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Abstract: Pattern sequence-based models are a type of forecasting algorithm that utilizes clustering
and other techniques to produce easily interpretable predictions faster than traditional machine
learning models. This research focuses on their application in energy demand forecasting and
introduces two significant contributions to the field. Firstly, this study evaluates the use of pattern
sequence-based models with large datasets. Unlike previous works that use only one dataset or
multiple datasets with less than two years of data, this work evaluates the models in three different
public datasets, each containing eleven years of data. Secondly, we propose a new pattern sequence-
based algorithm that uses a genetic algorithm to optimize the number of clusters alongside all
other hyperparameters of the forecasting method, instead of using the Cluster Validity Indices
(CVIs) commonly used in previous proposals. The results indicate that neural networks provide
more accurate results than any pattern sequence-based algorithm and that our proposed algorithm
outperforms other pattern sequence-based algorithms, albeit with a longer training time.

Keywords: time-series forecasting; clustering; patterns; genetic algorithm; energy

1. Introduction

Electricity has been a vital part of modern life since its discovery. As the number of de-
vices that rely on electricity continues to grow, people often use it for multiple applications
simultaneously, such as lighting, refrigeration, cooling and heating, among others. Energy
has therefore become a key component of modern life. Given the economic and environ-
mental importance of this issue, it is essential to have accurate and understandable energy
demand forecasting to reduce energy generation and distribution costs and emissions.

Energy demand prediction has been a relevant topic in both the academic and profes-
sional circles and has been studied in a variety of scenarios and circumstances. Researchers
have addressed this topic for households [1], public buildings [2] and energy markets [3–8],
among others. Furthermore, from an artificial intelligence perspective, many different time-
series forecasting models have been applied to this matter ranging from easy-to-understand
models, such as ARIMA, to highly accurate black-box models, such as neural networks
and ensembles of different models [1]. However, in the majority of forecasting studies
published in recent years, some form of neural network architecture has been employed.
Mohammed et al. [9] presented an improved version of backpropagation to provide better
long-term load demand forecasting. Peng et al. [10] used the empirical wavelet transform
and attention-based Long-Short Term Memory neural networks to forecast industrial elec-
tricity in Hubei and the total energy consumption of China. Ghenai et al. [11] proposed a
Neuro-Fuzzy Inference System to provide a very-short-term load forecast for an educational
building to balance supply from renewable sources and market demand.
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Over the past decade, clustering algorithms have emerged as an interesting alternative
for energy forecasting as they can extract patterns that can be used for prediction. The use of
clustering algorithms is particularly attractive in scenarios that require faster training time,
robustness to noise and missing data or easy interpretability. To the best of our knowledge,
pattern sequence-based forecasting (PSF) [5] was the first proposal of this kind. PSF uses
K-means to extract daily load patterns, labels the time series according to the clusters found
by K-means and provides a forecast based on the labelled time series and historical data
that used the same labelled input. Several other variants of this concept have been proposed
in the literature. Improved PSF [6] makes the forecast based on the cluster distribution
per day of the week and a weighted average. SCPSNSP [7] uses neural networks and the
Self-Organizing Map (SOM) [12] as the clustering method instead of K-means. BigPSF [8]
incorporates a map-reduce scheme for the efficient computation of the PSF algorithm in
clusters with Spark. Beyond the scope of energy load forecasting, adaptations of PSF have
been used to forecast prices [7], predict wind speed [13] and impute missing data [14].

This study introduces two main novelties in the field of pattern sequence-based
forecasting:

• Firstly, most pattern sequence-based forecasting algorithms use a Cluster Validity
Index (CVI) to select the optimal cluster size. However, there is no guarantee that the
optimal cluster size for this metric would provide the best forecast. As such, we have
presented a new proposal that combines the use of Self-Organizing Maps (SOMs),
Artificial Neural Networks (ANN) and a genetic algorithm (GA) to find the optimal
hyperparameters of the model (including the cluster size).

• Secondly, this is the first study to evaluate pattern sequence-based forecasting al-
gorithms using multiple public big data time series [15–17] that cover eleven years
of energy consumption across three different geographical areas. Previous works
evaluated only one dataset or datasets with two years or less of data.

The rest of this manuscript is structured as follows. Section 2 describes the prepro-
cessing pipeline, PSF algorithms’ general scheme and our proposed algorithm. Section 3
presents the results of our experimentation. Section 4 provides a deep analysis of the results
obtained. Lastly, Section 5 draws the main conclusions of our work and proposes future
lines of research.

2. Materials and Methods
2.1. Data Preprocessing

The same preprocessing pipeline was applied to prepare the data from all three
sources before fitting the machine learning models. Firstly, the datasets were divided
into two partitions: training and test. The training set includes all observations from 1
January 2009 to 12 September 2016 (70%), while the test partition covers the days between
13 September 2016 and 31 December 2019 (30%).

Secondly, we checked for outliers, duplicated data and missing data in all three
datasets. No extreme outliers were found. However, all datasets presented some duplicates
due to repeated timestamps from the different scrapped files and daylight-saving time.
Data were scrapped chronologically to ensure reproducibility and only the last duplicate
timestamp was kept. There were no missing values besides those corresponding to daylight
saving time, which were filled via linear interpolation.

Lastly, the energy demand from each data source was scaled using min-max normal-
ization (Equation (1)) where s represents the time series and st represents the observation
occurring at time step t, rescaling all observations of time series s to a range between 0 and
1. After each algorithm computed its predictions, the inverse transformation was applied
to provide the forecasts in the original data scale.

s′t =
st −min(s)

max(s)−min(s)
(1)
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2.2. Artificial Neural Networks

Artificial Neural Networks are machine learning models inspired by the brain’s biolog-
ical neural connections. An artificial neural network (ANN) typically consists of multiple
interconnected layers. Each connection between neurons in the network is assigned a
weight, which is adjusted during the learning process to improve the performance of the
model. The first layer, or input layer, receives a data sample, while the last layer, or output
layer, tries to produce the expected output for the input given in the first layer. All the other
layers are denominated as hidden layers. In an ANN, each neuron in a hidden layer (i.e.,
any layer except the input layer) calculates its output by taking a weighted sum of the out-
puts from the neurons in the previous layer, using the weights learned in the connections.
This weighted sum is then transformed by applying a non-linear function known as an
activation function. The activation function introduces non-linearity to the model, allowing
it to learn more complex patterns in the data. The learning process of a neural network
involves adjusting the weights of the connections to minimize the difference between the
output layer and the desired output. In the course of this research, we only used one type
of ANN: the Multilayer Perceptron (MLP) [18]. An MLP is one of the simplest and most
widely used ANN. An MLP features one input layer, one output layer and one or more
hidden layers. In each layer, each neuron must be connected to all the neurons of the next
layer. There cannot be any other additional connection between neurons. The user must
provide the number of hidden layers and the number of neurons per hidden layer.

2.3. Clustering Algorithms

The objective of clustering algorithms is to partition a set of data points into groups,
such that points in the same group are more similar to each other than to those in other
groups, according to a specified similarity or distance metric. K-means [19] is the most
widely used clustering algorithm and requires providing the desired number of clusters
(K). In K-means, the starting clusters are initialized according to some criteria (random
generation or, more commonly, the algorithm k-means++ [20]) and the clusters are updated
in each iteration until a convergence criterion is reached (for example, a maximum number
of iterations). Each data point is assigned to the cluster with the closest center, and each
cluster’s center is updated as the mean of all the samples in that cluster. This process is
repeated iteratively until convergence.

The SOM [12] is a clustering algorithm based on neural networks and competitive
learning that is widely used for visual representations and dimensionality reduction. The
SOM also has the unique property of topological preservation. This means that samples that,
according to the distance metric used, are nearby in the input space should also be close in
the output space. Unlike K-means, the SOM clusters are organized in an output map/lattice
that can have multiple dimensions (usually two). Each cell in the map represents a neuron
or cluster with its corresponding weights. During the training process, the SOM weights
are updated either after processing each sample (online mode) or after processing the entire
dataset for one epoch (batch mode). For each sample, the closest neuron, referred to as the
Best Matching Unit (BMU), is identified. Its weights and the weights of the neurons in the
vicinity of the BMU are updated to minimize the distance between their weights and the
input sample. This learning process is controlled by a learning rate and a neighborhood
function (which determines the extent of the area where neighbouring neurons’ weights
are updated with a lower magnitude).

2.4. The Original PSF Algorithm and Its Variants

Pattern sequence-based forecasting is a general-purpose forecasting algorithm that was
first proposed in 2011 [5], as illustrated in Figure 1. It is a versatile algorithm that employs
clustering techniques to identify patterns in time-series data, which are subsequently used
to make predictions. It is known for its efficiency and interpretability, making it a popular
choice in various applications. The algorithm works as follows:

• Data normalization. The time series is standardised to reduce the effect of outliers.
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• Horizon selection. The user specifies the number of consecutive observations that will
be transformed into a label, and the number of observations to be forecasted in each
iteration of the algorithm. This value is denoted as h, and in the context of this paper
represents the number of observations per day.

• Optimal number of clusters selection. The K-means algorithm is executed for each
number of clusters (K) between 2 and 15. The optimal number of clusters is selected
using three different cluster validity indexes (CVI).

• Clustering/Labelling. The time series is labelled using the K-means algorithm with
the optimal number of clusters.

• Optimal window size selection. We employed cross-validation to identify the optimal
window size (W).

• Forecasting. The sequence of W labels corresponding to the W days before the fore-
casted date is searched throughout the historical data. The data from the day after the
pattern is found are recorded for any occurrence, and the average of these data will
produce the final forecast.

• Online learning. While there are days left to be forecasted, the last forecast ground
truth is added to the training dataset and the entire process is repeated.
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Figure 1. A visual summary of the PSF algorithm.

Improved PSF [6] is a variant of PSF that aims to reduce the training time further.
Unlike the original PSF, Improved PSF utilizes only one CVI to determine the optimal
number of clusters. Moreover, it does not require a sliding window for the forecasting step.
Instead, the prediction is a weighted average of the cluster centers based on the frequency
of each cluster per day of the week in the historical data.

SCPSNSP [7] is another variant of the previously described PSF algorithm. SCPSNSP
introduces the use of Self-Organizing Maps as its main novelty, and it is the closest to our
proposal. Instead of the three CVIs used by PSF, SCPSNSP uses the topographic error. The
topographic error [21] measures how well the SOM preserves the topology of the input
space. This is done by checking if the two best BMUs for each input are adjacent in the
output map. Unlike PSF, SCPSNPS uses an ANN to predict the next sample. This ANN
receives as an input signal the topographic coordinates of the symbols corresponding to the
previous days (the row and column of the SOM for the previous days as numerical input)
and predicts the coordinates on the topological map for the next day. Upon predicting
the coordinates of a new sample, the algorithm identifies the closest cluster that contains
at least one sample in it. The pattern predicted for the next day is the average of all the
samples in the selected cluster.
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2.5. Genetic Algorithm

A genetic algorithm [22] is an evolutionary metaheuristic inspired by Darwin’s theory
of evolution. It evolves a population of potential solutions (individuals) using the concepts
of fitness, selection, mutation, crossover and survival. The genetic algorithm used in this
paper is described below:

• Initialization. A population with a selected number of potential solutions are initial-
ized randomly.

• Fitness. A fitness function is used to evaluate the quality of each individual. In
our case, the individual will be a set of hyperparameters of the algorithm, and the
fitness function will be the Root Mean Square Error (RMSE) of the model trained with
those hyperparameters.

• Selection. A random set of individuals is selected with binary tournament selec-
tion [23]. In the binary tournament, for each parent to be chosen, two individuals
are selected randomly (in our case, with replacement) and put in a tournament. The
winner of each tournament is the individual with the best fitness value. This individual
will be selected as a parent.

• Crossover and Mutation. Each pair of parents is crossed overusing the self-adaptive
binary crossover and the polynomial proposed in [24]. This will create a new set of
offspring of individuals of the same size as the parent generation.

• Survival. Elitism is used to select the individuals that will conform to the next gener-
ation. This means that the next generation only keeps the individuals with the best
fitness values, independent of whether they were a parent or offspring.

2.6. The Proposed Method

Similar to the other related proposals, our algorithm has two main steps: clustering
and forecasting. However, unlike any previous proposal of this type, all hyperparameters
of our algorithm are selected with a genetic algorithm. A general overview of our proposal
can be found in Figure 2.
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In all previously described PSF algorithms, the optimal number of clusters is selected
using CVIs. The original PSF algorithm uses the silhouette index, Dunn’s index and Davies–
Bouldin index; Improved PSF uses the Davies–Bouldin index; and SCPSNSP uses the
topographic error. However, CVIs only measure the compactness of each cluster and the
distance between different clusters. Hence, there is no guarantee that the optimal number
of clusters given by any CVI will be the optimal number of clusters for the forecasting
task. Therefore, in GA-SOM-NNSF, the genetic algorithm selects the optimal number of
clusters (number of rows and columns of the SOM), the topology of the neural network
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and its learning rate. Thus, each time the genetic algorithm’s fitness function is called, a
new SOM and neural network are trained according to the parameters provided by the
individuals. Nevertheless, to reduce the computational overhead of training the same SOM
if individuals share the same number of rows and columns of the SOM, the first time it is
trained, its weights are stored on disk. The SOM is trained using the batch algorithm for
up to 1000 epochs, but it can stop earlier if the BMU does not change for 3 epochs. After
training, the BMU of each daily sample is assigned to a cluster identified by its row and
column on the output lattice.

Afterwards, a one-hidden-layer feed-forward neural network with the sigmoid activa-
tion function in the hidden layer is used to learn the relationship between previous and
future energy demand. It is well-known that using some exogenous variables can help
improve the forecast. For example, the use of the temperature may help the model take
into account HVAC systems, while the use of the day of the week may help the model
to understand the difference in energy consumption between workdays and weekends.
Nevertheless, we could not use the temperature as an exogenous variable in our study,
as the datasets we used do not provide that information. This is likely due to the fact
that the geographical areas we are working with are too large, and therefore, the range of
temperatures for any given day may be too wide and unreliable. However, we included
both days of the week and month of the year as additional features to the neural network
to differentiate between loads on working days and non-working days. In our method, the
neural network receives the cluster IDs from the previous X days (where X is determined
by each individual of the genetic algorithm) in one-hot encoding, and the day of the week
and month of the day to be predicted as exogenous variables. The output will be a unique
cluster identifier in one-hot encoding. The neural network is trained for 150 epochs using
the Adam optimizer with a learning rate determined by each individual of the genetic
algorithm using the categorical cross-entropy loss.

While our ANN provides as output the expected cluster for a given input, both during
training and to make a forecast, our method must provide a daily load for that expected
cluster. The daily load of any cluster will be the weights learned by the SOM for that cluster.

Alternatives to the ANN

We opted to use an ANN in the last step of our algorithm as a one-hidden-layer
feed-forward neural network can approximate any function. Furthermore, ANN has been
used with success in similar approaches [7], other hybrid models [10,11] and standalone [8].
Nevertheless, this last step of our proposal could use a different machine learning model.
However, linear models should be avoided, as they would be unable to learn any non-
linear relationship between the input space (previous days’ cluster, day of the week and
month) and the predicted clusters. If the ANN is replaced with another model, the new
model’s hyperparameter should replace ANN hyperparameters (learning rate and number
of hidden neurons) in the genetic algorithm.

2.7. Comparison Methodology

All algorithms were compared using the training/test partitions and the scaling
method described in Section 2.1. The hyperparameters were selected automatically by
using five-fold cross-validation in the training partition. We have evaluated a range of
hyperparameters for each algorithm, and a maximum of 300 combinations of different
parameters were tested per model. Furthermore, for reference, we evaluated two algorithms
that do not involve clustering: Prophet [25] and ANN. The range of parameters considered
for each method is as follows:

• PSF: Window size from 1 to 10. Number of clusters from 2 to 20;
• Improved PSF: Number of clusters from 2 to 20;
• SCPSNPS: Window size from 1 to 10. Number of rows and columns of the SOM from

5 to 10. With the Cascade-2 algorithm, resilient backpropagation and linear activation
in the output layer (as described by the authors);



Big Data Cogn. Comput. 2023, 7, 92 7 of 15

• GA-SOM-NNSF: Window size from 1 to 10. Number of rows and columns of the SOM
from 5 to 10. Number of hidden neurons between 5 and 40. Learning rate between
0.0001 and 0.01. Population size of 15. Twenty generations;

• Prophet: Automatic parameter selection;
• ANN: Window size from 1 to 10. One hidden layer. Number of hidden layers between

5 and 40. Sigmoid activation in the hidden layer. Learning rate between 0.0001
and 0.01.

2.8. Experimental Setup

All experiments were conducted on a personal computer equipped with an AMD
5 Ryzen 2600X CPU operating at a clock speed of 3.6 GHz, an NVIDIA GeForce RTX
3060 Ti 8 GB graphics card and 32 GB of DDR4 RAM. The experiments were implemented
using Python 3.9 and the libraries Simpsom [26] for the SOM, scikit-learn for K-Means and
normalization, TensorFlow [27] for training neural networks, pymoo [28] for developing
the genetic algorithm and FANN [29] (in C++) for the Cascade Neural Network of SCPSNSP.
All random number generators were initialized with the seed value 1996. The code to
execute our experiments has been provided as supplementary materials.

3. Results
3.1. Datasets’ Descriptions

The machine learning algorithms used in this study were compared with other algo-
rithms using the energy load data from three Transmission System Operators (TSOs). The
same eleven years of data from 1 January 2009 to 31 December 2019 were taken from each
dataset. Figure 3 shows a week of energy demand data from each TSO.
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Red Eléctrica de España (REE) [15] is the main Spanish TSO, and its website provides
information about energy demand and production in Spain since 2007, with observations
recorded every 10 min. The website provides information about actual energy demand,
energy demand predicted by the system, energy demand used to fix the hourly market price,
energy produced by each renewable and non-renewable source, and their corresponding
CO2 emissions. However, some of these variables were gradually incorporated and may not
be available for all years. The TSO system is divided into different independent subsystems
for the Peninsular area, the Balearic Islands, the Canary Islands, Ceuta and Melilla. In this
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study, we only used data from the Peninsular area. It is important to note that the REE
website does not offer a direct download of the dataset and that the data must be compiled
by downloading an independent CSV file per day.

New York Independent System Operator, Inc. (NYISO) [17] is the organization re-
sponsible for managing New York State’s (USA) electric grid and its electric marketplace.
Its website provides information about energy pricing, load, solar power generation and
outages, among other technical reports. Most of the website’s load data have been recorded
every hour. The system provides information about the entire energy load of New York
State and the energy consumption in 11 different subzones of the state. For the purposes
of this study, we used the aggregated energy load from the entire state of New York. The
data can be obtained from the NYISO webpage, where monthly zip files are available, each
containing a CSV file for every day.

Australian Energy Market Operator (AEMO) [16] is Australia’s main TSO for energy
and gas. AEMO operates in two wholesale electricity markets: the National Electricity
Market, operating in eastern and south-eastern Australia since 1998, and the Wholesale
Electricity Market, operating in western Australia since 2006. For the purposes of this study,
we used data from the National Electricity Market as they provide information about the
actual load. In contrast, only the forecasted load is available for the Wholesale Electricity
Market. The National Electricity Market is one of the world’s longest interconnected power
systems, connecting New South Wales, the Australian Capital Territory, Queensland, South
Australia, Victoria and Tasmania. The data on price and demand are provided in a single
CSV file per month for each previously mentioned region, with observations recorded
every 30 min. For this study, we used the aggregated demand every 30 min for all regions.

3.2. Metrics Used

Three metrics commonly used in time-series forecasting were used to evaluate the
performance of each algorithm. For all these metrics, n represents the total number of
observations, ŷ represents the predicted value, and y represents the expected value.

The Mean Absolute Percentage Error (MAPE) is a commonly used and easy-to-
understand metric that provides the average difference between the forecasted and expected
values in percentage. A lower MAPE value indicates a better forecast. However, MAPE
can be heavily influenced by outliers and is asymmetric, meaning that overestimating and
underestimating the ground truth have different effects on the metric.

MAPE =
1
n∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2)

The Mean Absolute Error (MAE) is a standard metric in forecasting and regression
tasks that provides the average difference between the forecasted and expected values. A
lower MAE value indicates a better forecast. This metric is more robust to outliers than
MAPE and RMSE.

MAE =
∑n

i=1|yi − ŷi|
n

(3)

The Root Mean Square Error (RMSE) is a commonly used metric in forecasting and
regression tasks that measures the average difference between predicted and actual values,
with a higher weight given to larger errors. A lower RMSE value indicates better perfor-
mance. The RMSE metric is more useful when large errors are particularly undesirable,
although it can be sensitive to outliers.

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(4)
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3.3. Experimental Results

Tables 1–3 present the performance of each method on the REE, AEMO and NYISO
datasets. The tables report the three quality metrics’ results for the optimal model on the
test partition; the total amount of time required to find the optimal hyperparameters, train
the optimal model, and make the predictions; and the optimal hyperparameters for each
method. Specifically, k represents the optimal number of clusters for K-means, w represents
the window size (number of previous days to use as input) and lr represents the learning
rate for the neural network optimizer.

Table 1. Quality metrics obtained for REE.

Method MAPE MAE RMSE Time (s) Best
Hyperparameters

PSF 0.0639 1836.1706 2554.8588 1009.8 k = 2, w = 5
Improved PSF 0.0632 1811.2023 2350.6346 342.7 k = 2

SCPSNSP 0.0484 1368.6395 1888.6601 8534.7 5 × 5 map, w = 9

GA-SOM-NNSF 0.0362 1024.1512 1476.6051 36,300.3 7 × 10 map, w = 1, 36 neurons
lr = 0.0051

Prophet 0.0554 1543.2565 2028.1925 76,948.5 Automatic

ANN 0.0236 681.7653 1010.3233 51,508.5 w = 7, lr = 0.001,
15 neurons

Table 2. Quality metrics obtained for AEMO.

Method MAPE MAE RMSE Time (s) Best
Hyperparameters

PSF 0.0616 1325.0971 1764.1506 933.5 k = 2, w = 4
Improved PSF 0.075 1594.5721 2020.5035 312.3 k = 2

SCPSNSP 0.049 1059.8433 1440.94 6614.3 5 × 5 map, w = 10

GA-SOM-NNSF 0.0474 1023.5576 1410.1180 14,722.2 7 × 10 map, w = 1, 33 neurons
lr = 0.0084

Prophet 0.0593 1269.5846 1628.6608 25,308.6 Automatic

ANN 0.0368 797.0881 1090.1918 47,758.2 w = 10, lr = 0.0001,
20 neurons

Table 3. Quality metrics obtained for NYISO.

Method MAPE MAE RMSE Time (s) Best
Hyperparameters

PSF 0.0756 1355.6724 1754.3449 898.9 k = 2, w = 4
Improved PSF 0.1087 1962.0865 2475.4632 294.5 k = 2

SCPSNSP 0.0609 1098.2639 1489.5731 3503.7 6 × 6 map, w = 6

GA-SOM-NNSF 0.0522 948.7998 1294.0604 9342.7 5 × 9 map, w = 1, 36 neurons
lr = 0.0053

Prophet 0.1075 1946.1666 2506.9506 21,637.5 Automatic

ANN 0.0362 667.5363 929.5423 45,838.8 w = 6, lr = 0.01,
25 neurons

For the REE data, the ANN algorithm achieved the best performance in all three met-
rics, although it required a longer training time than the pattern sequence-based algorithms.
On the other hand, Prophet had the slowest training time, taking more than 75,000 s, and
provided only mediocre results. Among the pattern sequence-based algorithms, PSF had
the worst performance, followed closely by Improved PSF. Our proposed GA-SOM-NNSF
model performed considerably better than the other pattern sequence-based algorithms but
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required around 4.5 times more training time than SCPSNSP, although it trained 1.4 times
faster than the best-performing ANN model.

For the AEMO data, the number of observations per hour was three times smaller than
REE, resulting in faster training times for all algorithms. Once again, the ANN provided
the best quality metrics for prediction, but it was also the slowest method to train. Prophet
delivered a three-times-faster training time compared to REE, becoming the second slowest
after the ANN. Unfortunately, like with the REE data, Prophet only provided better results
than PSF and Improved PSF. Among the pattern sequence-based algorithms, Improved
PSF provided worse results than PSF and was the worst-performing model. Our proposed
method yielded the best results among pattern sequence-based algorithms. However, the
improvement over SCPSNSP was relatively small compared to the difference in training
time between the two, with SCPSNSP being 2.2 times faster than our proposal.

For the NYISO data, the number of observations is twice smaller than AEMO, leading
to faster training for all methods. Once again, the ANN provided the best results among
all the evaluated models and the improvement for having fewer observations per day in
training time was marginal. Prophet was the second-slowest algorithm and provided the
worst quality metrics of all algorithms, closely followed by Improved PSF. From among the
pattern sequence-based algorithms, our algorithm provided the best results but was three
times slower to train than SCPSNPS, the second-best algorithm of this kind.

4. Discussion
4.1. Robustness of the Approach

Before comparing the different models evaluated in this paper, we should check if our
model produces robust results, i.e., the model learns without any overfitting or underfitting.
Table 4 displays, for each dataset, the error obtained by the GA-SOM-NNSF model with
the optimal hyperparameters in training and test.

Table 4. Quality metrics for training and test with the best GA-SOM-NNSF model.

Training Test

Dataset MAPE MAE RMSE MAPE MAE RMSE

REE 0.0331 934.59 1383.56 0.0362 1024.15 1476.61
NYISO 0.0425 805.74 1164.14 0.0522 948.80 1294.06
AEMO 0.0294 663.14 975.61 0.0474 1023.56 1410.12

The results indicate that our proposal performs well on unseen data using the REE
and NYISO datasets. In both cases, the training error is a good estimator of the test error,
and the difference between the two falls within reasonable boundaries as it is expected to
have a slightly better result with the data used for training. However, in the case of AEMO,
there is a substantial difference between the error in the training and test partitions. This
does not necessarily indicate that our model is overfitting but rather that forecasting the
days in the test partitions is considerably more challenging. A similar pattern can be found
in the other evaluated algorithms. For example, SCPSNPS provides an RMSE of 1052.38 in
the training partition and 1440.92 in the test partition.

4.2. Comparison between Algorithms

In this paper, we evaluated the performance of four pattern sequence-based forecasting
algorithms (including our proposal) for energy load forecasting. The first two algorithms,
PSF and Improved PSF, used K-means and averages of prior samples to produce a forecast.
There were two main differences between these two algorithms. Firstly, Improved PSF only
used one CVI instead of the three CVIs used by PSF. However, as seen in Tables 1–3, both
methods found two to be the optimal number of clusters in all three datasets. Therefore, the
main difference for all the cases studied in this paper is how each computes the prediction.
As explained in Section 2.4, PSF uses a window to compute the pattern of previous days



Big Data Cogn. Comput. 2023, 7, 92 11 of 15

and looks for previous occurrences of that pattern. Improved PSF removes this search
and calculates a weighted average of the cluster centers based on the frequency of each
cluster per day of the week. While it would be expected that the inclusion of the day of
the week should lead to better results, we also have to take into account that the changes
made to the forecasting method may make the forecasting method less powerful, as with
Improved PSF, we are completely ignoring the patterns of all the days in the history that
do not share the same day of the week as the day to be forecasted. On the experiments run
in this paper, Improved PSF provided slightly better results for REE but worse results for
AEMO and NYISO.

The other two algorithms, SCPSNPS and our proposal, relied on using the SOM and an
ANN to provide a forecast. The main difference between both was the usage of the genetic
algorithm and the design of the neural network used. In SCPSNPS, the topology error is
used as a CVI to obtain the optimal map size for the SOM. However, in our approach, we
argue that clustering validity metrics may not always provide the optimal cluster sizes
for forecasting purposes. Therefore, we employ a genetic algorithm to select the optimal
cluster size and other hyperparameters for our method. The results in Tables 1–3 show that
our proposal provides better results in all metrics for all three datasets at the expense of the
additional training time to test a broader range of hyperparameters. The tables also display
the differences between the map sizes in both algorithms, with the generic algorithm
usually selecting bigger maps. This most likely indicates that even though the clustering
separation or, in this case, the topology preservation may not be as good, the additional
patterns provided by the new clusters can improve the forecast quality. The other main
difference between both methods is the design of the neural network. In SCPSNPS, the
neural network is built with a constructive algorithm and maps the coordinates between
the input space and the output space. In our approach, the genetic algorithm selects the
optimal hyperparameters for the neural network topology, and the mapping is performed
between discrete variables representing each of the clusters. Therefore, if any exogenous
variable added is also discrete, our neural network will act as a rule-based system, leading
to a more straightforward interpretation once the rules are extracted. An example of a rule
that could be extracted from our model would be: “If we want to predict a Friday of March
and the cluster of the previous day was cluster 10, then, the next day, we expect the load
profile from cluster 23”.

We also used two non-PSF algorithms to compare the results: Prophet and the ANN.
Both models were slower to train than the PSF algorithms in all datasets, as expected.
Prophet did not provide great results in any of the three datasets evaluated. However, the
ANN always provided better metrics at the expense of being the slowest method to train.
This differs from the results reported in the original PSF algorithms papers, but it could
be explained by the improvements made in optimizers and weight initialization strategies
over the last decade, and the larger amount of data used to train the neural networks could
also explain the difference.

Figures 4–6 provide a visual comparison of the forecast provided by SCPSNPS (blue),
our proposal (pink) and the artificial neural network (green) with the expected value (black)
for four consecutive days of test partition in all three datasets. In all three figures, the ANN
provided a better forecast than the PSF algorithms, although there were some days when
the PSF algorithms provided a more accurate approximation. Between GA-SOM-NNFS
and our proposal, there were days when one offered better results than the other and vice
versa. However, it was more frequent for SCPSNPS to use patterns significantly different
from the closest possible pattern, as observed on the third day of each plot.
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4.3. Practical Applications of the Proposed Algorithm

Even though our algorithm provided better results than all other pattern sequence-
based algorithms, the ANN consistently outperformed our proposed algorithm in terms of
accuracy, though requiring more training time. Therefore, in scenarios where accuracy is
the primary concern, ANNs should be preferred over our proposed algorithm. However, if
there are any limitations to the amount of time available to train the models, our proposal
(or any other pattern sequence-based algorithm) should be used, although it is also compu-
tationally expensive. In those scenarios, the genetic algorithm could stop prematurely if the
time restriction was reached, providing the best forecast for the time available to train. This
could be further improved with parallel or distributed versions of the algorithm, drastically
reducing the time required to train the SOMs and run the genetic algorithm.

Another significant advantage of our approach is its high interpretability. In this case,
if the SOM finds an interesting pattern (or the pattern of interest is artificially introduced in
the SOM), the ANN will learn relationships between that pattern, previous days’ patterns,
the day of the week and the month. Due to the discrete nature of all input and output data,
simple understandable rules could be easily extracted from the ANN, providing experts
with better insights into why that pattern was occurring.

5. Conclusions

The work presented in this paper had two main goals: first, to evaluate different
pattern sequence-based algorithms using large amounts of data, and second, to develop an
algorithm that challenges the idea of using a CVI to determine the optimal cluster size in
forecasting tasks.

To evaluate the pattern sequence-based algorithms, we used three publicly available
data sources of energy demand with ten years of data recorded at an hourly and sub-hourly
granularity. This is in contrast to previous studies that used only one dataset or less than
two years of data. While pattern sequence-based algorithms had provided incredible results
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in energy demand in previous studies, our results showed that Artificial Neural Networks
provided more accurate results, but they required more training time.

The second goal of our research was to develop an improved pattern sequence-based
algorithm to address some of the weak points of previous proposals. The major difference
in our proposal was the use of a genetic algorithm to select the optimal cluster size and
the other neural network hyperparameters instead of using a cluster validity index. Our
proposal provided better forecasts than all other pattern sequence-based algorithms but
was also the slowest among them due to the use of the genetic algorithm. The optimal
cluster sizes provided by our algorithm were completely different from those offered by
the Cluster Validity Index used in the other proposal that makes use of the Self-Organizing
Map, indicating that a Cluster Validity Index is most likely not the best tool to select
clustering hyperparameters when the actual objective is to produce an accurate forecast.

In future works, we propose studying adaptations of our proposal for parallel and
distributed architectures to reduce training time and evaluating pattern sequence-based
algorithms in ensembles with other time-series forecasting algorithms.

Supplementary Materials: Code to train the models can be found at https://osf.io/m3rtz/.
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AEMO Australian Energy Market Operator
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
BMU Best Matching Unit
CVI Cluster Validity Index
GA Genetic Algorithm
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
NYISO New York Independent System Operator, Inc.
PSF Pattern Sequence-Based Forecasting
REE Red Eléctrica de España
RMSE Root Mean Square Error
SOM Self-Organizing Map
TSO Transmission System Operator
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