mean absolute difference Maximum frequency
Kurtosis Mean difference Median frequency
Max Median absolute difference Power bandwidth
Mean Median difference Spectral centroid
Mean absolute deviation Negative turning points Spectral decrease
Median Peak-to-peak distance Spectral distance
Median absolute deviation Positive turning points Spectral entropy
Min Signal distance Spectral kurtosis

Root mean square Slope Spectral positive
turning points

Skewness Sum absolute difference Spectral roll-off
Standard deviation Total energy Spectral roll-on
Variance Zero crossing rate Spectral skewness

Neighborhood peaks Spectral slope

https://tsfel.readthedocs.io/en/latest/
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Table 1. Cont.

Statistical Temporal Spectral

Spectral spread
Spectral variation
Wavelet absolute mean
Wavelet energy
Wavelet standard deviation
Wavelet entropy
Wavelet variance

The obtained features were then arranged in a matrix A of size r× c, where r = Nwindows
and c = Nfeatures × Nsensors.

In the case of the railway bridge model, a collection of temporal, spectral, and statisti-
cal features was extracted using the Python TSFEL library. In particular, a set of 163 features
was selected for each of the 36 accelerometric series obtained for each time window, consid-
ering the whole set of default features the library computes after removing a large number
of Fourier coefficients to discard frequencies higher than 30 Hz. In this case, Nfeatures = 163
and Nsensors = 36, for a total of c = 5868.

Furthermore, in the case of data from the tower, a collection of temporal and statistical
features was extracted using the Python TSFEL library. In particular, a set of 54 features
was selected for each of the 5 time series obtained for each time window. In this case,
Nfeatures = 54 and Nsensors = 5, for a total of c = 270.

2.2.4. Feature Standardization and Reduction

Before performing any standardization or feature reduction process, we computed
Person’s coefficients to estimate linear correlations among all features. Note that Pearson’s
coefficient between features f1 and f2 is defined as ρ f1 f2 = cov( f1, f2)

σf1
σf2

and ranges from −1

(maximum inverse correlation) to 1 (maximum positive correlation). We then obtained a list
of “highly isolated” features, which can be considered leading components for subsequent
dimensionality reduction, as follows: for any fi, we computed mi = maxj

∣∣∣ρ fi f j

∣∣∣ and ranked
such values in an increasing order. The features for which mi has the lowest values cannot
be eliminated, as they retain information not contained by other indicators. Figure 4 shows
the values of mi for the 50 least correlated features, while Table 2 lists only the 20 least
correlated features. The list makes it clear that the relevant features relate to the first sensor.

Figure 4. Values of mi for the 50 least correlated features.
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According to the previous results, we performed feature projection on a subspace of
lower dimensions to eliminate data redundancy and account for environmental effects.
Linear PCA was adopted to accomplish this task after performing feature rescaling (through
simple standardization or min–max scaling). The main advantage of PCA in this context is
that it reduces the dimensionality of c while keeping most of the variation in the dataset.
It accomplishes this reduction by identifying directions, called principal components,
along which the variation in the data is maximal. The principal components are linear
combinations of the original feature set. Accordingly, each component represents the
direction, uncorrelated to previous components, maximizing the variance of the samples
when projected onto the component [18]. Once computed for the training dataset, the
same mathematical objects used to perform data rescaling and projection are employed for
preprocessing of test data to maintain data consistency.

Table 2. List of the 20 least correlated features as defined in the text. The number (n) in the features
corresponds to their nth coefficient.

Feature Sensor mi

Wavelet variance 6 A1 − x 0.117
FFT mean coefficient 4 A1 − y 0.119
ECDF 4 A1 − y 0.119
FFT mean coefficient 8 A1 − y 0.119
FFT mean coefficient 5 A1 − y 0.123
FFT mean coefficient 11 A1 − y 0.125
Wavelet variance 7 A1 − x 0.127
Zero crossing rate A1 − x 0.127
ECDF 7 A1 − y 0.128
FFT mean coefficient 7 A1 − y 0.129
FFT mean coefficient 12 A1 − y 0.132
Entropy A1 − y 0.133
ECDF 9 A1 − y 0.134
FFT mean coefficient 1 A1 − y 0.135
ECDF 3 A1 − y 0.137
Autocorrelation A1 − y 0.137
ECDF 6 A1 − y 0.141
ECDF Percentile 1 A1 − y 0.145
ECDF 1 A1 − y 0.149
ECDF 4 A1 − y 0.150

More specifically, standardization is first performed on A in such a way that:

Aij 7→
Aij − µA

j

σA
j

for any i, j (1)

where µj and σj are the mean and standard deviation computed along the j-th column of A,
respectively.

Then, PCA is performed on the standardized matrix (A). After covariance matrix
C = 1

Nwindows−1 A>A is computed, the spectral decomposition of C = OΛO> is performed,
being Λ = diag

(
λ1, . . . , λNfeatures×Nsensors

)
the matrix containing the eigenvalues of C in non-

increasing order (C is symmetric positive semi-definite, its eigenvalues are non-negative,
and its eigenvectors form an orthogonal basis for RNfeatures×Nsensors). A is then projected
along the first n components, which retain a given amount of the total variance (99% in
our case):

X = APn , Pn = O[ : , : n] , (2)

where (we used Python notation) Pn is the Nwindows × n matrix containing the first n
columns of O.
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Once the aforementioned procedure is trained, new data are standardized as in (1)
using the same µA

j s and σA
j s computed over the matrix (A). Then, A is projected along the

n eigendirections, multiplying by matrix Pn as in (2) in order to obtain X.
In the case of the railway bridge model, PCA reduces the size c of the matrix from

5868 to 497, while r = Nwindows. As for the tower, PCA reduces the size c of the matrix from
270 to 55, while r = Nwindows.

2.2.5. Autoencoder Neural Networks

As for the task of anomaly detection, we adopted AEs, which are the algorithms
best-suited for our needs [19]. The logic of such DL methods lies in the capacity to suitably
reconstruct the inputs produced by the same process that generates the training instances,
poorly reconstructing any instance whose underlying production process differs from the
“healthy” process. This is realized by inferring the statistics of reconstruction error from
training data, that is the `2 distance between the input and its reconstructed counterpart,
then introducing a threshold to distinguish regular from anomalous instances (Figure 5).
Anomalous trends can also be identified by tracking reconstruction errors over time to
monitor slow parameter variations that correspond to structural deterioration. In this case,
training data are acquired in an entirely healthy state of the structure so that AI is unable to
learn how to directly identify possible anomalies embedded in the data.

x Encoder z Decoder x̂

Figure 5. Schematic representation of an AE.

The input data x are mapped to the lower dimensional vector (z) through an artificial
neural network (the encoder); then, x̂ is obtained from z through the action of another
artificial neural network that is symmetric with respect to the encoder (the decoder). The
training phase aims to let the parameters of the network converge to the values that make
x̂ similar to x in some suitable metrics. We adopted multilayer perceptrons (MLPs), a
powerful universal function approximator, to model the non-linear relationship between
the input data (x) and the lower dimensional vector (z) (encoding) and between the lower
dimensional vector (z) and x̂ (decoding) [20]. In addition to a preset non-linear activation
function, the MLP is defined by weights and biases. With respect to the weights and biases
of the encoder MLP and decoder MLP, the training objective is to minimize the loss function
between the input data (x) and their reconstruction (x̂).

The rows ({xi}
Nwindows
i=1 ) of matrix X represent single input instances for the AE. Since

we expected any variation to be minor, we opted for the best-performing configuration for
the artificial neural networks as determined by a random search procedure [21].

The first algorithm tested was a vanilla AE with input dimension n and one hidden
intermediate layer, which represents the latent space and has dimension d = n− 1. The
graph is fully connected, as depicted in Figure 6, and a hyperbolic tangent is used as an
activation function.
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In the training phase, the normalized sum of Euclidean distances between the inputs
and outputs was adopted as a loss function. Let fθ,φ(xi) be the reconstructed version of
input xi, where θ and φ indicate the collection of parameters of the encoding and decoding
portions, respectively. For the reconstruction error, we take the following quantity:

eθ,φ(xi) =
∥∥xi − fθ,φ(xi)

∥∥
2 . (3)

The loss function is obtained by averaging the whole training dataset:

LAE(X) =
1

Nwindows

Nwindows

∑
i=1

eθ,φ(xi) , (4)

so that biases and weights converge to the values that best allow the network to obtain
outputs as similar as possible to the inputs belonging to the training set in the `2 norm.

input

latent space

output

Figure 6. Schematic representation of the vanilla autoencoder used in this study.

The second neural network adopted in this study was a variational autoencoder (VAE),
the architecture of which is described in Figure 7. Unlike the simple vanilla autoencoder, the
latent representation is not deterministic, as the latent vector is sampled from a multivariate
Gaussian distribution with mean vector µ and diagonal covariance matrix σ2 I. Let pθ(z)
equal the prior probability of obtaining the latent vector (z), pθ(z | xi) equal the posterior
distribution of z given xi, and pθ(xi | z) be the conditional probability of xi given z, where
θ again represents the collection of encoder parameters. The true posterior distribution
is generally intractable and is then approximated by a distribution of (qφ(z | xi)) (φ the
collection of parameters for the decoder), which is chosen to be Gaussian and represents
the probability of observing the output (xi), given the latent variable (z). The evidence lower
bound (ELBO) is typically adopted as a loss function for VAEs, which is a mixture of cross
entropy between the original and reconstructed dataset and Kullback–Leibler divergence
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that measures the functional distance between the true prior and the approximated posterior
(see [22] for derivation):

LVAE
θ,φ (X) =

1
Nwindows

Nwindows

∑
i=1

`θ,φ(xi) , (5)

`θ,φ(xi) = Eqφ(z|xi)
[log pθ(xi | z)]

− KL
(
qφ(z | xi)‖pθ(z)

)
. (6)

µ

σ

sample

input output

Figure 7. Schematic representation of the variational autoencoder used in this study.

The first term on the right-hand side of (6) can be estimated through a reparameteriza-
tion trick, while Kullback–Leibler divergence assumes a simple expression after forcing
pθ(z) to be a standard Gaussian on Rd, where d is the size of the hidden space. For details,
we again recommend consulting [22].

For the sake of notational simplicity, hereafter, we use ei ≡ eθ,φ(xi).

2.2.6. Statistics of the Reconstruction Error

From a probabilistic point of view, we assume that the sequence of reconstruction
errors ({ei}

Nwindows
i=1 ) represents a collection of independent, identically distributed random

variables on R+. This is strictly true in the case of our simulated dataset, since train runs are
mutually independent by construction. Nevertheless, when considering real data, features
extracted from any two time windows are not independent a priori. However, we assume
that conditions are matched once environmental effects have been compensated through
differentiation, seasonality, and trend removal.

According to this hypothesis, the resulting reconstruction error statistics are a general-
ized chi-square distribution because components of xi and its reconstructed counterpart
are, in principle, correlated. Various methods can be applied to deduce probability dis-
tribution (p(ei)) from data, thereby establishing a threshold to distinguish undamaged
from damaged data in the inference phase. Once threshold α ∈ (0, 1) is established, a
given instance can be considered anomalous when its reconstruction error (e) is such that
p(e) < α. We used the kernel density estimation (KDE) method to infer the probability
density function (pdf) of the underlying process. In our application, the bandwidth (h) of
the kernel, which is the main parameter of the method, was estimated via Silverman’s rule

of thumb (h = 0.9 min
(

σe, IQR
1.34

)
N−

1
5

windows), where σe is the standard deviation of reconstruc-
tion errors, and IQR represents the interquartile range. The threshold for acceptability (α)
was fixed at 0.005, a value that finds its validity a posteriori. Note that in this initial phase
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of the construction of our approach, we expect a structure in a healthy state to produce false
alarms with probability α. To further perfect the approach, a method for alarm validations
is required and will be introduced in the future.

3. Results

In the following subsections, we show the results obtained when training and testing
our approach on the simulated railway bridge data and on the data acquired from the tower.

3.1. Results for the Railway Bridge Model

The two algorithms were trained using Nwindows = 500 train passages, consequently
inferring the reconstruction error pdf and obtaining values for emin and emax such that
p(e < emin) < α and p(e > emax) > α. Figure 8 shows the shape of the pdfs deduced from
the training data for AE and VAE, alongside the corresponding frequency histogram.

Figure 8. The pdf (orange lines) inferred from training data in the case of AE (upper) and VAE
(bottom). Histograms (blue) were obtained using 20 bins.
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We initially focused on the predictive capability of the two algorithms as anomaly
detectors by introducing damage on node DC1. Specifically, FEM dynamics were run after
the elastic modulus of the mentioned beam element was reduced by factors of 0.01, 0.02,
0.03, 0.04, 0.05, 0.06, and 0.10, considering 10 time windows for each of these percentages of
damage. In addition, we ran 25 further simulations for the undamaged bridge in order to
check if the trained algorithms would classify the corresponding inputs as non-anomalous.
Figure 9 shows the collection of reconstruction errors for the training set (from 0 to 499,
blue) and for the test set corresponding to the 25 undamaged datasets (500 to 524, green
regular and red if anomalous) using thresholds (dashed gray lines) corresponding to the
values of emin and emax. For the AE, the mean reconstruction error of the training set is
µAE

training ' 1.00× 10−2 , compared with a value of µ
AE, undamaged
test ' 9.53× 10−3 for the

set of the 10 undamaged tests. For the VAE, we obtained µVAE
training ' 8.90 × 10−3 and

µ
VAE, undamaged
test ' 8.55× 10−3. Both the average reconstruction error values calculated for

the test sets are statistically compatible (regarding the statistics deduced from training data)
with the means of the training sets (significant within 1σ).

Figure 9. The reconstruction error for training and non-damaged test sets for AE (top) and VAE
(bottom) for the case study of the railway bridge model.
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Figure 10 shows the collection of reconstruction errors for the training set and the
aforementioned damage configurations (enumerated from 500 to 559 (red) in increasing
damage order), adopting the log scale for the y-axis, since reconstruction errors spread
on various scales. Notice that both algorithms recognize all the "damaged" instances as
anomalous, although the reconstruction error appears to be non-monotone in the elastic
modulus reduction. It is also worth noting that the VAE is, in this case, more damage-
sensitive compared to the AE-based solution, since the errors corresponding to the test set
cover a larger interval. This is also a consequence of the VAE’s pdf appearing more peaked
around its maximum. The computational costs are comparable for the two neural network
autoencoders employed in this simulation.

Figure 10. The reconstruction error for training and damaged test sets as indicated in the text for AE
(top) and VAE (bottom) for the case study of the railway bridge model.
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We performed a second test running numerical dynamics simulations for each of the
32 damage locations as shown in Figure 2. In order to ensure strong data consistency, we
fixed the mass and the velocity of the train crossing the bridge to the mean values of 62 tons
and 8.33 m/s, respectively, and reduced the elastic moduli of beam elements by a factor of
0.02. Figure 11 again illustrates the reconstruction errors for the training sets and for the
32 different damage scenarios. The evidence supports the conclusion that our solutions
correctly classify all the instances provided as inputs as anomalous.

Figure 11. The reconstruction error for training and the second damaged test sets as indicated in the
text for AE (top) and VAE (bottom) for the case study of the railway bridge model.
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3.2. Results for the Tower Data

The purpose of this case study is to establish whether or not the tower exhibits
anomalous trends in the period of time during which it was monitored, i.e., whether the
“inclination rate” is constant over time. Accordingly, we split the dataset into training and
test sets, considering data acquired in the first six years of monitoring as training data and
data acquired in remaining time history (also consisting of six years) as test data.

Figures 12 and 13 show temperature and inclinometer time series, where time is mea-
sured in hours starting from midnight on 1 January 2009. It is apparent that Ix and Iy follow
temperature seasonality, although such data seem to exhibit an overall negative trend.

Figure 12. Temperature data as registered by sensors. T1 is indicated in blue, T2 is indicated in green,
and T3 is indicated in orange.

Figure 13. Inclinations as registered by sensors. Ix is indicated in blue, while Iy is indicated in orange.

Table 3 reports the values of the angular coefficients obtained for the training and
the test sets after data standardization and fitting. Such values make it evident that a
change in trends occurs when passing from the training to test sets, particularly affecting
the two inclination time series whose rate is one order of magnitude above the change rate
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of temperature. In fact, the registered temperature appears to be more stable during the
monitored years. It is also worth noticing that Iy varies more abruptly when compared
with the change affecting inclination (Ix).

Table 3. Angular coefficients for the linear fits of standardized datasets for the training and test sets.

Angular Coefficient (2009–2015) Angular Coefficient (2016–2021)

T1 4.09× 10−6 1.66× 10−6

T2 6.71× 10−6 2.17× 10−6

T3 4.79× 10−6 2.03× 10−6

Ix −1.84× 10−5 −2.25× 10−5

Iy −2.06× 10−5 −3.24× 10−5

Figures 14 and 15 show the reconstruction errors for the training and test phases of
both AE and VAE artificial neural networks, with the points sorted in increasing temporal
order. Although nearly all the test set reconstruction errors lie in the confidence region,
there is an increasing trend for the zone. This is corroborated by linear interpolation of error
data. Regarding the AE, we obtained angular coefficients of 2.17× 10−6 and 4.44× 10−6

for the training and test set, respectively, while for VAE, we obtained angular coefficients
of 2.78× 10−6 and 3.99× 10−6. This can be interpreted as a small trend change in the
data, although we do not have any further information (e.g., regarding soil movements) to
attribute this to some specific reason.

Figure 14. Reconstruction errors for AE.

Figure 15. Reconstruction errors for VAE.
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3.3. Comparison Results

In order to compare our strategy with other popular methods commonly employed
in unsupervised cases of anomaly detection in streaming data [23,24], we modified our
framework slightly to perform the classification task using isolation forests (IFs) [25] and
the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [26] algorithm.

In this experimental setup, preprocessing was left unchanged from the previously
described flow, as the only adjustment regards the AI technique used for anomaly detection.
Only the simulated railway bridge data were used, for which the labels are known a priori,
and, for each time window, features were extracted, concatenated, and subjected to PCA
projection, retaining the same amount of information as before in order to start with the
same training and test set used for the AE and VAE. Although both freshly introduced
algorithms performed well on synthetic data, here, we discuss the reasons why a deep
neural network strategy is still considered preferential for general purposes.

IFs are a sort of unsupervised version of random forests (RFs), and their task consists
of constructing binary decision trees to isolate instances in the training dataset in such a way
that regular data require many more splits with respect to anomalies to be unambiguously
identified. Namely, regular instances are reached by tracing a long path from the root to
the corresponding leaf, while outliers need short paths to be reached. Since average paths
are logarithmic in the number of instances used to train a single tree, an exponential score
is associated with each data point (x):

s(x, m) = 2−
〈h(x)〉
c(m) , (7)

where m is the total number of instances, h(x) represents the path length for x, 〈 · 〉 denotes
averages across the whole forest of trees, and c(m) is a normalization constant that, for any,
m > 2 is given by:

c(m) = 2H(m− 1)− 2(m− 1)/m , (8)

where H(m) is the harmonic number. Notice that s ∈ (0, 1), and typically, if s is close to
1, the corresponding instance is very likely to be anomalous, while if s is less than 0.5, s
is likely to be a regular instance. The algorithm takes two hyperparameters as inputs, i.e.,
the number of trees (t) forming the forest and the size (ψ) of each subset extracted from
the original dataset. Following empirical indications provided in [25], we set t = 100 and
ψ = 28.

For our test, we used the IsolationForest module contained in the scikit-learn Python
library. After preprocessing, the sequence of steps defining our version of the method are
as follows:

- The algorithm is trained using the n = 500 available instances;
- A score is obtained for each instance belonging to the training set in order to construct a

prevision method in a way similar to that defined previously, although the underlying
pdf is different from that describing the autoencoder’s reconstruction errors;

- A threshold of α = 0.005 is fixed to reject test instances (x) with a probability that is
estimated to be less than α to be observed.

With reference to Figure 16a–c, it is clear that IF correctly classifies the 25 non-
anomalous test instances (the scores fall within the two thresholds) and all damaged
scenarios. Figure 16b refers to the sets in which damages span from 1 to 10 percent for
the element labeled as DC1, while Figure 16c shows the scores corresponding to the test
simulations in which each element has been damaged by reducing the elastic moduli by a
factor of 0.02.

DBSCAN is also one of the most popular algorithms for anomaly detection in a non-
supervised context; it is a clustering method based on density criteria. It takes two main
parameters as input: a distance (ε) and an integer (M), which is the minimum number
of points that a cluster must contain. The algorithm divides data in two or more clusters
depending on the mutual distance of points, with the exception of data that remain isolated,
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which are then considered as anomalies. Although DBSCAN is widely employed for
unsupervised outlier isolation, the choice of hyperparameters (ε and M) is crucial to obtain
suitable results, although empirical evidence for selection of suitable combinations has been
reported [26]. Moreover, for datasets whose points lie in a high-dimensional space, even
the choice of appropriate metrics represents a relevant issue [26]. Nevertheless, in order to
mimic a training-test mechanism, we adapted DBSCAN to our strategy as described below:

- At fixed M, find εM as the unique value such that for any ε < εM, the algorithm
detects one or more anomalies in the training set, and for any ε ≥ εM, no anomalies
are identified.

- For any instance in the test set:

- Add the new instance to the training set;
- Launch the DBSCAN algorithm with parameters M and εM and check if the new

instance is labeled as an anomaly.

The reason why test instances are added to the training set one at a time and training
and test sets are not directly merged lies in the fact that a single instance slightly perturbs
the cluster constructions. Regarding the choice of M, it is generally recommended to choose
values such that M ≥ d + 1, with d as the dimension in which instances lie. Since our
dataset is small if compared to the number of projected features, we considered M = 100
as a suitable compromise for this specific case. As for the previously adopted algorithm,
DBSCAN correctly classified all the proposed test instances.

Table 4 shows the results obtained by the different classification algorithms.

Table 4. Success percentage in the anomaly detection task for the considered algorithms.

Regular Data Anomalous Data

AE 96% 100%
VAE 96% 100%
IF 100% 100%
DBSCAN 100% 100%

In our tests, all the algorithms employed for the classification task performed well
for both regular and anomalous time windows. This is also due to the fact that the
preprocessing steps are actually capable of extracting a fair amount of information that
characterizes most of the signal properties from raw time series. Nevertheless, we believe
that the neural network approach is best-suited for the purpose of SHM, as, although
the other methods used in this case do what is needed, they could suffer from critical
issues when adopted on a large scale. IFs may actually be adapted to deal with large
datasets by generating sufficiently large forests of trees (since ψ should remain small to
prevent swamping effects), but their structure appears to be far less flexible if compared
with our proposed neural-network-based solution. More precisely, network layers can be
suitably chosen among several solutions depending on the underlying traits of the dataset;
for example, temporal dependencies can be managed by substituting simple layers with
LSTM layers, and overfitting can be prevented by employing convolutional layers. In this
sense, IFs are less adaptable to the widest range of scenarios. However, this method is
advantageous in that its computational costs are linear in the training set dimension, and it
induces a very natural statistic for the path lengths. Conversely, DBSCAN appears to be
very slow compared to other methods because it requires a new training stage whenever
new data must be checked.
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(a) (b)

(c)
Figure 16. The scores, as defined in the text, corresponding to the training and the test sets for the IF.
Blue points represent training set scores, green points are scores that fall within the confidence region,
and red crosses are anomalies. The same three scenarios investigated using AEs are represented: no
damage at all (a), constantly decreased elastic modulus of DC1 (b), and damage at 2% for each of the
32 considered beam elements (c).

4. Discussion

The results obtained so far with simulated data appear promising for the possible
future establishment of a well-posed strategy for anomaly detection in the context of SHM.
There are positive indicators that confirm the reliability of our proposed approach at a
theoretical level, in addition to the improvements made by managing the whole complex
sequence of data manipulations through a unique, well-integrated software that uses the
HDF5 format for all I/O operations. Although the simulated data refer to an ideal scenario
and no external sources of noise affected data at an environmental or hardware level, both
trained AI algorithms were capable of distinguishing between damaged and undamaged
cases and labeling even minimally damaged configurations as anomalous. This strongly
indicates that, even without further refinements of preprocessing techniques and more
appropriate hyperparameter settings, this early version of our anomaly detection approach
may work appropriately. Encouraging indications also come from the analysis of real
thermometric and inclinometer data collected by the network of sensors installed on the
tower in Ravenna. Even if the underlying process that regulates the tower is not stationary,
as reflected in data that exhibit a visible trend of inclinations (Ix and Iy), AI was still capable
of capturing a small change in the inclinometer trend when passing from the training set to
the test data, provided stationarization was performed before preprocessing.

5. Conclusions

In this work, we proposed a simple yet reliable integrated approach for SHM in a full
data-driven case. The proposed approach consisted of different phases from data acquisi-
tion to feature extraction, preprocessing, reduction, and anomaly detection using artificial
neural network AEs. Tests were conducted on simulated data, as well as data acquired from
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physical sensors positioned on a structure, specifically the Historical Tower of Ravenna
(Italy). The obtained results in terms of reconstruction error are very promising. The
proposed method was also compared to other state-of-the-art anomaly detection methods,
as our approach is able to recognize healthy states and classify the various configurations
of damage types/severity as anomalous with very high success rates. Nevertheless, the
proposed approach deserves more investigations, as we were unable to define a connection
between elastic modulus reduction and the obtained output.

Future work will focus on refining the process of feature selection and exploring the
space of the artificial neural network’s hyperparameters to enable our solution to estimate
the actual damage level based on the value of the obtained reconstruction error. In addition
to dimensionality reduction, we will investigate on the application of feature stacking
on our data as in [27,28]. We will also integrate supervised algorithms in an attempt to
identify possible damage locations from test data. The introduction of a digital twin of the
monitored structure would also improve the overall accuracy of the solution in order to
double check the results obtained by the data-driven algorithm to reduce false alarms in
the damage detection process.

Author Contributions: Conceptualization, R.B., M.B., M.P., A.A. and G.C.; methodology, R.B., M.B.,
M.P., A.A. and G.C.; software, R.B., M.B. and M.P.; validation, R.B., M.B. and M.P.; formal analysis,
R.B., M.B., M.P., A.A. and G.C.; investigation, R.B., M.B., M.P., A.A. and G.C.; resources, R.B., M.B.,
M.P. and G.C.; data curation, R.B., M.B. and M.P.; writing—original draft preparation, R.B., M.B.,
M.P., A.A. and G.C.; writing—review and editing, R.B., M.B., M.P., A.A. and G.C.; visualization, R.B.,
M.B., M.P., A.A. and G.C.; supervision, R.B., M.B., M.P., A.A. and G.C. All authors have read and
agreed to the published version of the manuscript.

Funding: The study presented in this article was partially funded by the Project GENESIS: seismic
risk manaGEmeNt for the touristic valorisation of thE hiStorIcal centers of Southern italy. PON MIUR
“Research and Innovation” 2014–2020 and FSC. D.D. 13 July 2017 n. 1735. Industrial research and
experimental development projects in the 12 Smart Specialization areas. Specialization area: Cultural
Heritage. Project Code ARS01_00883. The opinions and conclusions presented by the authors do not
necessarily reflect those of the funding agency.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hoshyarmanesh, H.; Abbasi, A.; Moein, P.; Ghodsi, M.; Zareinia, K. Design and implementation of an accurate, portable, and

time-efficient impedance-based transceiver for structural health monitoring. IEEE/ASME Trans. Mechatron. 2017, 22, 2089–2814.
[CrossRef]

2. Sohn, H.; Farrar, C.R.; Hemez, F.M.; Czamecki, J.J. A Review of Structural Health Review of Structural Health Monitoring
Literature 1996–2001. In Proceedings of the Third World Conference on Structural Control, Como, Italy, 7–12 April 2002 .

3. Rytter, A. Vibrational Based Inspection of Civil Engineering Structures. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 1993.
4. Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; Wiley: Oxford, UK, 2013.
5. Tibaduiza Burgos, D.A.; Gomez Vargas, R.C.; Pedraza, C.; Agis, D.; Pozo, F. Damage identification in structural health monitoring:

A brief review from its implementation to the use of data-driven applications. Sensors 2020, 20, 733. [CrossRef] [PubMed]
6. Nick, W.; Shelton, J.; Asamene, K.; Esterline, A.C. A Study of Supervised Machine Learning Techniques for Structural Health

Monitoring. MAICS 2015, 1353, 36.
7. Giglioli, V.; Venanzi, V.; Poggioni, I.; Milani, A.; Ubertini, F. Autoencoders for unsupervised real-time bridge health assessment.

Comput. Civ. Infrastruct. Eng. 2023, 38, 959–974. [CrossRef]
8. Ma, X.; Lin, Y.; Nie, Z.; Ma, H. Structural damage identification based on unsupervised feature-extraction via Variational

Auto-encoder. Measurement 2020, 160, 107811. [CrossRef]
9. Pollastro, A.; Testa, G.; Bilotta, A.; Prevete, R. Unsupervised detection of structural damage using Variational Autoencoder and a

One-Class Support Vector Machine. arXiv 2022, arXiv:2210.05674.
10. Cauteruccio, F.; Fortino, G.; Guerrieri, A.; Terracina, G. Discovery of Hidden Correlations between Heterogeneous Wireless

Sensor Data Streams. In Internet and Distributed Computing Systems, Proceedings of the 7th International Conference, IDCS 2014,
Calabria, Italy, 22–24 September 2014; Springer International Publishing: Cham, Switzerland, 2014; pp. 383–395. [CrossRef]

http://doi.org/10.1109/TMECH.2017.2761902
http://dx.doi.org/10.3390/s20030733
http://www.ncbi.nlm.nih.gov/pubmed/32013073
http://dx.doi.org/10.1111/mice.12943
http://dx.doi.org/10.1016/j.measurement.2020.107811
http://dx.doi.org/10.1007/978-3-319-11692-1_33


Big Data Cogn. Comput. 2023, 7, 99 23 of 23

11. Cauteruccio, F.; Fortino, G.; Guerrieri, A.; Liotta, A.; Mocanu, D.C.; Perra, C.; Terracina, G.; Torres Vega, M. Short-long term
anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance. Inf. Fusion
2019, 52, 13–30. [CrossRef]

12. Petracca, M.; Candeloro, F.; Camata, G. STKO User Manual; ASDEA Software Technology: Pescara, Italy, 2017.
13. Ubertini, F.; Gentile, C.; Materazzi, A.L. Automated modal identification in operational conditions and its application to bridges.

Eng. Struct. 2013, 46, 264–278. [CrossRef]
14. Parisi, F.; Mangini, A.M.; Fanti, M.P.; Adam, J.M. Automated location of steel truss bridge damage using machine learning and

raw strain sensor data. Autom. Constr. 2022, 138, 104249. [CrossRef]
15. Ulyah, S.M.; Mardianto, M.F.F. Comparing the Performance of Seasonal ARIMAX Model and Nonparametric Regression Model

in Predicting Claim Reserve of Education Insurance. J. Phys. Conf. Ser. 2019, 1397, 012074. [CrossRef]
16. Buckley, T.; Bidisha, G.; Pakrashi, V. A feature extraction & selection benchmark for structural health monitoring. Struct. Health

Monit. 2023, 22, 2082–2127.
17. Barandas, M.; Folgado, D.; Fernandes, L.; Santos, S.; Abreu, M.; Bota, P.; Liu, H.; Schultz, T.; Gamboa, H. TSFEL: Time Series

Feature Extraction Library. SoftwareX 2020, 11, 100456. [CrossRef]
18. Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [CrossRef] [PubMed]
19. Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991.
20. Jin, F.; Sengupta, A.; Cao, S. mmFall: Fall Detection Using 4-D mmWave Radar and a Hybrid Variational RNN AutoEncoder.

IEEE Trans. Autom. Sci. Eng. 2022, 19, 1245–1257. [CrossRef]
21. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
22. Kingma, D.P.; Welling, M. Auto Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114.
23. Ding, Z.; Fei, M. An Anomaly Detection Approach Based on Isolation Forest Algorithm for Streaming Data using Sliding Window.

IFAC Proc. Vol. 2013, 46, 12–17. [CrossRef]
24. Emadi, H.S.; Mazinani, S.M. A Novel Anomaly Detection Algorithm Using DBSCAN and SVM in Wireless Sensor Networks.

Wirel. Pers. Commun. 2018, 98, 2025–2035. [CrossRef]
25. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data

Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [CrossRef]
26. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, Portland, OR,
USA, 2–4 August 1996; AAAI Press: Washington, DC, USA, 1996; pp. 226–231.

27. Hartmann, Y.; Liu, H.; Schultz, T. Feature Space Reduction for Multimodal Human Activity Recognition. In Proceedings of
the 13th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2020, Valletta, Malta,
24–26 February 2020; SCITEPRESS: Setúbal, Portugal, 2020; pp. 135–140. [CrossRef]

28. Hui, L. Biosignal Processing and Activity Modeling for Multimodal Human Activity Recognition. Ph.D. Thesis, Universität
Bremen: Bremen, Germany, 2021. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.inffus.2018.11.010
http://dx.doi.org/10.1016/j.engstruct.2012.07.031
http://dx.doi.org/10.1016/j.autcon.2022.104249
http://dx.doi.org/10.1088/1742-6596/1397/1/012074
http://dx.doi.org/10.1016/j.softx.2020.100456
http://dx.doi.org/10.1038/nbt0308-303
http://www.ncbi.nlm.nih.gov/pubmed/18327243
http://dx.doi.org/10.1109/TASE.2020.3042158
http://dx.doi.org/10.3182/20130902-3-CN-3020.00044
http://dx.doi.org/10.1007/s11277-017-4961-1
http://dx.doi.org/10.1109/ICDM.2008.17
http://dx.doi.org/10.5220/0008851401350140
http://dx.doi.org/10.26092/elib/1219

	Introduction
	Materials and Methods
	Materials
	Data from Numerical Simulations
	Real-World Data

	Methods
	Flow chart of the Proposed Approach
	Gap Filling and Trend Removal
	Feature Extraction and Aggregation
	Feature Standardization and Reduction
	Autoencoder Neural Networks
	Statistics of the Reconstruction Error


	Results
	Results for the Railway Bridge Model
	Results for the Tower Data
	Comparison Results

	Discussion
	Conclusions
	References

