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Abstract: To proactively mitigate malware threats, cybersecurity tools, such as anti-virus and anti-
malware software, as well as firewalls, require frequent updates and proactive implementation.
However, processing the vast amounts of dataset examples can be overwhelming when relying solely
on traditional methods. In cybersecurity workflows, recent advances in natural language processing
(NLP) models can aid in proactively detecting various threats. In this paper, we present a novel
approach for representing the relevance and significance of the Malware/Goodware (MG) datasets,
through the use of a pre-trained language model called MalBERTv2. Our model is trained on publicly
available datasets, with a focus on the source code of the apps by extracting the top-ranked files that
present the most relevant information. These files are then passed through a pre-tokenization feature
generator, and the resulting keywords are used to train the tokenizer from scratch. Finally, we apply
a classifier using bidirectional encoder representations from transformers (BERT) as a layer within
the model pipeline. The performance of our model is evaluated on different datasets, achieving
a weighted f1 score ranging from 82% to 99%. Our results demonstrate the effectiveness of our
approach for proactively detecting malware threats using NLP techniques.

Keywords: malware detection; natural language processing; transformer-based model

1. Introduction

A series of studies have been conducted to tackle cybersecurity threats using machine
learning (ML) and deep learning (DL) tools. Multiple studies have been directed toward
analyzing malware at static, dynamic, and hybrid levels [1] to extract diverse features,
such as application programming interface (API) calls, permissions, and binaries. For
instance, the use of DL algorithms has assisted security specialists in analyzing complex
cyberattacks. DL models comprise several layers of an ML algorithm that are capable
of learning high-level abstractions from enormously complex datasets. This makes DL
algorithms more effective in identifying patterns and detecting malicious activities [2].
Consequently, DL has enabled many cybersecurity companies to improve the accuracy of
their malware detection systems. With the exponential growth of NLP applications, DL
algorithms, and specifically transformer-based (TB) architectures, have gained popularity
in solving complex problems. These algorithms have shown significant advantages over
other traditional ML techniques due to their ability to learn the context of the data and their
capacity to process large datasets [3].

NLP is an area of artificial intelligence (AI) that works with language data that is
based on text. It provides a multitude of tools for putting innovative cybersecurity-related
solutions into practice. To find weaknesses in the infrastructure, NLP can find overlaps in
data from a company’s tech stack and threat streams. The ultimate goal of NLP is to locate
the keyword, read the text, and comprehend any relevant context. Despite the fact that all
of these tasks are now manual, an automated system is desperately needed. Recently, using
attention weights [4] in language modeling improved the transfer learning tasks in AI-
based domains. Bidirectional encoder representation from transformers (BERT) [5] is one of
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the state-of-the-art TB models. BERT is an innovative, widely implemented solution used
in both academia and industry. These transfer learning-based approaches have opened
an opportunity to fine tune custom datasets for specific domains with pre-trained models
on larger datasets. TB models have a deeper understanding of language context than
traditional single-direction language models [4].

In this study, we introduce a novel approach for detecting malware using
MalBERT [6,7]. We extend prior work by using larger datasets for training and modeling
Android malware (AM) detection as a binary text classification problem. Our proposed
method utilizes the software application’s source code as a set of features and employs text
preprocessing techniques to extract relevant information, such as intents and activities. We
conduct extensive experiments on a preprocessed Android dataset collected from publicly
available resources. In our previous study [7], we presented the architecture of an automatic
system for identifying threat information and detecting malware using MalBERT. In this
work, we aim to quantify the subjective relevance of text documents and their potential
significance, which can be tailored to meet code-aware needs using existing NLP techniques.
We propose a novel approach for identifying malware-specific content from filtered texts,
and our major contributions include the following:

1. We propose MalBERTv2, an improved version of the MalBERT approach for malware
detection representation by creating a full pipeline for a code-aware pre-trained
language model for MG detection.

2. We propose a pre-tokenization process to present the features.
3. We apply extensive experiments and evaluations on a variety of datasets collected

from public resources.

2. Related Work

One of the major threats on the internet today is malicious software attacks. Malware
detection, visualization, and classification are one of the main areas of research to solve this
issue. Today’s era requires a system for the automatic classification of malware without
de-compiling or obfuscating the code. This paper review DL methods used to classify
malware in NLP. These methods focus on parsing and extracting useful information from
natural languages to simplify human–computer interaction. The key to the success of
NLP in cybersecurity is the availability of large datasets. Textual data in cybersecurity
come from various sources, such as emails [8,9], transaction logs from different systems,
source code and online social networks. Using NLP techniques has a direct impact on
situational awareness from logs of different network events and user activities. Several
methods are implemented for representing text in digital form, such as vector space models
and distributed representation. Encoding text at the word or character level comprises
preprocessing, followed by encoding as an initial step. This includes data cleaning and
the transformation of unnecessary and unknown words or characters. Non-sequential and
sequential inputs are the two main types of text representation. Bag of words (BoWs) [10],
term-document matrices (TDMs) [11] and term frequency-inverse document frequency
(TFIDF) matrices belong to the non-sequential representation. N-gram, Keras embedding,
Word2vec [12], Neural-Bag-of-words, and FastText [13] belong to sequential representation,
which can extract similarities in word meaning. In the cybersecurity domain, capturing
sequential information is more important than word sense similarities, as most data contain
temporal and spatial information. Therefore, DL approaches are adopted for effective
malware detection.

Malicious software attacks are a significant threat on the internet, and malware de-
tection, visualization, and classification are important areas of research in addressing this
issue. With the increasing need for automatic malware classification without de-compiling
or obfuscating the code, deep learning (DL) methods have been applied to classify malware
in natural language processing (NLP). These methods focus on parsing and extracting
useful information from natural language to facilitate human–computer interaction. The
availability of large datasets is crucial for the success of NLP in cybersecurity, as textual data
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in cybersecurity come from diverse sources, including emails, transaction logs, source code,
and online social networks. Various methods for representing text in digital form, such
as vector space models and distributed representation, are implemented. Preprocessing
involves encoding text at the word or character level, which includes data cleaning and
transformation of unnecessary and unknown words or characters. Two main types of text
representation are non-sequential and sequential inputs. While non-sequential representa-
tion techniques, such as bag of words, term document matrices, and term frequency-inverse
document frequency matrices are useful, sequential representation techniques, such as N-
gram, Keras embedding, Word2vec, neural bag of words, and FastText, are better suited for
capturing sequential information that is essential in the cybersecurity domain. Therefore,
DL approaches are adopted for effective malware detection.

Table 1 shows a comprehensive overview of malware-related works that have uti-
lized natural language processing (NLP) and deep learning models. The table contains
information on the methods used, authors, descriptions, data types, and highlights of
each work. The methods used include various tokenization and embedding techniques,
pre-trained models, and customized learning models. The data types include malware and
goodware samples, as well as URLs and executable files. These works demonstrate the
effectiveness of NLP and deep learning models in malware detection and classification
tasks. The use of pre-trained models and customized learning models has shown promising
results in identifying different types of malware with high accuracy. Additionally, the use
of attention-based mechanisms and GAN-based methods has improved the ability of these
models to extract meaningful features from the data. Despite these advancements, there are
still challenges to overcome, including the limitation of the maximum sequence length and
the lack of benchmarks for malware/goodware identification. Further research is needed
to address these challenges and improve the performance of these models. Overall, the
works listed in this overview provide a valuable resource for researchers and practitioners
in the field of cybersecurity.
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Table 1. List of NLP and deep learning models and methods used for malware-related tasks.

Model Authors Description Methods Pros Limitations Data Type

Spam Detection
using NLP Swetha and Sridevi (2019) [8]

Utilizes natural language
processing (NLP)
techniques for spam detection
in emails.

NLP techniques
Improves accuracy of spam
detection compared to traditional
methods.

Limited to detecting spam
in emails only. Text

NLP for
Cybersecurity

Antonellis et al. (2006) [11],
Zhang and Zhang (2010) [10]

Explores different text
representation methods such
as term-document matrix
(TDM), bag-of-words (BoW),
and term frequency-inverse
document frequency
(TFIDF) for cybersecurity
applications using NLP
techniques.

TDM, BoW,
TFIDF

Provides an efficient way of detecting
malicious content in large
volumes of data.

Performance may be
affected by the quality of
the data used for training.

Text

Embeddings for
Malware
Classification

Church and Huang (2017) [12],
Mahoney and Chan (2000) [13]

Uses word2vec and FastText
for classifying
malware based on the
similarity of word meanings
and subword information.

Word2vec,
FastText

Embedding techniques can handle
semantic relations and patterns of
the malware code.

Limited to identifying
similarities between
malware samples,
may not be effective in
identifying new types of
malware.

Text

MalBERT for
Malware
Classification

Rahali et al. (2021) [7]

Utilizes a fine-tuned BERT
model, MalBERT, for
binary and multi-classification
of malware.

BERT Can detect different types of
malware with high accuracy.

Requires a large amount
of labeled data for effective
training.

Binary, text

URL Classifier
using
Transformer
Model

Rudd et al. (2020) [14]
Implements a URL classifier
using the Transformer
model trained from scratch.

Transformer
model

Effective in detecting malicious
URLs with high accuracy.

May require large amounts
of computational resources
for training and testing.

Text

ALBERT for
Traffic Network
Classification

Han et al. (2020) [15]

Proposes two methods for
traffic network
classification using pre-trained
ALBERT model
and transfer learning.

ALBERT,
transfer learning

Achieves high accuracy in traffic
network classification tasks.

May require fine-tuning on
new data to achieve
optimal performance.

Text

I-MAD for Static
Malware
Detection

Li et al. (2021) [16]

Proposes I-MAD, a deep
learning (DL) model for
static malware detection
using the Galaxy
Transformer network.

DL Achieves high accuracy in
static malware detection tasks.

Limited to detecting
known malware samples
only.

Binary, image
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Table 1. Cont.

Model Authors Description Methods Pros Limitations Data Type

Static Analysis
for Malware
Detection

Jusoh et al. (2021) [17]
Proposes a guide for researchers
on detecting
malware through static analysis.

Static analysis

Provides a comprehensive guide
for researchers
to effectively
detect malware through static
analysis.

May require technical
expertise to effectively
implement the proposed
methods.

Text

Hybrid Analytic
Approach for
Malware
Detection

Srinidhi et al. (2020) [18]

Proposes a framework for big
data analysis
utilizing both static and dynamic
malware detection
methods.

Static and
dynamic
analysis

Combines the strengths of both
static and dynamic analysis
methods for improved accuracy.

May require a large
amount of computational
resources for analyzing
big data.

Binary, text

Attention-based
Detection
Model

Choi et al. (2020) [19]

Proposes a technique for extracting
harmful file
features based on an attention
mechanism using
API system calls.

Attention
mechanism

Can detect malware based on
API system calls.

May not be effective in
detecting new types of
malware.

Text

GAN-based
Method for
Malware
Detection

Cagatay et al. (2021) [20]

Proposes a GAN-based method
using API call
graphs obtained from malicious
and benign
Android files.

GAN Can detect previously unknown
types of malware.

May require a large
amount of computational
resources for training and
testing.

Image

HAWK for
Adaptive
Android Apps

Hei et al. (2021) [21]

Proposes HAWK, a malware
detection tool
for adaptive Android apps
using heterogeneous
GANs.

GAN Can detect previously unknown
types of malware.

May require a large
amount of computational
resources for training and
testing.

Image

Attention-based
BiLSTM for
Malware
Detection

Pathak et al. (2021) [22]

Uses two attention-based BiLSTM
models to
find the most predictive API calls
for malware
detection.

Attention
mechanism,
BiLSTM

Can effectively detect malware
based on API calls.

May not be effective in
detecting new types of
malware.

Text

SLAM for
Malware
Detection

Chen et al. (2020) [23]

Builds a malware detection
technique called
SLAM on attention methods
that use the
semantics of API calls.

Attention
mechanism

Can detect malware based on
semantic analysis of API calls.

May not be effective in
detecting new types of
malware.

Text
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Table 1. Cont.

Model Authors Description Methods Pros Limitations Data Type

Residual
Attention-based
Method for
Malware
Detection

Ganesan et al. (2021) [24]

Uses residual attention methods
to find
malware by focusing on its
key features.

Residual
attention
mechanism

Can effectively detect malware
by focusing on key features.

May not be effective in
detecting new types of
malware.

Text

ATT-CNN-
BiLSTM
for Identifying
DGA Attacks

Ren et al. (2020) [25]

Proposes ATT-CNN-BiLSTM, a DL
framework
for identifying domain generation
algorithm
(DGA) attacks.

DL, ATT,
CNN, BiLSTM

Can effectively identify DGA
attacks with high accuracy.

Limited to identifying
DGA attacks only. Text

DeepRan for
Ransomware
Classification

Lao et al. (2021)

Proposes DeepRan, which uses
a fully
connected layer and an
attention-based
BiLSTM for the classification of
ransomware.

Attention
mechanism,
fully connected
layer, BiLSTM

Achieves high accuracy in
ransomware classification tasks.

Limited to classifying
ransomware only. Text

System
Designs for
Malware
Classification

Rupali et al. (2020) [26]
Proposes a survey of the category
of
malware images.

Image
processing
techniques

Provides a comprehensive survey
of the category of malware images.

Limited to analyzing
images of malware
samples.

Image

Executable
Files Analysis
of Malware
Samples

Singh et al. (2021) [27]
Conducts analysis of executable
files of
malware samples.

Dynamic
analysis

Can effectively analyze executable
files of malware samples.

May require a large
amount of computational
resources for analyzing
large datasets.

Binary

Ensemble
Model for
Malware
Classification

Kouliaridis et al. (2021) [28]
Proposes an ensemble model
that combines
static and dynamic analysis.

Static and
dynamic
analysis,
ensemble
learning

Can effectively detect different types
of malware with high accuracy.

May require a large
amount of computational
resources for training and
testing.

Binary

DL Model for
Malware
Detection

Syed et al. (2021) [29]
Proposes DeepAMD, a DL model
for
malware detection.

DL Achieves high accuracy in detecting
different types of malware.

Requires a large amount
of labeled data for effective
training.

Binary, image

Customized
Learning
Models for
AM Detection

Amin et al. (2020) [30]
Proposes an anti-malware
system that uses
customized learning models.

Customized
learning models

Can effectively detect different
types of malware with high
accuracy.

May require a large
amount of computational
resources for training and
testing.

Binary, image
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Table 1. Cont.

Model Authors Description Methods Pros Limitations Data Type

PetaDroid for
AM Detection Karbab et al. (2021) [31]

Proposes PetaDroid, a static
analysis-based
method for detecting AM.

Static
analysis

Can detect previously unknown
types of malware.

May not be effective in
detecting new types of
malware.

Binary

Performance
Comparison of
Pre-trained
CNN Models

Pooja et al. (2022) [32]

Conducts a performance
comparison of 26
pre-trained CNN models in
AM detection.

Pre-trained
CNN models

Provides a comprehensive
comparison of different pre-trained
CNN models.

May require a large
amount of computational
resources for training and
testing.

Image

Anomaly
Detection
Approach

Chong et al. (2022) [33]

Proposes an anomaly detection
approach
based on a two-head
neural network.

Neural
network

Can effectively detect anomalies
in malware samples.

May require a large
amount of computational
resources for training and
testing.

Binary, image

GNN-based
Method for
AM Detection

Weng Lo et al. (2022) [34]

Proposes a GNN-based method for
AM
detection by capturing meaningful
intra-procedural call path patterns.

GNN Can detect previously unknown
types of malware.

May require a large
amount of computational
resources for training and
testing.

Binary, image
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2.1. Deep Learning-Based Methods

Researchers proposed several studies and research projects in academia to solve the
problem of malware identification and classification. Rupali et al. [26] studied a considerable
number of previous research papers covering the research characteristics of system designs
for the malware classification technique. They proposed a survey of the category of malware
images, while Singh et al. [27] focused on analyzing executable files of malware samples. Kou-
liaridis et al. [28] combined static and dynamic analysis. They introduced an ensemble model
by averaging the output of all base classification models per malware instance separately.
Syed et al. [29] proposed DeepAMD, a DL model for malware detection. Their experiments
showed that DeepAMD outperformed other approaches in detecting and identifying malware
attacks on both static and dynamic layers for the malware category classification, and malware
family classification. Amin et al. [30] proposed an anti-malware system that uses customized
learning models, which detect and attribute the AM via opcodes extracted from application
byte-code. The results show that bidirectional long short-term memory (BiLSTMs) neural
networks can detect the static behavior of AM.

Karbab et al. [31] proposed PetaDroid, a static analysis based method for detecting
AM. The method also apply custring of malware families. The framework makes use
of novel techniques built on top of NLP, such as an ensemble of convolutional neural
networks (CNNs). Pooja et al. [32] presented a performance comparison of 26 state-
of-the-art pre-trained CNN models in AM detection. It also included the performance
obtained by large-scale learning with support vector machine (SVM) and random forest
(RF) classifiers and stacking with CNN models. Based on their results, an EfficientNet-B4
CNN-based model can accurately detect AM using image-based malware representations
of the Android DEX file. Chong et al. [33] proposed an anomaly detection approach based
on a two-head neural network. The model identify the time developed samples that the
previously trained DL models misclassified. In addition, Weng Lo et al. [34] proposed a
graph neural networks (GNNs) based method for AM detection by capturing meaningful
intra-procedural call path patterns. In addition, a jumping-knowledge technique applies to
minimize the effect of the over-smoothing problem, which is common in GNNs.

2.2. Attention-Based Methods

AI methods based on attention mechanisms have significantly advanced the field of
NLP, and as a result, the applications relating to textual-based cybersecurity. Choi et al. [19]
suggested a technique for extracting harmful file features based on an attention mechanism
using API system calls. Their results demonstrated that this strategy outperformed two
common baselines: a skip-connected long short-term memory-based detection model and
a CNN-based detection model. Cagatay et al. [20] employed API call graphs obtained
from malicious and benign Android files in a graph attention network (GAN) to detect
malware threats. Hei et al. [21] introduced HAWK, a malware detection tool for adaptive
Android apps using heterogeneous GANs. In order to express implicit higher-order links,
they employed the Android entities and behavioral relationships as a heterogeneous
information network (HIN). Pathak et al. [22] proposed a study that used two attention-
based BiLSTM model to find the most predictive API calls. They discovered a set of API
calls that could aid the community in discovering new malware signatures. Chen et al. [23]
proposed a malware detection technique called SLAM built on attention methods that use
the semantics of API calls. Based on the semantics and structure data of the API execution
sequence, the characteristics were retrieved. They looked into the execution sequence’s
properties and categorized them into 17 groups.

Ganesan et al. [24] utilized residual attention methods to find malware. They used
the global data that were taken from a picture, known as GIST features, to compare the
model with CNN-based techniques and standard ML algorithms. The suggested a strategy
concentrated on drawing attention to the malware’s key features that let it stand out from
safe files, thus lowering the number of false positives. Ren et al. [25] suggested ATT-CNN-
BiLSTM, a DL framework for identifying domain generation algorithm (DGA) attacks to
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identify the danger. By producing different network locations, DGA is utilized to confirm
the responsible points to the command-and-control servers. The weight of the collected
deep information from the domain names is assigned by the attention layer. The CNN
and BiLSTM neural network layers extract the features from the domain sequence data.
Lao et al. [35] proposed DeepRan, which uses a fully connected layer and an attention-
based BiLSTM for the classification of ransomware. By adding a conditional random field
(CRF) model to the attention-based BiLSTM, it additionally labels anomalous activity as
one of the potential ransomware attacks. They took high-dimensional host logging data
and extracted semantic information using the term frequency-inverse document frequency
(TFIDF) approach. The attention mechanism is the main architectural emphasis of TB
models, and the attention block performs its computations repeatedly in parallel. Each of
these is called an attention head.

2.3. Transformer-Based Methods

Few works have applied the TB [4] architecture in the domain of cybersecurity. Our
first paper, MalBERT [7] showed interesting performance results when fine tuning BERT to
classify malware for both binary and multi-classification. Rudd et al. [14] implemented a URL
classifier into malicious and benign by training the transformer model from scratch. They
indicated that auxiliary auto-regressive loss improved the model performance. Han et al. [15]
proposed two methods for traffic network classification, first using the pre-train Albert model
with unlabeled traffic and then fine tuning the model with labeled traffic data. Second,
transfer the Albert pre-trained language model with language data and fine tune the model
with the labeled network traffic. They revealed that the ALBERT network traffic model pre-
trained with network traffic data has faster convergence speeds, higher accuracy rates, and
fewer false alarms. Li et al. [16] proposed I-MAD, a DL model for static malware detection
using the Galaxy Transformer network. It can understand assembly code at the basic block,
function, and executable levels. It can also provide interpretation for its detection results,
locate malicious payloads, and find consistent patterns in malware samples. Jusoh et al. [17]
focused on static analysis for malware detection. They presented a guide for researchers
by proposing novel methods to detect malware through static analysis. They discussed the
articles published from 2009 until 2019 and analyzed the steps in static analysis, reverse
engineering, features, and classification.

Srinidhi et al. [18] proposed a framework for big data analysis utilizing both static
and dynamic malware detection methods. They used the two methods to categorize and
locate zero-day malware. On sample binary files comprising several different malware
families, they tested the framework. They created a subset of three candidate features for
static analysis using permissions and intents as static features and three feature selection
techniques [36–38]. Using the training multi-feature data, they eventually applied the
suggested hybrid analytic approach to identify AM and categorize the samples into families.
Using auto-encoders as a generative model, Mahmood et al. [39] proposed a feature
learning model for cybersecurity tasks that learns a latent representation of various feature
sets. By using the feature vector, the auto-encoders were able to extract a code vector
that accurately reflected the semantic similarity between the feature vectors. Later, they
developed an unsupervised model for identifying malware.

In this research, we expand a language model developed on MG datasets and concentrate
primarily on binary classification. We also offer a workaround for the sequence length restric-
tions by putting forth a fresh pre-tokenization technique. We place more emphasis on the
malware and goodware samples’ textual representations. Compared to other evaluated base-
lines, our suggested technique performs the best, according to our data. Complex processes
must necessarily be used for static and dynamic evaluations. For malware identification, the
feature representation phase of the procedure is still a research priority. Due to the popularity
of datasets based on Android, many more studies concentrated on AM identification tasks. In
order to improve feature representation, we did actually combine the most recent datasets
and fine-tune BERT utilizing a brand-new pre-tokenization.
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3. Proposed System Architecture

Since this research extends our previous work [7], the dataset used before will be used
to test and compare the improvements in the model architecture. We build the model in
two phases: training and testing. The training process is distinct from the prediction or
testing phase. We used a training–validation set to build a multilevel MalBERTv2 classifier,
which is then evaluated on a separate test set at a latter phase.

3.1. Data Creation

The data creation phase passes through the data selection and ranking for the most
useful datasets. Since there are no known benchmarks for malware analysis, we collected
the datasets proposed online with extracted features in different formats. We also down-
loaded the samples from the collected Android package file (APK) list using the Androzoo
platform. We then extracted the most important files to pass through the feature generator.
Figure 1 provides an overview of the data collection process for a research study. The figure
shows two levels of preprocessing: Level 1 handles feature-based datasets (FBs), while
Level 2 deals with data extracted from the state-of-the-art sets. For Level 2, the data is
passed through VirusTotal to check labeling and then the Manifest.xml files are extracted.
The goodware APKs are collected from Google Play and then processed through the two
levels of preprocessing. At the end of the process, text files are generated for each sample.

Figure 1. Overview of the data collection process. We collected the goodware APKs from Google
Play [40] and set two levels of preprocessing. Level 2 handling the data extracted from the collection
of the state-of-the-art sets, we passed these data through VirusTotal [41] to check the labeling, then
we extracted the Mani f est.xml files. Level 1 handling feature-based datasets (FBs), where we passed
directly to the reformatting phase. The final samples are text files for each sample.

3.2. Feature Creation Module

The feature creation has two levels, as shown in Figure 2. These levels depend on the
source of the collected datasets. The publicly available AM datasets have two different
formats.

• The datasets that the researchers share with the samples in APK format come first,
where every sample has a distinct hash identifier that serves as a kind of fingerprint.
Malware is typically identified via a technique called hashing. A hashing application
is used to run the malicious software, producing a distinct hash that serves as the
malware’s identification.
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• Second, depending on the extraction method they suggested, the dataset authors share
the preprocessed features. These characteristics were primarily displayed as CSV files.

Figure 2. Overview of the proposed MalBERTv2 approach, Level 1 handling feature-based datasets,
where reformatting of the samples is performed. Level 2 is handling the data extracted from the
collection of state-of-the-art sets. The pretraining dataset is used to train the tokenizer. We set the
predicted class probability threshold to 0.5. We label the classes as 1 for malware and 0 for goodware.

We configured our feature generator on two levels to handle the various formats in
order to cover larger datasets. The first stage in NLP analysis is the extraction of features
and representative keywords. TFIDF is the keyword extraction algorithm that is most
frequently employed. A variety of techniques are available, ranging from tokenization
utilizing learned language models, such as BERT, to word embeddings. In order to assess
the performance of our suggested strategy and compare it to it, we built several degrees
of feature representation in this work. In addition to developing our own unique feature
generator, we used TFIDF, Fasttext word embeddings trained on Wikipedia datasets, and
the pre-trained BERT representation.

3.2.1. Tokenization

During the preprocessing and tokenization phase, raw text is first split into words or
subwords, which are then converted to unique integer IDs through a lookup table. Tok-
enization is a crucial step in natural language processing and machine learning tasks that
involve text. There are three main types of tokenizers used in transformer-based models,
which include byte-pair encoding (BPE) [42], WordPiece (linear time WordPiece tokeniza-
tion and fast WordPiece tokenization [43]), and SentencePiece [44]. The BertTokenizer class
provides a higher-level interface that includes the BERT token splitting algorithm and a
WordPieceTokenizer. It takes sentences as input and returns token IDs. One limitation of
BERT is the maximum sequence length of 512 tokens. Sequences shorter than the maximum
length require padding with [PAD] tokens, while longer sequences must be truncated. Our
previous work [7] addresses this limitation. Contextualized embeddings in BERT provide
a representation of words that depends on the sentence’s position, leading to distinct
clusters corresponding to word senses. This characteristic showed success in word sense
disambiguation tasks. However, the extent to which BERT can capture patterns in malware
datasets requires further investigation.

3.2.2. MalBERTv2 Feature Analyzer

To detail the specific nature of the datasets, we proposed an initial tokenizer on
top of the transformer encoder tokenizer. Splitting a code text into smaller chunks is a
more difficult task than it appears, and there are several methods for doing so. The cod-
ing syntax varies depending on the programming language used. This is a sound first
step. We notice that the punctuation is not properly attached to the words. We should
consider punctuation so that a model does not have to learn a different representation
of a word and every punctuation symbol that might come after it. However, it is dis-
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advantageous how the tokenization handled the word "android.permission.INTERNET"
stands for "android" “permission” “INTERNET”, so it would be better tokenized as [“an-
droid”,“permission”,“INTERNET”]. Depending on the rules we apply for tokenizing a text, a
different tokenized output is generated for the same text.

Table 2 shows an example of the samples after preprocessing. A pre-trained model
only performs properly if you feed it an input that was tokenized with the same rules that
were used to tokenize its training data. A big vocabulary size forces the model to have an
enormous embedding matrix as the input and output layer, which causes both increased
memory and time complexity. We use predefined algorithms to customize the tokenization
process for our dataset. First, there is the MaxMatch [45] algorithm that stands for the
maximum matching algorithm, which extracts the maximum matched words that exist
in the provided dictionary at the start from the relevant language acting as a knowledge
base of ground truth words. Additionally, Sennrich et al. [46] introduced the BPE, a neural
machine translation of rare words with sub-word units. After pre-tokenization, a set of
unique words are created, and the frequency of each word that occurred in the training
data is determined.

Table 2. Example of sample after applying the preprocessing without the occurrences remover
module.

Original File Preprocessed File

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<manifest xmlns:android="http://schemas.android.com/APK/res/android"
package="com.lbcsoft.subway">

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.CALL_PHONE"/>
<application android:allowBackup="true" android:debuggable="true"
android:icon="@drawable/icon_youke_subway"
android:label="@string/app_name" android:theme="@android:style/Theme.NoTitleBar">

xml version encoding utf standalone nomanifest xmlns
android http schemas android com APK res android package
com lbcsoft subway uses permission android name android permission
internet uses permission android name android permission call phone
application android allow backup true android debuggable true android icon
drawable icon youke subway android label string app name android theme
android style theme no title bar

Next, BPE creates a base vocabulary comprising all symbols that occur in the set
of unique words and learns to merge rules to form a new symbol from two symbols in
the base vocabulary. BPE is already used by the BERT tokenizer, so our pre-tokenizer
is a first level-specific word moderator. The proposed tokenizer, as shown in Figure 3
applies preprocessing methods to clean the code text and keeps only the useful keywords.
Additionally, we use the MaxMatch algorithm, as shown in the algorithm of the MalBERTv2
tokenizer. Then, an occurrences remover is added. This module is detailed in Section 4.
The full algorithm of the tokenizer is presented in Algorithm 1.

Figure 3. Overview of the feature creation phase using the feature generator then applying the
MalBERTv2 tokenizer.



Big Data Cogn. Comput. 2023, 7, 60 13 of 33

Algorithm 1 Proposed feature generator pre-tokenizer. We used both the MaxMatch [45]
algorithm and BPE [42] in the tokenization process. We collected the given dictionary
manually after processing the unique words in the collected pretraining datasets.

1: procedure SEGMENT STRING C INTO UNIQUE WORD LIST W USING DICTIONARY D.
2: C← input string
3: W← output tokens list
4: D← given dictionary
5: BPE← Byte-Pair Encoding
6: OR← OccurrencesRemover Module
7: Loop:
8: while C is not empty do
9: Find longest match w in D from start of C

10: Condition:
11: if w is not empty then
12: C← C−w.
13: W← W + w.
14: else
15: Remove first character from C and add to W.
16: end if
17: BPE(W).
18: end while
19: return OR(W).
20: end procedure

To evaluate the previous pre-trained tokenizers, we compared their coverage percent-
ages for the collected dataset. Figures 4 and 5 show TB tokenizers and others, such as Fast-
text and Glove. The best TB tokenizer is the BERT-uncased pretrained model, just after the
Fasttext embeddings. However, all these models can only cover about 50% of the existent
vocabulary of the datasets. The used embeddings are namely BERT-base-uncased, BERT-
base-cased, BERT-base-multilingual-cased, BERT-base-multilingual-uncased, RoBERTa-
base-vocab, GPT2-xl-vocab, XLM-mlm-en-2048, Word2Vec (GoogleNews-vectors), Glove
(glove.6B.300d) and Fasttext (wiki-en). Figures 4 and 5 show the embeddings coverage for
the whole datasets samples text and the datasets’ vocabulary after preprocessing.

Figure 4. Percentage % of embeddings coverage for the whole datasets samples text after preprocessing.
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Figure 5. Percentage % of embeddings coverage for the datasets’ vocabulary after preprocessing.

3.3. Model Creation

The MalBERTv2 framework comprises a TB architecture for MG classification. It is
designed as a general-purpose malware classifier system. The model building and training
process are distinct from the prediction or testing phase. We use a different dataset for the
training and validation step for both the tokenizer and the layers to build the final classifier
model, which is then evaluated on a separate test dataset. The model as Figure 6 shows
the training of the tokenizer used to map the features for the BERT-based layer inside the
main model.

Figure 6. Overview of the pre-training proposed approach based on BERT-like block embeddings
and representations. N is the number of transformer blocks. For the classification, we use only the
encoder block of the transformer architecture.

The model takes the generated features and fine tunes the model. The BERT base
model uses transformer blocks and a number of self-attention heads. For every input
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token in a sequence, each head computes key, value, and query vectors used to create a
weighted representation. The outputs of all heads in the same layer are combined and
run through a fully connected layer. Each layer is wrapped with a skip connection and
followed by layer normalization. The first layer of BERT receives as input a combination
of the token, segment, and positional embeddings. Let X be the total number of instances
with M malware and G goodware samples, where the M samples possess a label L = 1
denoting malware and the G samples from X possess the label L = 0 denoting goodware
or benign. All X samples are extracted as a full-text file containing the features. We applied
the level 2 feature generator on the features. Finally, the samples are represented as text file
F representations.

MalBERT focuses on attention layers as presented in Figure 7. Attentions see their
input as a set of vectors, with no sequential order. This model also does not contain any
recurrent or convolutional layers. Transformers are built to process sequential input data,
much like recurrent neural networks (RNNs). However, unlike RNNs, transformers do
not process data in order but use positional encoding (PE). PE is added to give the model
some information about the relative position of the tokens in the sentence. The PE vector is
added to the embedding vector. Embeddings represent a token in a d-dimensional space
where tokens with similar meaning will be closer to each other. However, the embeddings
do not encode the relative position of tokens in a sentence. The formula for calculating the
PE is as shown in Equations (1) and (2). The attention function used by the transformer
takes three inputs: Q(query), K(key), V(value) as shown in Equation (3). The dot product
attention is scaled by a factor of the square root of the depth. This is done because, for large
values of depth, the dot product grows large in magnitude, pushing the softmax function
to where it has small gradients. BERT uses the Adam optimizer with a custom learning
rate schedule, as shown in Equation (4):

PE(pos,2i) = sin(pos/100002i/dmodel ) (1)

PE(pos,2i+1) = cos(pos/100002i/dmodel ) (2)

Attention(Q, K, V) = so f tmaxk

(
QKT
√

dk

)
V (3)

lrate = d−0.5
model ∗min(step_num−0.5, step_num · warmup_steps−1.5) (4)

Figure 7. Overview of the attentions mechanism used in MalBERT, where h is the number of heads.
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4. Implementation

In this section, we detail the implementation steps for our proposed approach. We
start by the dataset details, then the feature engineering steps, and finally we detail the
occurrences removal method.

4.1. Datasets

The performance of the pre-trained models is largely determined by the scale and
quality of datasets used for training. Therefore, we need a large-scale scanned document
dataset to pre-train the MalBERTv2 model. We finally selected 85,000 apps from the
following datasets distributed as Figure 8 shows.

• AMD dataset [47]. It contains 24,553 samples categorized in 135 varieties among 71
malware families ranging from 2010 to 2016. The dataset is publicly shared with the
research community.

• Drebin dataset [48]. It contains 5560 applications from 179 different malware families.
The samples were collected from August 2010 to October 2012 and were made available
by the MobileSandbox project [48]. The authors made the datasets from the project
publicly available to foster research on AM and to enable a comparison of different
detection approaches.

• VirusShare dataset [49]. It is a repository of malware samples that gives security
researchers access to live malicious code samples. It is a static data dataset obtained
from the VirusShare malware repository. The samples were gathered using the AM
datasets debiasing guidelines [50].

• Androzoo dataset [51]. It is a growing collection of Android apps gathered from
various sources, including the official Google Play app market, with the goal of
facilitating Android-related research. It currently contains over 15 million APKs, each
of which was or will be analyzed by tens of different anti-virus products to determine
which applications are malware. Each app contains more than 20 different types of
metadata, such as VirusTotal reports.

Figure 8. Pre-training. Datasets Sizes.

Fine tuning datasets can be summarized into two types: state-of-the-art datasets,
including MixG-Androzoo, MixG-VirusShare, MixG-AMD, and MixG-Derbin, and feature-
based datasets (FBs), including D01, D02, D03, D04, D05.
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• Android permissions and API calls during dynamic analysis [52]. This dataset includes
50,000 Android apps and 10,000 malware apps gathered from various sources. We
note this dataset as D01.

• Android malware detection [53]. These data contain APKs from various sources,
including malicious and benign applications. They were created after selecting a
sufficient number of apps. Using the pyaxmlparser and Androguard [54] framework,
we analyze each application in the array. On the set of each feature, we used a binary
vector format, and in the last column labeled class, we marked it 1 (Malicious) or 0
(Benign). We note this dataset as D02.

• Android malware dataset for machine learning [55]. These data contain 215 feature
vectors extracted from 15,036 applications: 5560 malware apps from the Drebin project
and 9476 benign apps. The dataset was used to develop and test the multilevel
classifier fusion approach for AM detection. The supporting file contains a more
detailed description of the feature vectors or attributes discovered through static code
analysis of Android apps. We note this dataset as D03.

• Android malware and normal permissions dataset [56]. These data contain 18,850
normal android application packages and 10,000 malware android packages, which
are used to identify the behavior of malware applications on the permission they need
at run time. We note this dataset as D04.

• Android permission dataset [57]. These data contain android apps and their per-
missions. They are classified as 1 (Malicious) or 0 (Benign). We note this dataset as
D05.

We indeed collected samples from the state-of-the-art datasets as suggested by DADA [58]
labeling guideline. These samples are a mix of goodware and malware samples. The
authors proposed these APK lists to solve the problem of biased malware datasets. The col-
lected datasets are, namely MixG-Androzoo, MixG-VirusShare, MixG-AMD, and MixG-
Derbin. Figure 9 shows the distribution of all the test datasets and their main features also
the publication dates of the apps.

Figure 9. Fine-tuning datasets.

4.2. Preprocessing and Feature Representations

The data preprocessing phase is the same as in MalBERT [7], where it comprises basic
punctuation removal. Once the list of APKs is defined, we can write a script to download
the files. Then, we decompiled the downloaded APKs using Jdax [59] and Apktool [60],
which creates folders of the apps’ files [61]. We extracted the Mani f est.xml file from each
sample. This file presents essential information about the application, including the list
of permissions, the activities, services, broadcast receivers, content providers, the version,
and the meta-data. These files are then parsed to text format and passed through the
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preprocessing phase. In this step, we apply specific cleaning of the not important, mostly
repeated words. We manually analyzed different examples and created a list of words and
expressions that do not provide additional information. The purpose of the preprocessing
is to reduce the size of the input to the limit of tokens specified by the transformer. The final
dataset format has three columns, the ID column, represented by the APK hash name, the
text column representing the manifest files after preprocessing, the label column, a binary
format equal to 1 if the app is malware, and 0 if not, while for the rest of the datasets, since
the CSV of the features are binary. We concatenate the names of the features into the text if
the feature exists.

4.3. Occurrences Remover

We handle code text, not normal text, so the existence of some keys is more important
than the number of times this word shows up in the file. Based on this hypothesis, we
remove all the occurred words. We assume that a keyword existence is more important
than key word occurrence. Figure 10 shows the density of the document words inside the
different documents of the dataset, while Figure 11 shows the density after applying the
proposed tokenizer. Now, 98% of the samples fit under the limitation of the 512 tokens
thresholds.

Figure 10. Files lengths before applying the proposed preprocessing.
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Figure 11. Files lengths after applying the proposed preprocessing.

5. Experimental Results

This section focuses on the evaluation of the conducted experiment’s results using
proposed evaluation metrics. To compare our proposed approach, we define baselines
based on related studies. Evaluation metrics are defined to assess the performance of the
proposed approach and the baselines. The chosen metrics are carefully selected to ensure
that they accurately reflect the performance of the models. Finally, the experimental results
are presented and analyzed to evaluate the proposed approach’s effectiveness in detecting
malware samples.

5.1. Baselines

In this study, we compare the performance of our MalBERTv2 model to several state-
of-the-art malware detection models previously reported in the literature. Specifically, the
models selected for comparison include an SVM model with TFIDF feature representation,
a CNN model with Fasttext pre-trained embeddings, MalBERTv1, a transformer layer
model with TFIDF features, and our proposed MalBERTv2 model. The chosen models
represent a variety of machine learning approaches and feature representations commonly
employed in malware detection tasks. By comparing the performance of our model to these
established approaches, we aim to provide a comprehensive evaluation of its effectiveness
and highlight any potential advantages or limitations.

5.1.1. TFIDF + SVM

We conducted a preliminary experiment using a basic machine learning model (SVM)
and a simple text representation (TFIDF) to evaluate the malware datasets. However,
analyzing these datasets poses a significant challenge as the goodware samples are typically
duplicates or distinct from the collected malware samples in terms of time or package types.
This limitation makes it challenging to achieve accurate and reliable results in malware
detection and classification tasks.
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5.1.2. Fasttext + CNN

Fasttext [62] is a widely used library for learning word representations and sentence
classification. A fundamental idea in modern machine learning is to represent words
as vectors that capture hidden information about language, such as word analogies or
semantics, improving the performance of text classifiers. Fasttext’s wiki-en model embed-
dings are trained on Wikipedia articles, making it an attractive choice for natural language
processing tasks. Figures 4 and 5 demonstrate that Fasttext provides better coverage than
other pre-trained embeddings, further motivating our selection of this model. In this study,
we propose a simple CNN model consisting of a 1D convolutional network and two dense
layers for malware classification. Previous related works [63,64] reported promising results
using CNN-based models. Therefore, it is crucial to compare our proposed approach’s
performance with these state-of-the-art models.

5.1.3. MalBERTv1

MalBERT is a fine-tuned BERT model that is specifically designed for malware classifi-
cation. The model is trained on a large corpus of malware and goodware samples, with the
goal of identifying and differentiating between the two classes. MalBERT achieves state-of-
the-art performance on several benchmark datasets, including Androzoo, Derbin, AMD,
and VirusShare. MalBERT’s architecture is based on BERT, a pre-trained transformer-based
language model that is widely used in natural language processing tasks. However, unlike
BERT, MalBERT is trained on a dataset of malware and goodware samples, which makes it
more effective for malware classification tasks. MalBERT’s training process involves fine
tuning the pre-trained BERT model on a large corpus of malware and goodware samples,
followed by training a classification layer on top of the fine-tuned BERT model. The Mal-
BERT model has several advantages over traditional signature-based malware detection
methods. It can detect previously unknown types of malware and is effective in identifying
different types of malware with high accuracy. Furthermore, the model can handle large
amounts of unstructured text-like data, making it a useful tool for cybersecurity profession-
als. Figure 12 that shows an overview of the MalBERTv1 methodology steps is a graphical
representation of the process of identifying and classifying malware samples using the
MalBERTv1 approach and Figure 13 show the model fine-tuning process in MalBERTv1.

Figure 12. Overview of MalBERTv1 methodology steps [7].
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Figure 13. BERT model fine-tuning process in MalBERTv1 [7].

In our study, we utilized the MalBERT implementation described in [7]. The MalBERT
model fine tunes the BERT model using a specific feature representation at the beginning
of the process. To address the 512-token limit of BERT, our approach reorders the text by
prioritizing the most important words and selecting the first 512 tokens. BERT [5] is a
neural network architecture that consists of a stack of transformer blocks. The transformer
blocks utilize self-attention to establish relationships between words in the input sequence
and generate meaningful embeddings.

5.1.4. TFIDF + Transformer from Scratch

The primary objective of this baseline is to evaluate the effectiveness of training the
transformer encoder from scratch using basic word tokenization, specifically the term
frequency-inverse document frequency (TFIDF) method. The transformer block is con-
structed using multi-head attention, feed-forward, and normalization techniques. For this
experiment, we set the number of heads to two and added the transformer block as a
layer to two fully connected layers. To perform binary classification, a sigmoid activation
function is applied. This experimental setup allows us to compare the performance of
our proposed model against a baseline method and determine the extent to which the
additional features and techniques improve the model’s performance.

5.2. Training MalBERTv2

As illustrated in Figure 2, the training process comprises several phases, including
data collection and feature creation, which are described in detail in Section 4. In the
subsequent sections, we focus on the final phase of model creation.

5.2.1. Train MalBERTv2 Tokenizer

In this study, we are dealing with files written in various programming languages,
rather than traditional English text with structured paragraphs and continuous context.
Figure 11 demonstrates that the vocabulary coverage percentages of state-of-the-art datasets
using transformer-based (TB) or traditional deep learning embeddings are below 50%,
indicating the inadequacy of these models for our specific domain. To address this issue,
we developed a RoBERTa [65]-based tokenizer model trained from scratch to serve as
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both the encoder and decoder of our proposed MalBERTv2 model. As our data domain
is application specific, it is essential to include relevant words and symbols related to
application descriptions, while avoiding irrelevant general vocabulary from other domains.
To achieve this, we created a code-aware specific vocabulary for the tokenizer. The training
phase of our model can be described in four main steps:

1. Apply the feature generator on the dataset and use the generated features as input to
the tokenizer. The feature generator can be considered as an initial tokenizer since it
applies tokenization to the original text to obtain the most relevant and English-related
words without losing the most important keywords in the files.

2. Create and train a byte-level byte-pair encoding tokenizer with the same special
tokens as RoBERTa.

3. Train the defined RoBERTa model from scratch using masked language modeling
(MLM).

4. Save the tokenizer to map the features of the test datasets later to fine-tune the
MalBERTv2 classifier.

5.2.2. Train MalBERTv2 Classifier

To build our model for the classification task, we added two untrained dense layers of
neurons at the end of BERT and fine tuned it. We initialized the weight of the MalBERTv2
model with the pre-trained BERT base model, which already encodes a lot of information
about our training data vocabulary. This allowed us to quickly fine tune the model by
mapping the features to the proposed tokenizer. Fine tuning BERT has been shown to
achieve state-of-the-art results with minimal task-specific adjustments for the malware
identification task, as demonstrated in [7]. This approach is preferable to implementing
custom and sometimes obscure architectures that work well on a specific task. The parame-
ters of our model include the pre-trained base uncased BERT model weights for the BERT
block layer, a maximum sequence length of 512, a batch size of 8, and a learning rate for the
Adam optimizer [4] with a custom learning rate scheduler according to Formula (4) at the
final sigmoid activation function, which is set to 2e− 5. These parameters were carefully
chosen to ensure the best performance of our model.

5.3. Evaluation Metrics

To assess the model’s effectiveness and avoid the contingency caused by the partition-
ing of the training and test sets. The models are evaluated using the following performance
metrics: accuracy, Matthews correlation coefficient (MCC), precision (mc), recall (mc), F1-
score (mc), and AUC are common classification problem metrics. The malware class is
denoted by the (mc) tag. We base our assessment on the model’s ability to detect malware
patterns. We use the terms TP (true positives), FN (false negatives), FP (false positives),
and TN (true negatives). The accuracy (ACC) metric is used to evaluate classification
models. It is calculated by dividing the number of correct predictions by the total number
of predictions. MCC is used for binary classification with an unbalanced dataset. It has
a range of −1 to +1. We chose MCC over the F1-score for binary classification as recom-
mended in Chicco et al. [66]. The formula for the standard F1-score is the harmonic mean
of precision and recall. A perfect model has an F-score of 1. We used macro-averaging in
the results we presented in this paper. AUC [67] is calculated as the area under the math
curve. AUC ranges in value from 0 to 1. Equations (5)–(9) show the different details of the
used metrics.

ACC =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)
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F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(8)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(9)

5.4. Experiments Results and Discussion

This section outlines the results of experiments conducted to examine the feasibility
of using MalBERTv2 to improve accuracy performance through training the transformer
tokenizer from scratch. Table 3 presents the test set results of the baseline classifiers
alongside those of MalBERTv2 for both datasets.

Table 3. Table of the metrics results for the models for the state-of-the-art collected test sets.

Model Data Accuracy f1 (mc) mcc Precision (mc) Recall (mc) auc

TFIDF + SVM

MixG-Androzoo 0.969589 0.969805 0.939478 0.957895 0.982014 0.969655

MixG-VirusShare 0.858803 0.857143 0.717704 0.864964 0.849462 0.858778

MixG-AMD 0.931127 0.932751 0.863799 0.906621 0.960432 0.931283

MixG-Derbin 0.935599 0.935018 0.871212 0.938406 0.931655 0.935578

Fasttext + CNN

MixG-Androzoo 0.953488 0.955403 0.906829 0.958692 0.952137 0.953554

MixG-VirusShare 0.801609 0.763326 0.644415 0.962366 0.632509 0.803596

MixG-AMD 0.927549 0.933113 0.856619 0.902556 0.965812 0.925683

MixG-Derbin 0.929338 0.930396 0.860468 0.96 0.902564 0.930644

MalBERT

MixG-Androzoo 0.975689 0.976183 0.971568 0.98651 0.966068 0.976158

MixG-VirusShare 0.924039 0.924712 0.84808 0.927176 0.922261 0.92406

MixG-AMD 0.970483 0.971478 0.941157 0.982517 0.960684 0.970961

MixG-Derbin 0.966905 0.968076 0.933909 0.977352 0.958974 0.967292

TFIDF
+

Transformer From Scratch

MixG-Androzoo 0.9558 0.954981 0.943421 0.952922 0.963211 0.954092

MixG-VirusShare 0.9231125 0.925467 0.884563 0.923224 0.927892 0.92343

MixG-AMD 0.9576809 0.9540987 0.945896 0.977345 0.973099 0.967554

MixG-Derbin 0.9567821 0.9560983 0.958763 0.967812 0.964398 0.968989

MalBERTv2
=

FeatureAnalyzer + MalBERT

MixG-Androzoo 0.990744 0.998341 0.991149 0.99765 0.999033 0.998901

MixG-VirusShare 0.956782 0.957819 0.945887 0.957164 0.956292 0.944226

MixG-AMD 0.988787 0.989742 0.961892 0.999834 0.988987 0.985977

MixG-Derbin 0.988954 0.989645 0.974889 0.998328 0.978884 0.987329

Table 3 presents the evaluation results of five models (TFIDF + SVM, Fasttext + CNN,
MalBERT, TFIDF + Transformer From Scratch, and MalBERTv2) for malware identification
using four datasets (MixG-Androzoo, MixG-VirusShare, MixG-AMD, and MixG-Derbin).
The metrics used to evaluate the models were data accuracy, F1-score, Matthews correlation
coefficient (MCC), precision, recall, and area under the curve (AUC). Overall, MalBERTv2
had the highest performance in all the datasets, with an average accuracy of 97.1%, f1 score
of 97.2%, MCC of 95.8%, precision of 98.4%, recall of 96.7%, and AUC of 98.6%. MalBERTv2
outperformed all other models in terms of accuracy, f1 score, precision, and recall. TFIDF +
Transformer From Scratch had the second-best performance, followed by MalBERT, Fasttext
+ CNN, and TFIDF + SVM. It is worth noting that the MalBERTv2 model was fine tuned on
the mixed collected dataset, which could have contributed to its superior performance in
the evaluation. Additionally, the dataset split ratios were 90%:10% for training–validation
and testing, which could also have an impact on the performance of the models. Overall,
the table presents a clear and organized comparison of the performance of five models for
malware identification, providing valuable insights for researchers in the field.
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Table 4 presents the performance metrics of different deep learning models applied
to classify malware and goodware samples in five collected datasets. MalBERTv2, which
combines feature analysis with the MalBERT model, achieved the best performance on
all five datasets, with high accuracy, F1-score, precision, recall, and area under the curve
(AUC) values. The traditional machine learning approach, TFIDF with SVM, showed
lower performance than the deep learning models. The Fasttext + CNN model achieved
high accuracy and F1-score on some datasets but relatively low precision and recall rates.
The MalBERT model alone performed well on some datasets, but its performance varied
depending on the dataset. Overall, the results suggest that combining deep learning models
with feature analysis can improve the performance of malware detection systems, and
MalBERTv2 is a promising approach in this regard.

Table 4. Table of the metrics results for the models for the feature-based collected test sets.

Model Data Accuracy f1 (mc) mcc Precision (mc) Recall (mc) auc

TFIDF + SVM

D01 0.570881 0.721393 0.188245 0.653153 0.805556 0.427469

D02 0.582226 0.728216 0.122358 0.576176 0.989259 0.520577

D03 0.582226 0.728216 0.122358 0.576176 0.989259 0.520577

D04 0.814212 0.838955 0.619591 0.832186 0.845834 0.808882

D05 0.599373 0.74552 0.123743 0.641096 0.89058 0.463673

Fasttext + CNN

D01 0.617084 0.727308 0.158007 0.627276 0.865297 0.562497

D02 0.886327 0.989815 0.872379 0.876578 0.844387 0.834099

D03 0.681754 0.628078 0.59842 0.586972 0.614239 0.607119

D04 0.888516 0.889971 0.876653 0.883587 0.896437 0.887252

D05 0.664133 0.798173 0.562563 0.664133 0.758021 0.758021

MalBERT

D01 0.694449 0.734708 0.656146 0.698335 0.951598 0.615904

D02 0.799747 0.799775 0.799485 0.699775 0.899775 0.899743

D03 0.798821 0.79815 0.797286 0.698766 0.897535 0.898479

D04 0.899875 0.79989 0.699745 0.79978 0.899855 0.898855

D05 0.759333 0.794697 0.659333 0.679373 0.669332 0.568801

TFIDF
+

Transformer From Scratch

D01 0.623949 0.664798 0.554896 0.688923 0.551898 0.593549

D02 0.783359 0.742259 0.669237 0.682342 0.789149 0.778833

D03 0.824719 0.829188 0.779938 0.738336 0.793799 0.812268

D04 0.903338 0.894773 0.823442 0.813492 0.813457 0.848735

D05 0.775727 0.764993 0.754489 0.749271 0.773246 0.735923

MalBERTv2
=

FeatureAnalyzer + MalBERT

D01 0.824623 0.793342 0.784459 0.824836 0.821458 0.813454

D02 0.883678 0.857334 0.782653 0.773456 0.889922 0.879653

D03 0.894577 0.889882 0.848883 0.928921 0.893939 0.881948

D04 0.937643 0.894388 0.799922 0.923562 0.973252 0.928798

D05 0.834465 0.834781 0.835549 0.872873 0.873984 0.833654

5.5. MalBERTv2 Performance on Mixed Datasets

We present the evaluation of MalBERTv2 on the mixed collected dataset. Table 4
shows the predictive metrics on the four proposed baselines compared to our proposed
approach. The split ratios for the training–validation and testing sets were 90%:10% for
all four datasets. From Table 3, MalBERTv2 had the best recall and precision rates for the
malware class, while we do not include the rates for the goodware class in the table because
we want to focus on the malware identification task. On the training–validation set, the
weighted F1-measure for the first baseline for the Androzoo dataset was good, 0.9695, and
it improved when testing with MalBERTv2. It is important to note that we did not invest
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time to apply a parameter engineering process to the baselines. We focused basically on
evaluating the proposed approach’s performance.

5.6. Malbertv2 Performance on Feature-Based Dataset

We present the evaluation of MalBERTv2 on the feature-based collected dataset, the
datasets namely are D01 to D05. Table 4 shows the predictive metrics on the four proposed
baselines compared to our proposed approach. The split ratios for the training–validation
and testing sets were also 90%:10% for all four datasets. It is important to note also that these
datasets have a smaller document size than the previous datasets. Since the text created is
created by combining the names of the features that exist in the provided feature vectors.
In this, also the statement of feature existence is more important than feature occurrences,
and both feature generation levels are applied on the datasets. From Table 4, MalBERTv2
improves the accuracy and weighted F-measure compared to the other baselines for the five
datasets, and the accuracy ranges between 0.8224 and 0.9376. One of the main advantages
of our proposed approach is its flexibility in introducing any format of application code as
the desirable features. The results of the feature-based datasets illustrate this advantage.

5.7. Analysis of Time Performance

As previously mentioned, we employed a Python-based feature extractor tool de-
scribed in our previous work [7] to extract features from the apps. The processing time
required to extract features from apps depends on their size, which can range from a few
kilobytes to several megabytes. On average, it took 70 s to unzip and disassemble an app
using Apktool, while the average time to analyze the manifest and generate the features
was 10 s. Therefore, the total average processing time for an app was approximately 80 s.
During our experiments, we fed the feature vectors obtained from the tool into the models
for testing. After loading both the tokenizer and the MalBERTv2 model, the testing time
for classification of the feature vectors was 0.5 s on a single GPU machine.

5.8. Analysis of Baselines Performance

We can conclude based on the evaluation results presented in Tables 3 and 4 that for
the proposed preprocessing, based on the evaluation results presented in Tables 3 and 4, it
can be concluded that the proposed preprocessing technique using the feature analyzer in
MalBERTv2 enhances the feature representation and helps the model to focus on the most
relevant patterns by utilizing the different stages of the tokenization process. The use of a
simple machine learning model resulted in poor performance compared to the rest of the
baselines. The TFIDF + SVM approach achieved the best accuracy of 0.88 for D04, while it
was only 0.81 using SVM alone. To further improve performance, we applied a CNN-based
model to the dataset using Fasttext embeddings for feature representation. As shown
in Table 3, this model outperformed the machine learning model, and utilizing TFIDF
n-grams with a transformer layer from scratch improved the accuracy by approximately
0.2%. MalBERTv1 exhibited the best performance, outperforming all other baselines.

5.9. Qualitative Analysis

In this study, we conducted a comprehensive evaluation of the quality of the datasets
used. The datasets were collected in multiple stages from various sources. Only reliable
datasets were selected for analysis, and a first baseline model was employed to eliminate
datasets with limited sizes or those yielding high classification results with simple training,
where the malware and goodware are different. To further evaluate the quality of the
data, we split the MixG-VirusShare dataset into malware and goodware subsets. We then
applied a knowledge graph on the output text generated by the feature generator, with the
occurrences remover disabled to gain a deeper understanding of the dataset characteristics.
This approach allowed us to assess the dataset quality and identify any potential issues or
biases that may impact our analysis.
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5.9.1. Main Factors for Malicious Class

Figures 14 and 15 illustrate the distribution of text appearing between entities in the
malware samples. In particular, Figure 15 focuses on the Con f igChanges entity, which
restricts access to sensitive activities according to the Android documentation. When
an activity is declared in the AndroidMani f est.xml file with an intent filter, the activity
can be exported to other apps. However, if the activity is intended for internal use only
and an intent filter is enabled, other apps, including malware, may use it for malicious
purposes [68]. The text representation of malware and goodware samples in Figure 14
proves effective in detecting patterns when compared to the number of connections the
same entity has in goodware samples. This observation highlights the reliability of the text
representation of malware samples and its potential use for detecting malicious behavior.

Figure 14. MalBERTv2 Collected malware datasets from Androzoo, Derbin, AMD and VirusShare
general entities knowledge graph.
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Figure 15. Example of a single connection, of the MalBERTv2 malware dataset knowledge graph for
"ConfigChanges" entity.

5.9.2. Main Factors for Goodware Class

Figures 16 and 17 visualize the distribution of the different text that appears between
the entities in the goodware sample dataset. The proposed feature engineering process is
a crucial component of MalBERTv2. Natural language processing (NLP) is an important
domain with numerous applications in cybersecurity, particularly in the conversion of text
to numerical representations. The effectiveness of text representations relies heavily on
their performance in specific tasks. Therefore, selecting an appropriate text representation
is crucial in achieving optimal results.
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Figure 16. The general entities knowledge graph MalBERTv2 collected goodware dataset for third
party providers.
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Figure 17. Example of the same connection by the "ConfigChanges" entity for the MalBERTv2
goodware dataset knowledge graph.

6. Conclusions

In this paper, we proposed a novel approach to tokenize the data sources extracted
from malware and goodware datasets. This approach helps to focus on the relevance and
significance of unstructured code from different programming languages that presents
subjunctive importance to the app features. We believe that our approach could address
the problem of processing a massive amount of unstructured text-like malware/goodware
samples for the cybersecurity domain. The idea was to use a feature generator to play the
role of a pre-tokenizer for our main classification. We applied this code-aware tokenization
process during training and then in the testing phase for mapping the features. The novel
feature representation considers the software applications’ source code as a set of features.
We apply text preprocessing on these features to keep the important information, such as
permissions, intents, and activities. We trained from scratch our BERT-based tokenizer
with the extracted features of 85,000 samples from different datasets, normally Androzoo,
Derbin, AMD, VirusShare and a collection of goodware samples, where the list is provided
by DADA [58]. Finally, we trained the MalBERTv2 classifier; it has a BERT layer block with
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the same weights as the pre-trained BERT, and we added a fully connected layer for the
prediction probabilities. Combining all these pieces, we present MalBERTv2, an end-to-end
malware/goodware language model for malware classification. The combination of the
proposed methods had interesting results. Because of the constraints, such as the lack
of benchmarks for malware/goodware identification, we could not effectively compare
the model with existing methods. Meanwhile, we tried to select the best approaches
based on the previous works and set it as baselines for comparison. Additionally, for
numerous datasets, researchers provided the extracted features not in the format of logs.
We reformatted the ones that include the feature names and occurrences, but the rest of
datasets that do not fit our requirements were eliminated at the datasets collection step.
Besides addressing these flows, in the future, we will extend the research by improving the
full platform execution time and reducing the feature generation and prediction process.
Finally, the whole system could run a full cycle in less time.
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The following abbreviations are used in this manuscript:

AM Android Malware
API Application programming interface
APK Android Package File
BERT Bidirectional Encoder Representations from Transformers
BiLSTM Bidirectional Long Short-Term Memory
BoW Bag of Words
BPE Byte Pair Encoding
CNN Convolutional Neural Networks
CRF Conditional Random Field
DL Deep Learning
FB Feature-Based
GAN Graph Attention Network
HIN Heterogeneous Information Network
MG Malware/Goodware
ML Machine Learning
NLP Natural Language Processing
RF Random Forest
SVM Support Vector Machine
TB Transformer Based
TDM Term Document Matrices
TFIDF Term Frequency Inverse Document Frequency
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