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Abstract: Researchers in the fields of machine learning and artificial intelligence have recently begun
to focus their attention on object recognition. One of the biggest obstacles in image recognition
through computer vision is the detection and identification of similar items. Identifying similar
musical instruments can be approached as a classification problem, where the goal is to train a
machine learning model to classify instruments based on their features and shape. Cellos, clarinets,
erhus, guitars, saxophones, trumpets, French horns, harps, recorders, bassoons, and violins were all
classified in this investigation. There are many different musical instruments that have the same size,
shape, and sound. In addition, we were amazed by the simplicity with which humans can identify
items that are very similar to one another, but this is a challenging task for computers. For this study,
we used YOLOv7 to identify pairs of musical instruments that are most like one another. Next, we
compared and evaluated the results from YOLOv7 with those from YOLOv5. Furthermore, the results
of our tests allowed us to enhance the performance in terms of detecting similar musical instruments.
Moreover, with an average accuracy of 86.7%, YOLOv7 outperformed previous approaches and other
research results.

Keywords: YOLOv7; YOLOv5; similar musical instrument detection; neural network; deep learning

1. Introduction

Object detection is an example of computer technology which is related to computer
vision. This method is used to find specific examples of semantic items that belong to
a particular class, such as people [1,2], musical instruments [3,4], buildings [5], traffic
signs [6], or cars [7,8], in video and digital images.

Despite the widespread application of object detection, its performance is likely to
vary, depending on the possibilities. A suitable illustration of this phenomenon is provided
by the condition where two object classes share the same appearance, as seen in Figure 1.
Due to this, the detector is distracted from the class of object being examined. Imagine for a
moment that different things that have similar external characteristics are grouped together
as pairs of related objects.

Both the flute and the clarinet have several complementary characteristics. The clarinet
is a woodwind device consisting of a mouthpiece with a single reed, a cylindrical tube
with a flared end, and a key that conceals a hole in the tube. Both the flute and the clarinet
are important members of the woodwind family of musical instruments, and they are
often played concurrently. The presence or absence of reeds is one of the most important
differences between the flute and the clarinet. The flute has no reed, while the clarinet has
only one reed.
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Figure 1. Similar musical instruments: (a) guitar, (b) cello, and (c) violin. 

Moreover, although the cello and violin belong to the family of stringed instruments, 
they cannot be confused with each other in any way. The distinction in size between the 
cello and the violin is the main differentiator between the two instruments. When one 
plays the cello, it is customary to take a sitting position and hold the instrument between 
the knees while doing so. The violinist, on the other hand, holds the instrument so that it 
is supported between the shoulder and the chin. The cello can play lower notes than the 
violin. The cello and violin are both played with a bow, which is one thing they have in 
common. The right hand is used to play the cello using a bow that crosses all four strings, 
similar to how the violin is played. Overall, while these instruments have some similari-
ties, they also have unique features that make them distinct from each other. 

However, as can be seen in Figure 1, the designs of the guitar, violin, and cello are 
fundamentally very similar to one another. Computers have a far harder time differenti-
ating among similar musical instruments than people do. The simplicity with which hu-
mans can recognize visual identification cues, such as detecting highly similar musical 
instrument objects, was impressive in our research study because it was one of the chal-
lenges that we investigated. In addition, even though people have no difficulty under-
standing the task, computers experience greater difficulty. 

Recognizing similar musical instruments is important for several reasons. Firstly, in 
the field of musical education, by recognizing musical instruments through image detec-
tion, we can help students to learn and understand different types of instruments. This 
can aid in their musical education and development, especially if they do not have access 
to physical instruments to practice with. In the field of music production, recognizing mu-
sical instruments through image detection can help producers to create better and more 
engaging music. They can use this technology to identify the instruments being used in a 
recording or performance and make decisions on how to enhance or balance the sound. 
In the area of classifying instruments, image detection can be used to classify musical in-
struments on the basis of their physical characteristics. This can be useful in identifying 
and cataloguing different types of instruments and can aid in research into and preserva-
tion of musical history. In the field of performance analysis, image detection can also be 
used to analyze and evaluate musical performances. Through recognition of the instru-
ments being played, it is possible to assess the quality and accuracy of a performance and 
provide feedback for improvement. Lastly, recognizing musical instruments through im-
age detection can make music more accessible to those with disabilities or limitations. For 
example, individuals who are visually impaired can benefit from this technology, as it can 
provide them with a visual representation of the instruments being used in a piece of mu-
sic. 

Overall, recognizing musical instruments through image detection can improve mu-
sical education, production, classification, performance analysis, and accessibility. It is a 
valuable tool for musicians, music educators, producers, researchers, and anyone else in-
volved in the creation and performance of music. 

Figure 1. Similar musical instruments: (a) guitar, (b) cello, and (c) violin.

Moreover, although the cello and violin belong to the family of stringed instruments,
they cannot be confused with each other in any way. The distinction in size between the
cello and the violin is the main differentiator between the two instruments. When one
plays the cello, it is customary to take a sitting position and hold the instrument between
the knees while doing so. The violinist, on the other hand, holds the instrument so that it
is supported between the shoulder and the chin. The cello can play lower notes than the
violin. The cello and violin are both played with a bow, which is one thing they have in
common. The right hand is used to play the cello using a bow that crosses all four strings,
similar to how the violin is played. Overall, while these instruments have some similarities,
they also have unique features that make them distinct from each other.

However, as can be seen in Figure 1, the designs of the guitar, violin, and cello are
fundamentally very similar to one another. Computers have a far harder time differentiating
among similar musical instruments than people do. The simplicity with which humans can
recognize visual identification cues, such as detecting highly similar musical instrument
objects, was impressive in our research study because it was one of the challenges that we
investigated. In addition, even though people have no difficulty understanding the task,
computers experience greater difficulty.

Recognizing similar musical instruments is important for several reasons. Firstly, in
the field of musical education, by recognizing musical instruments through image detection,
we can help students to learn and understand different types of instruments. This can
aid in their musical education and development, especially if they do not have access to
physical instruments to practice with. In the field of music production, recognizing musical
instruments through image detection can help producers to create better and more engaging
music. They can use this technology to identify the instruments being used in a recording
or performance and make decisions on how to enhance or balance the sound. In the area of
classifying instruments, image detection can be used to classify musical instruments on
the basis of their physical characteristics. This can be useful in identifying and cataloguing
different types of instruments and can aid in research into and preservation of musical
history. In the field of performance analysis, image detection can also be used to analyze
and evaluate musical performances. Through recognition of the instruments being played,
it is possible to assess the quality and accuracy of a performance and provide feedback for
improvement. Lastly, recognizing musical instruments through image detection can make
music more accessible to those with disabilities or limitations. For example, individuals
who are visually impaired can benefit from this technology, as it can provide them with a
visual representation of the instruments being used in a piece of music.

Overall, recognizing musical instruments through image detection can improve mu-
sical education, production, classification, performance analysis, and accessibility. It is
a valuable tool for musicians, music educators, producers, researchers, and anyone else
involved in the creation and performance of music.

The most effective use of You Only Look Once (YOLO) is found in circumstances
that call for faster detection. It offers a high degree of precision and a high detection rate
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at the same time. YOLOv7’s trainable bag of freebies represents the new state-of-the-art
for real-time object detectors and is the latest version of YOLO, which was announced
in 2022 [9]. In terms of both speed and accuracy, YOLOv7 is superior to any other object
detector that has been developed. In this study, convolutional neural network (CNN)
models and feature extractors, including YOLOv7 for object recognition, as well as other
approaches to feature extraction were investigated in detail.

Our research fine-tuned the models to the People Playing Musical Instruments (PPMI)
dataset [10]. The PPMI dataset contains photographs of individuals interacting with a
variety of musical instruments, with 12 distinct types of instruments represented. It can
be challenging to locate many object detectors in published research that have been built
on deep learning and tailored specifically to the domain of detecting similar musical
instruments, and thus it was difficult to locate a prior study that assessed a variety of
crucial factors, such as the mAP, precision, and recall.

The following is a summary of the contributions made by this study. Firstly, we aimed
to distinguish objects that appear to the human eye as very similar to each other. In the
second step of our process, we applied YOLOv7 to determine which musical instruments
were similar to one another. After that, we analyzed and evaluated the YOLOv7 model.
Performance metrics were used to track crucial data, including the mean average precision
(mAP), precision (P), and recall (R).

During this investigation, we became familiar with a wide variety of musical instru-
ments that are similar to each other.

This article is organized as follows. Relevant prior work is presented in Section 2.
Our recommended methodology is described in Section 3. In Section 4, we discuss the
experimental results, and present a comprehensive analysis and interpretation of our
results. At the end of the article, in Section 5, our conclusions are presented, along with
recommendations for additional research.

2. Related Works
2.1. Identifing Similar Musical Instruments with CNN

Over the past few years, significant advances have been made possible by the ap-
plication of deep learning to most object recognition and identification algorithms. The
act of recognizing objects is simple for people, but it is quite difficult for computers to
distinguish between two things that are almost identical in both their appearance and their
function [11]. Two-stage detection consists of two processes that cooperate with each other
to achieve the desired result. Utilizing a technique known as region-based CNN (RCNN),
the detector first generates hypotheses about the possible locations of the objects in the
image. This location is just a suggestion. After that, each region of interest (RoI) is classified
independently, and then the classifications are combined [12].

However, two-stage detection, despite its excellent performance, has some significant
drawbacks. Since there are two different processes involved, it takes a long time to train
the model, and even more time to test it. To reduce the amount of time spent predicting the
results, it is recommended to use a single-stage detector. YOLO [13] and the Single-Shot
Detector (SSD) [14] are the most representative single-stage detectors. Compared with
their two-stage equivalents, single-stage detectors are superior in terms of their overall
performance, efficiency, and the number of model parameters that they require.

Ju et al. [15] described a method of object recognition that makes use of entropy loss
in order to improve the ability to correctly recognize items that have a similar outward
appearance. When entropy loss is applied, the detector can generate more accurate predic-
tions regarding the bounding box class that has been observed, which ultimately leads to
a higher probability of receiving a satisfactory score. In addition to this, it has the effect
of reducing the deterioration of reliability. As a direct consequence, the performance in
terms of detecting similar things is improved. A more effective architecture for a CNN
network was created by Shijin Song and colleagues [16]. This design made it possible for
small objects to be identified with greater precision, while also needing less processing
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and enabling simpler deployment. They eliminated the CNN network, which significantly
reduced the model’s size and the amount of time the model was operational, while preserv-
ing its accuracy. To improve the effectiveness of computation, the fully convoluted layers
were simultaneously replaced with fully connected layers.

Dewi et al. [17] used the YOLO approach in conjunction with the Generative Adver-
sarial Network (GAN) in order to identify musical instruments that were comparable to
one another. YOLO is a strong region-based convolutional neural network (CNN) that is
extremely fast. When Deep Convolution YOLO-GAN is utilized, the capacity of the YOLO
detection process will rise, even beyond what was previously possible with YOLO. In this
experiment, we used the most recent version of YOLOv7 in conjunction with the PPMI
dataset, which included 12 unique musical instruments in total.

2.2. YOLOv5 and YOLOv7

Here, we describe the timeline of the YOLO versions. The first version of YOLO,
YOLOv1, was introduced in 2015. It was designed to detect objects in real time using a
single neural network. YOLO9000v2 was introduced in 2016. It used a more powerful
neural network architecture called Darknet-19 and introduced anchor boxes and batch
normalization to improve the accuracy of object detection. Next, YOLOv3 was introduced in
2018. It introduced several new features, including a feature pyramid network, improved
anchor box clustering, and multi-scale predictions. YOLOv3 achieved state-of-the-art
performance on several object detection benchmarks [18]. It divided the input images into
N × N grid cells [19] of the same size, and forecasted the bounding boxes and probabilities
for each grid cell. YOLOv3 made use of multi-scale integration for producing predictions,
and a single neural network was utilized to construct a general overview of the input. Both
processes can be carried out by YOLOv3. YOLOv3 can generate a one-of-a-kind bounding
box anchor for each ground truth item [20].

YOLOv4 was introduced in 2020. It introduced several advanced techniques, includ-
ing CSPDarknet53, scaled-YOLOv4, PP-YOLO, YOLOv5, YOLOv6, and Mish activation.
YOLOv4 achieved state-of-the-art performance on several object detection benchmarks [21].
The structure of YOLOv4 is as follows: (1) backbone: CSPDarknet53 [22], (2) neck: SPP [23]
and PAN [24], and (3) head: YOLOv3 [18]. In the backbone, YOLOv4 utilizes a Mish [25]
activation function. YOLOv5 was also introduced in 2020. It used a different neural net-
work architecture called CSPNet and was designed to be faster and more accurate than
previous versions of YOLO. YOLOv5 achieved state-of-the-art performance on several
object detection benchmarks.

There are five unique designs for the architecture of YOLOv5, namely YOLOv5s,
YOLOv5m, YOLOv5n, YOLOv5l, and YOLOv5x. The major component that distinguishes
them is the number of feature extraction modules and convolution kernels that are scattered
over the network at various preset points. YOLOv5 has four main components: the input,
the backbone, the neck, and the output [26]. The major task of the backbone model is to
identify significant segments for analysis from inside the input image.

Automatic learning bounding box anchoring, mosaic data enhancement, and cross-
stage partial networking are just a few of the technologies that have been incorporated
into the architecture of YOLOv5. The design makes use of the state-of-the-art algorithm
optimization techniques for convolutional neural networks that have emerged in the last
few years. YOLO’s detection architecture is the foundation on which it was constructed.
YOLOv5 uses cross-stage partial networks (CSP) and spatial pyramid pooling (pSPP)
as its fundamental building blocks to extract rich, significant attributes from the input
pictures. To correctly generalize a model in terms of scaling the objects, SPP is useful for
detecting the same item in different sizes and scales. The feature pyramid architectures of
the feature pyramid network (FPN) [27] and the path aggregation network (PANet) [28,29]
were utilized in the construction of the neck network.

YOLOv6 and YOLOv7 were released in 2022 along with other methods such as DAMO
YOLO and PP-YOLOE. Some researchers have created their own versions of YOLO by
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modifying the existing architectures or using different backbones. YOLOv6 focused on
making the system more efficient and reducing its memory footprint. It made use of a new
CNN architecture called SPP-Net (spatial pyramid pooling network). This architecture is
designed to handle objects with different sizes and aspect ratios, making it ideal for object
detection tasks. YOLOv7 was then introduced. One of the key improvements in YOLOv7
is the use of a new CNN architecture called ResNeXt.

The YOLOv7 method has caused a sensation in the fields of computer vision and
machine learning. When compared with other object detection models and older YOLO
versions, the newest YOLO algorithm is much faster and more accurate. Moreover, YOLOv7
is a variant of the YOLO (You Only Look Once) object detection algorithm, which was first
introduced by Joseph Redmon et al. in 2016 [18]. YOLOv7 is based on a deep neural network
and is capable of detecting and localizing objects within an image in real time. Compared
with earlier versions of YOLO, YOLOv7 has several improvements, including the use of
skip connections and the introduction of residual blocks in the network architecture. These
changes allow YOLOv7 to detect objects with greater accuracy and speed. In order for
the YOLOv7 method to function properly, the input image must first be segmented into a
grid of cells. Next, the algorithm must predict the bounding boxes and class probabilities
of the objects contained within each cell. Each bounding box’s prediction includes a
confidence score, indicating the probability that the predicted box contains an object. The
algorithm also predicts the class probabilities for each object, which are used to label
the objects within the bounding boxes. Furthermore, YOLOv7 is a popular algorithm
for object detection tasks due to its high speed and accuracy. It has many applications,
including in autonomous vehicles, surveillance systems, and robotics. YOLOv8 is the latest
version of YOLO and was released in 2023. However, Ultralytics YOLOv8 provides the
most advanced capabilities and has outperformed previous versions. Ultralytics YOLOv8
provides a unified framework for training models for the tasks of object detection, instance
segmentation, and image classification. This means that users can use a single model for all
three tasks, simplifying the training process.

In addition to being able to be trained significantly more quickly on tiny datasets
without any pre-learned weights, it also requires technology that is several times cheaper
than other neural networks. YOLOv7’s architecture is a combination of YOLOv4, scaled
YOLOv4, and YOLO-Rs, among others. To produce a new and enhanced version of
YOLOv7, more tests were carried out using these models as a foundation. The extended
efficient layer aggregation network (E-ELAN) serves as the computing node of YOLOv7’s
backbone [30,31]. It was based on earlier studies on how effective networks are. It was
developed by considering the following elements that affect speed and accuracy, such as the
memory access cost, the ratio of the input to the output channel, element-wise operation,
activations, and the gradient path. Expansion, shuffling, and merging the cardinality are
the three techniques that the proposed E-ELAN uses in order to keep the initial gradient
path intact, while continuously enhancing the network’s capacity for learning. In order
to make YOLOv7 better, a compound model scaling technique was utilized. Within this
framework, the width and depth of models based on concatenation can be scaled in a
consistent manner.

Bag of freebies (BoF) techniques improve a model’s output without adding to its
training budget. The following are some of the new BoF techniques included in YOLOv7.
First, planned re-parameterized convolution, which improves a model by applying re-
parameterization, is a common practice following training [32]. The model takes longer to
train but yields better inference results [33]. Model-level and module-level ensemble re-
parametrization were used to construct the models. Second, with the “coarse for auxiliary
and fine for lead loss” technique, the YOLO architecture comprises of a backbone, a neck,
and a head. The outputs that were anticipated are stored in the head. YOLOv7 is not
restricted to utilizing a single head at a time [34]. It can accomplish everything it wants
since it possesses several heads. Moreover, the lead head-guided label assigner encapsulates
the concepts of the lead head, the auxiliary head, and the soft label assigner. The YOLOv7
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network’s lead head is the part responsible for making the final predictions. These results
serve as the basis for the generation of soft labels. The loss is calculated for both the lead
head and the auxiliary head on the basis of the same soft labels being created, which is
crucial to take into consideration. Ultimately, both heads will be trained using the soft
labels. Further, the coarse-to-fine labels include a fine label to train the lead head and a set
of coarse labels to train the auxiliary head.

YOLO is a popular object detection algorithm that is widely used in computer vision
applications. YOLO has several versions, with YOLOv5 and YOLOv7 being the latest
ones. YOLOv5 is a later version of the algorithm and has several improvements over its
predecessor, YOLOv4. Some of the key features of YOLOv5 include its improved speed
and improved accuracy, and that it is a smaller model. In terms of speed, YOLOv5 is faster
than YOLOv4, allowing real-time object detection in video streams. In terms of accuracy,
YOLOv5 has better accuracy compared with previous versions, with a better ability to detect
small objects and objects at a distance. As a lighter model, YOLOv5 has a smaller model
compared with previous versions, making it easier to deploy on embedded devices and
systems with limited resources. On the other hand, YOLOv7 is a more recent development.
The main difference between YOLOv5 and YOLOv7 is that YOLOv7 uses a different
architecture from YOLOv5. YOLOv7 uses an anchor-free architecture, which eliminates
the need for anchor boxes, which can improve the accuracy of object detection. YOLOv7
also uses a different backbone network, which can improve the speed and efficiency of the
algorithm. Overall, both YOLOv5 and YOLOv7 are powerful object detection algorithms
that can be used for a wide range of applications. The choice between the two depends on
the specific requirements of the application, such as the need for speed and/or accuracy, or
the model’s size.

In our experiment, we implemented YOLOv5n, YOLOv5s, YOLOv5m, YOLOv7, and
YOLOv7x, as described in Table 1.

Table 1. An overview of the YOLOv5 and YOLOv7 models used with the COCO dataset.

Model Name Accuracy
(mAP 0.5)

Params
(Million)

GPU
Time (ms)

CPU
Time (ms)

YOLOv5n 45.7 1.9 6.3 45
YOLOv5s 56.8 7.2 6.4 98
YOLOv5m 64.1 21.2 8.2 224
YOLOv7 51.4 36.9 - -

YOLOv7x 53.1 71.3 - -

3. Methodology
3.1. Dataset

Pictures of individuals posing with a wide variety of musical instruments can be found
within the People Playing Musical Instruments (PPMI) dataset. Bassoons, cellos, clarinets,
French horns, erhus, flutes, guitars, harps, saxophones, trumpets, recorders, and violins
are among the instruments in the dataset. Yao gathered images of musical instruments
and published them in [10]. In September 2010, Aditya Khosla published a collection of
photos of various musical instruments that he had taken. These photos include cellos,
clarinets, harps, recorders, and trumpets. Initially, the dataset contained 100 examples from
each category to be used for training, as well as 100 images to use for testing. The first
table provides an overview of the entire dataset. During this study, we used the PPMI
dataset to train and validate our model. Figure 2 shows the PPMI dataset we used in these
experiments.

The labels of the PPMI dataset are depicted in Figure 3. The PPMI dataset includes
12 classes, and the vast majority of those classes have more than 300 photos. The values for
x and y can vary anywhere from 0.0 to 1.0, while the width can be any number between 0.0
and 0.1, and the height can be any value between 0.0 and 0.1. We used 70% of it for training
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purposes and 30% for testing. Table 2 presents the distribution of the PPMI dataset in its
entirety.
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Figure 2. Sample images in the PPMI dataset.

Table 2. Distribution of the PPMI dataset.

Class Name Testing Training Total Images

Bassoon 109 253 362
Cello 97 225 322

Clarinet 95 221 316
Erhu 101 236 337
Flute 95 221 315

French horn 98 229 327
Guitar 98 228 326
Harp 100 232 332

Recorder 93 216 309
Saxophone 98 228 326

Trumpet 99 231 330
Violin 102 238 340

Total Images 1183 2759 3942

3.2. YOLOv7

In these sections, we explain our proposed YOLOv7 architecture, as shown in Figure 4.
The PPMI dataset was used as the input in our systems, and then we trained the model with
YOLOv7. YOLOv7’s E-ELAN architecture uses “expand, shuffle, and merge cardinality” to
acquire the ability to continuously increase the network’s learning capability without losing
the original gradient path, allowing the model to learn better. Compound model scaling,
which is based on concatenation, is new in YOLOv7. The compound scaling approach
preserves the model’s characteristics from the time of its inception, allowing for the most
efficient architecture to be kept. Re-parameterization of the model is scheduled to take
place in the architecture of YOLOv7. The RepConv of a layer that has concatenation or
residual connections should not have an identity connection. Due to this, the RepConv of
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that layer is replaced by RepConvN, which does not have any identity connections. The
next step is to generate the final model by averaging their relative weights. The model’s
weights from different times should be averaged out. In our research, we examined both
the training procedure and the testing procedure in depth for object recognition.
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RepConvN, which has no identification ties, can be used in its place under certain
conditions. RepConv is a convolutional layer that includes 3 × 3 convolutions, 1 × 1
convolution, and identity connections. The authors used RepConv without an identity
connection (RepConvN) to create the architecture of the planned re-parameterized con-
volution after examining the combination and corresponding performance of RepConv
and other architectures. In this study, when a convolutional layer including residuals or
concatenations is swapped for re-parameterized convolution, there should be no identity
connections [35,36].

The following is a list of the key differences between the various basic versions of
YOLOv7. YOLOv7 is the foundational model, and it was designed to be as efficient as pos-
sible for general GPU computing. YOLOv7x was developed through the implementation
of the suggested compound scaling method. YOLOv7-tiny is a fundamental model that has
been tailored specifically for edge GPU. YOLOv7-W6 is a basic model optimized for cloud
GPU computing. In our work, we only focused on YOLOv7 and YOLOv7x, and tuned
them with the PPMI datasets. During the training of YOLOv7, we set the following param-
eters: image size = 640 × 640, conf-thres = 0.25, iou_thres = 0.45, learning_rate = 0.0001,
number of classes = 12, depth_multiple = 1.0, momentum = 0.999, optimizer = Adam
with lr0, epoch = 100, and width_multiple = 1.0. As a comparison, we also trained
and tested our model with YOLOv5. Throughout the training of YOLOv5, we speci-
fied the following parameters: picture size = 640 × 640, conf-thres = 0.25, iou_thres = 0.45,
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learning rate = 0.0001, max_det = 1000, number of classes = 12, depth_multiple = 0.33, mo-
mentum = (0.3, 0.6, 0.98), batch size = 16, epoch = 100, and width_multiple = 0.50.
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3.3. Training Results

During every stage of the training process, this study made use of several data aug-
mentation techniques, including padding, cropping, and horizontal flipping, among others.
These methods are often used in the creation of large neural networks because of their
benefits. Diagrams of the training process and the validation process for Batch 0 are shown
in Figures 5 and 6, respectively. The YOLOv7 network augments its training material with
random splicing of four images using mosaic data augmentation. This greatly increases
the detection dataset, strengthens the network, and releases more video processing power
on the GPU. In addition, a Nvidia RTX3060Ti GPU accelerator with 11 GB of RAM, an i7
central processing unit (CPU), and 16 GBDDR2 memory comprised the environment of the
training model. YOLOv7’s primary goal was real-time detection, and it was trained using
only a single graphics processing unit (GPU).
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The BBox marking tool [37] was implemented to create a bounding box for all musical
instruments. YOLO labeling is the standard output format for most annotation programs,
and it creates a single text file that contains all the annotations for all images. Each text
file has one bounding box, abbreviated as “BBox”, and the annotation for each of the
objects displayed in the image. The image-appropriate scaling of the annotations yields a
value ranging from 0 to 1 for all of the labels [38]. Equations (1)–(6) were the basis for the
procedure of adjustment for calculating the YOLO format:

dw = 1/W (1)

x =
(x1 + x2)

2
× dw (2)

dh = 1/H (3)

y =
(y1 + y2)

2
× dh (4)

w = (x2 − x1)× dw (5)

h = (y2 − y1)× dh (6)

where H is used to denote the height of the image, dh refers to the absolute height of the
image, W is used to denote the width of the image, and dw represents the absolute width of
the image. The results of training for all classes are shown in Tables 3 and 4, which includes
the mAP, precision, and recall for each class. According to Table 3, YOLOv7x achieved a
mAP of 88.2%, followed by YOLOv7, with a mAP of 86.6%. In addition, the cello, erhu,
guitar, harp, and saxophone classes all earned a maximum mAP score of over 90% when
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YOLOv7x was used. The precision and recall curve for YOLOv7x is displayed in Figure 7a,
and the training and validation curve can be seen in Figure 7b. In addition, the harp, erhu,
and saxophone classes had the highest mAP (91.1%, 97.6%, and 91.6%, respectively) with
YOLOv7. As a comparison, we also trained YOLOv5, and the results are depicted in Table 4.
YOLOv5m achieved the highest mAP of 82.5%, followed by YOLOv5s with 81.3% and
YOLOv5n with 75%.
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Table 3. Evaluation of the performance of training on the PPMI dataset with YOLOv7.

Class Images Labels
YOLOv7 YOLOv7x

P R mAP@.5 P R mAP@.5

All 1182 1543 0.795 0.843 0.866 0.804 0.84 0.882
Bassoon 1182 140 0.838 0.812 0.856 0.858 0.82 0.868

Cello 1182 119 0.735 0.857 0.869 0.821 0.832 0.913
Clarinet 1182 112 0.775 0.862 0.853 0.72 0.786 0.822

Erhu 1182 123 0.84 0.935 0.911 0.806 0.959 0.92
Flute 1182 131 0.762 0.806 0.826 0.75 0.779 0.816

French horn 1182 119 0.687 0.866 0.862 0.767 0.84 0.897
Guitar 1182 112 0.856 0.821 0.885 0.887 0.786 0.904
Harp 1182 110 0.938 0.963 0.976 0.955 0.958 0.988

Recorder 1182 173 0.75 0.798 0.808 0.721 0.792 0.816
Saxophone 1182 137 0.839 0.861 0.916 0.826 0.901 0.911

Trumpet 1182 130 0.743 0.715 0.804 0.772 0.792 0.858
Violin 1182 137 0.783 0.817 0.827 0.765 0.832 0.868

Table 4. Evaluation of the performance of training on the PPMI dataset with YOLOv5.

Class Images Labels
YOLOv5m YOLOv5n YOLOv5s

P R mAP@.5 P R mAP@.5 P R mAP@.5

All 1314 1748 0.798 0.825 0.825 0.725 0.735 0.75 0.761 0.802 0.813
Bassoon 1314 149 0.837 0.828 0.869 0.828 0.745 0.8 0.818 0.785 0.811

Cello 1314 124 0.811 0.887 0.896 0.772 0.831 0.816 0.737 0.871 0.841
Clarinet 1314 136 0.836 0.757 0.793 0.693 0.625 0.649 0.781 0.733 0.809

Erhu 1314 135 0.83 0.889 0.913 0.743 0.785 0.804 0.782 0.85 0.864
Flute 1314 163 0.727 0.785 0.799 0.746 0.62 0.69 0.708 0.767 0.733

French horn 1314 140 0.844 0.812 0.902 0.713 0.829 0.84 0.8 0.836 0.877
Guitar 1314 123 0.806 0.756 0.819 0.784 0.715 0.799 0.805 0.748 0.784
Harp 1314 114 0.913 0.974 0.982 0.883 0.93 0.949 0.907 0.956 0.969

Recorder 1314 209 0.702 0.745 0.782 0.57 0.565 0.572 0.649 0.703 0.721
Saxophone 1314 144 0.815 0.875 0.902 0.712 0.84 0.83 0.751 0.879 0.876

Trumpet 1314 140 0.729 0.721 0.733 0.606 0.586 0.561 0.718 0.692 0.698
Violin 1314 171 0.722 0.865 0.828 0.645 0.754 0.685 0.683 0.801 0.771

The loss function of YOLO was based on Equation (7) [13]:

λcoord ∑s2

i=0 ∑B
j=0 1

obj
ij

[
(xi − x̂i)

2 + (y− ŷi)
2
]
+ λcoord ∑s2

i=0 ∑B
j=0 1

obj
ij [(
√

wi−
√

ŵi)
2
+

(√
hi −

√
ĥi

)2
]

+ ∑s2

i=0 ∑B
j=0 1

obj
ij
(
Ci − Ĉi

)2
+

λnoobj ∑s2

i=0 ∑B
j=0 1

noobj
ij

(
Ci − Ĉi

)2
+ ∑s2

i=0 1
obj
i ∑cεclasses(pi©p̂i(c))2

(7)

where 1obj
ij indicates that the object appears in cell i, and 1

obj
ij indicates that the jth bounding

box predictor in cell i is responsible for the prediction. Next,
(

x̂, ŷ, ŵ, ĥ, ĉ, p̂
)

were used
to express the anticipated bounding box’s center coordinates, width, height, confidence,
and category probability. Moreover, our experiment defined the λcoord as 0.5, indicating
that the errors in width and height were less useful in the computation. In order to lessen
the effect of multiple grids, a loss value that is empty of objects, λnoobj = 0.5, was utilized.
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Equation (8) describes the average mean average precision (mAP) as the integral over
the precision p(o):

mAP =
∫ 1

0
p(0)do (8)
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where p(o) is the precision of object detection. IoU calculates the overlap ratio between the
boundary box of the prediction (pred) and the ground truth (gt) and is shown in Equation (9).
Precision and recall were calculated by Equations (10) and (11) [39].

IoU =
Areapred ∩ Areagt

Areapred ∪ Areagt
(9)

Precision =
TP

TP + FP
= TP/N (10)

Recall =
TP

TP + FN
(11)

where N is the number of objects found, TP is the true positives, FP is the false positives, and
FN is the false negatives (including true positives and false positives). Another evaluation
index, F1 [40], is shown in Equation (12). Figure 8 describes the confusion matrix of
YOLOv7x.

F1 =
2× Precision× Recall

Precision + Recall
(12)

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 15 of 21 
 

 
Figure 8. Confusion matrix for YOLOv7x. 

4. Results and Discussion 
The test results of YOLOv7’s performance are detailed in Table 5, whereas the results 

for YOLOv5 are shown in Table 6. Our results showed that YOLOv7 achieved the highest 
average mAP (86.7%), followed by YOLOv7x (86.1%), YOLOv5m (80.5%), YOLOv5s 
(72.6%), and YOLOv5n (64%.) The harp class had the optimum mAP of 97.3% using 
YOLOv7 during the testing process. 

Table 5. The performance of YOLOv7. 

Class Images Labels YOLOv7 YOLOv7x 
P R mAP@.5 P R mAP@.5 

All 1182 1543 0.808 0.833 0.867 0.771 0.826 0.861 
Bassoon 1182 140 0.826 0.816 0.853 0.876 0.757 0.849 

Cello 1182 119 0.751 0.849 0.862 0.778 0.823 0.871 
Clarinet 1182 112 0.749 0.857 0.821 0.678 0.772 0.774 

Erhu 1182 123 0.832 0.927 0.91 0.784 0.946 0.905 
Flute 1182 131 0.799 0.771 0.831 0.663 0.802 0.814 

French horn 1182 119 0.757 0.849 0.871 0.673 0.84 0.873 
Guitar 1182 112 0.842 0.806 0.877 0.836 0.776 0.85 
Harp 1182 110 0.951 0.955 0.973 0.95 0.863 0.968 

Figure 8. Confusion matrix for YOLOv7x.

4. Results and Discussion

The test results of YOLOv7’s performance are detailed in Table 5, whereas the results
for YOLOv5 are shown in Table 6. Our results showed that YOLOv7 achieved the highest
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average mAP (86.7%), followed by YOLOv7x (86.1%), YOLOv5m (80.5%), YOLOv5s (72.6%),
and YOLOv5n (64%.) The harp class had the optimum mAP of 97.3% using YOLOv7 during
the testing process.

Table 5. The performance of YOLOv7.

Class Images Labels
YOLOv7 YOLOv7x

P R mAP@.5 P R mAP@.5

All 1182 1543 0.808 0.833 0.867 0.771 0.826 0.861
Bassoon 1182 140 0.826 0.816 0.853 0.876 0.757 0.849

Cello 1182 119 0.751 0.849 0.862 0.778 0.823 0.871
Clarinet 1182 112 0.749 0.857 0.821 0.678 0.772 0.774

Erhu 1182 123 0.832 0.927 0.91 0.784 0.946 0.905
Flute 1182 131 0.799 0.771 0.831 0.663 0.802 0.814

French horn 1182 119 0.757 0.849 0.871 0.673 0.84 0.873
Guitar 1182 112 0.842 0.806 0.877 0.836 0.776 0.85
Harp 1182 110 0.951 0.955 0.973 0.95 0.863 0.968

Recorder 1182 173 0.807 0.751 0.835 0.716 0.815 0.801
Saxophone 1182 137 0.853 0.861 0.912 0.786 0.885 0.9

Trumpet 1182 130 0.738 0.736 0.811 0.767 0.784 0.853
Violin 1182 137 0.789 0.818 0.844 0.748 0.854 0.871

Table 6. The performance of YOLOv5.

Class Images Labels
YOLOv5m YOLOv5n YOLOv5s

P R mAP@.5 P R mAP@.5 P R mAP@.5

All 1314 1748 0.739 0.793 0.805 0.61 0.689 0.64 0.688 0.752 0.726
Bassoon 1314 149 0.762 0.745 0.791 0.69 0.626 0.643 0.706 0.664 0.719

Cello 1314 124 0.743 0.782 0.772 0.633 0.653 0.616 0.656 0.758 0.691
Clarinet 1314 136 0.751 0.775 0.784 0.583 0.684 0.618 0.7 0.755 0.727

Erhu 1314 135 0.817 0.829 0.866 0.676 0.622 0.681 0.71 0.817 0.776
Flute 1314 163 0.637 0.804 0.767 0.563 0.644 0.568 0.707 0.748 0.696

French horn 1314 140 0.826 0.849 0.895 0.597 0.847 0.747 0.723 0.82 0.79
Guitar 1314 123 0.76 0.675 0.747 0.695 0.629 0.659 0.715 0.675 0.688
Harp 1314 114 0.861 0.912 0.914 0.752 0.825 0.824 0.851 0.746 0.839

Recorder 1314 209 0.658 0.732 0.739 0.483 0.67 0.535 0.59 0.718 0.659
Saxophone 1314 144 0.743 0.854 0.873 0.617 0.778 0.702 0.656 0.847 0.797

Trumpet 1314 140 0.628 0.714 0.709 0.505 0.571 0.478 0.59 0.664 0.595
Violin 1314 171 0.681 0.849 0.798 0.529 0.719 0.615 0.65 0.813 0.734

Figure 9 shows the results of recognition for all models in the experiment. According
to these results, all models could detect all objects in the images very well, except that
YOLOv7x and YOLOv5m failed to detect all the cellos in Figure 9b,c. In addition, in
Figure 9a, YOLOv7 could detect the erhu class with mAP values of 75%, 71%, and 76%.
The flute class had a mAP of 92% and 76%, and of 57% and 81%.
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A comparison with previous studies is presented in Table 7. In general, YOLOv7
was more accurate than the version that came before it. Majority of the classes had an
improvement in their accuracy with YOLOv7 compared with previous methods. Moreover,
the erhu, harp, and saxophone classes had the highest accuracy of over 90% for YOLOv7.
The optimal total average accuracy was achieved by YOLOv7, with an accuracy of 86.70%,
followed by YOLOv7x with a mAP of 86.10%. Next, Grouplet [10] achieved 85.10% accuracy,
and Resnet 50 SPP [41] exhibited an accuracy of 84.66%. Moreover, the clarinet class had the
maximum accuracy of 95.70% with Grouplet [10]. The harp class achieved the highest mAP
of 98% with Resnet 50 SPP [41]. In terms of size, shape, and appearance, the clarinet and
flute are two wind instruments that are very similar to each other. The guitar, violin, and
cello are very similar stringed instruments. The sizes of these three musical instruments
are different, despite that they are visually similar to one another. The violin is the smallest,
the guitar is the second smallest, and the cello is the largest.

Table 7. Comparison with previous studies.

Class Name Class ID Grouplet [10] Resnet 50 SPP [41] YOLOv7 YOLOv7x

Bassoon 0 78.50% 85.00% 85.30% 84.90%
Cello 1 87.60% 81.00% 86.20% 87.10%

Clarinet 2 95.70% 89.00% 82.10% 77.40%
Erhu 3 84.00% 81.00% 91.00% 90.50%
Flute 4 87.70% 82.00% 83.10% 81.40%

French horn 5 87.70% 78.00% 87.10% 87.30%
Guitar 6 93.00% 79.00% 87.70% 85.00%
Harp 7 76.30% 98.00% 97.30% 96.80%

Recorder 8 84.60% 85.00% 83.50% 80.10%
Saxophone 9 82.30% 93.00% 91.20% 90.00%

Trumpet 10 87.10% 85.00% 81.10% 85.30%
Violin 11 76.50% 80.00% 84.40% 87.10%

Average 85.10% 84.64% 86.70% 86.10%

Table 8 shows the results for testing with Dataset 2. Dataset 2 includes images of
30 musical instrument classes for image classification, created by Kaggle (https://www.
kaggle.com/datasets/gpiosenka/musical-instruments-image-classification, accessed on 12
April 2023), with 4793 training, 150 testing, and 150 validation images. The images have a
size of 224 × 224 × 3 and are in jpg format. Our experiment used seven classes: clarinet,
flute, guitar, harp, trumpet, saxophone, and violin. YOLOv7 had the highest average
accuracy of 71.9%, with a detection time of 0.014 s. This model was the most accurate and
the fastest compared with other models in the experiment. The results of YOLOv7 for
recognition in Dataset 2 can be seen in Figure 10.

Table 8. Performance with Dataset 2.

Class
Name

YOLOv5n YOLOv5s YOLOv5m YOLOv7 YOLOv7x

Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s)

Clarinet 0.609 0.031 0.660 0.061 0.701 0.118 0.744 0.022 0.648 0.021
Flute 0.560 0.031 0.703 0.061 0.632 0.116 0.667 0.012 0.561 0.020

Guitar 0.499 0.031 0.632 0.060 0.750 0.116 0.675 0.012 0.635 0.020
Harp 0.713 0.030 0.656 0.060 0.875 0.116 0.753 0.012 0.457 0.020

Trumpet 0.579 0.030 0.621 0.060 0.685 0.116 0.793 0.012 0.791 0.020
Saxophone 0.668 0.030 0.644 0.060 0.625 0.118 0.638 0.012 0.817 0.020

Violin 0.689 0.031 0.798 0.060 0.693 0.116 0.763 0.012 0.652 0.020
Average 0.617 0.030 0.673 0.060 0.709 0.117 0.719 0.014 0.652 0.020

https://www.kaggle.com/datasets/gpiosenka/musical-instruments-image-classification
https://www.kaggle.com/datasets/gpiosenka/musical-instruments-image-classification
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5. Conclusions

In this study, the focus was on distinguishing objects that appear very similar to the
human eye. In the process of our investigations, we made use of YOLOv7 and YOLOv5
to determine the identities of various musical instruments. During this investigation, we
found several musical instruments that were very similar to one another. YOLOv7 and
YOLOv5 are just two of the many backbone architectures and extractor features that our
research investigated in conjunction with CNN models for the purpose of object recognition.

According to the findings of our experiment, we were also successful in improving the
performance of the system in detecting musical instruments that are similar to one another.
YOLOv7 showed a maximum average accuracy of 86.70% compared with previous results:
YOLOv7 exhibited a mAP of 86.10%, whereas Grouplet [10] only achieved an accuracy of
85.10%, and Resnet 50 SPP achieved 84.64% [41]. As part of our future research, we hope to
find a way to determine whether an image of a musical instrument has the wrong shape.
We also plan to use Explainable Artificial Intelligence (XAI) in our future research to help
us better understand the images.
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