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Abstract: The exponentially growing energy requirements and, in turn, extensive depletion of non-
restorable sources of energy are a major cause of concern. Restorable energy sources such as solar
cells can be used as an alternative. However, their low efficiency is a barrier to their practical use.
This provokes the research community to design efficient solar cells. Based on the study of efficacy,
design feasibility, and cost of fabrication, DSSC shows supremacy over other photovoltaic solar cells.
However, fabricating DSSC in a laboratory and then assessing their characteristics is a costly affair.
The researchers applied techniques of computational chemistry such as Time-Dependent Density
Functional Theory, and an ab initio method for defining the structure and electronic properties
of dyes without synthesizing them. However, the inability of descriptors to provide an intuitive
physical depiction of the effect of all parameters is a limitation of the proposed approaches. The
proven potential of neural network models in data analysis, pattern recognition, and object detection
motivated researchers to extend their applicability for predicting the absorption maxima (λmax) of
dye. The objective of this research is to develop an ANN-based QSPR model for correctly predicting
the value of λmax for inorganic ruthenium complex dyes used in DSSC. Furthermore, it demonstrates
the impact of different activation functions, optimizers, and loss functions on the prediction accuracy
of λmax. Moreover, this research showcases the impact of atomic weight, types of bonds between
constituents of the dye molecule, and the molecular weight of the dye molecule on the value of λmax.
The experimental results proved that the value of λmax varies with changes in constituent atoms and
types of bonds in a dye molecule. In addition, the model minimizes the difference in the experimental
and calculated values of absorption maxima. The comparison with the existing models proved the
dominance of the proposed model.

Keywords: solar; DSSC; artificial neural network; energy; λmax

1. Introduction

Electricity consumption is increasing proportionally with an increase in population.
Mankind mainly depends on non-restorable energy sources such as coal and fossil fuels for
electricity production [1]. These non-restorable sources will be exhausted in the future if
depletion continues at the same rate. Furthermore, these sources cause environmental pol-
lution. Therefore, researchers emphasize designing the devices to harness the energy from
renewable sources such as biomass, wind, hydroelectric, geothermal, and solar energy [2].
Electricity production utilizing solar energy is cleaner and safer than conventional sources.
In the recent era, Photovoltaics (PV) technology is considered the most encouraging tech-
nology due to its potential to convert solar energy into electrical energy [3]. The PV cells
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developed so far have been categorized into three generations. The cells designed in the
first generation consist of monocrystalline and polycrystalline silicon. The PV cells of the
second generation consist of silicon of non-crystalline form, cadmium telluride, and copper
gallium indium diselenide. Along with the advantages of the first and second generation
of solar cells in their better performance, there are certain limitations. The materials used in
the development of the first and second generation of solar cells are hazardous and expen-
sive. To conquer these issues, scientists have developed third-generation solar cells, such as
Dye-Sensitized Solar Cells (DSSC), quantum Dot (QDs) organic, and Perovskite Solar Cells
(PSC) [4–7]. Based on the study of efficacy, design feasibility, and cost of fabrication, DSSC
shows supremacy over other PV cells developed in the first and second-generation [8–10].
Furthermore, DSSC is attractive to industry and users due to its high molar absorption
coefficient, and potential to perform under diffused light conditions. Moreover, DSSC
has low fabrication cost, is processable at ambient temperature, easy to manufacture, and
suitable for roll-to-roll production. Further, the material’s ecofriendly nature, printability
on a flexible substrate, and availability in a variety of colors increase the importance of
DSSC in real-life [11,12].

DSSC is an integration of components viz. photoanode, with a semiconductor layer,
dye sensitizer, electrolyte and counter electrode with a thin layer of catalyst [13]. Along
with all components, the dye plays an important role in deciding the efficiency of a DSSC
because it is responsible for the absorption of photons from the incident sunlight [14,15].
It is covalently bonded to semiconductor oxide. These dyes have been extensively tested
in the fabrication of DSSC and are classified into three groups based on their source or
components used for manufacturing. For example, dyes extracted from plant parts such as
fruits, flowers, and leaves are considered natural dyes [16]. Dyes fabricated by using metal
complexes such as ruthenium [8,17], osmium [18], platinum [19], copper [20], iridium [21],
etc. are classified as metal complex dyes. Metal-based dyes are preferred in DSSC due to
their advanced photo-conversion efficiency. In contrast, the metal-free organic dyes were
introduced at a later stage due to their low cost, high molar extinction coefficient, and
simple fabrication technique [22,23]. However, metal-free dyes still show less photovoltaic
efficiency compared to metal-complex dyes. Among natural, organic and inorganic dyes,
the inorganic dyes’ mainly polypyridyl complex of ruthenium metal has been widely used
and investigated [24]. Inorganic dyes are selected for their high stability and excellent
redox properties [25]. Further, an efficient sensitizer satisfies the following five conditions.

(i) The bond between the semiconductor oxide surface and dye must be strong enough to
move the electron injection in the Conduction Band (CB) of the semiconductor oxide.

(ii) The LUMO of the sensitizer should be greater than TiO2 CB. It empowers the
charge injection.

(iii) The molecule of dye must be small because the bulky molecule can lead to a lower
optical cross-section.

(iv) The dye must be thermally, photochemically, and electrochemically vigorous. If the
oxidation-back reduction turnover number exceeds 106, then the stability of DSSC
can reach up to approximately 20 years.

(v) The sensitizer should be effective in absorbing all light below the 920 nm wavelength
strike to the surface of the semiconductor oxide [2].

The above-discussed conditions are indicative of the challenging synthesis of such
an efficient and novel dye sensitizer that includes all the above-mentioned characteristics.
The hit and trial experiments in the laboratory incur a high cost, require expertise in the
synthesis of DSSC, and consume a lot of time. Thus, fabricating DSSC in the laboratory
and then assessing their characteristics is a costly affair. Therefore, there is a strong need to
find an alternative that minimizes the cost and time for trial experiments.

The researchers apply computational chemistry in defining the structure and electronic
properties of dyes without actually synthesizing them. For example, the Time-Dependent
Density Functional Theory (TD-DFT) [26] and an ab initio method [27] have been employed
for identifying new organic dyes for synthesizing DSSC. TD-DFT is preferred for investi-
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gating the properties of organic dyes in their excited state due to its higher accuracy and
lower computational time than the ab initio method [28,29].

To further improve the prediction accuracy, Xu et. al. employed the QSPR model using
Polak–Ribiere algorithm in HYPERCHEM for the prediction of absorption maxima (λmax) of
organic dyes [30]. They employed DRAGON software to calculate three-dimensional (3-D)
descriptors from the optimized molecular geometries. In the subsequent research work,
Xu et.al. designed a QSPR between descriptors [31]. They represented that the molecular
structures and the λmax of organic dyes used in DSSC follow the same protocols as applied
by Colombo et al. in [20]. The disadvantage of the QSPR approach is that the descriptors
do not always provide an intuitive physical depiction of the effect of all parameters [32].

Further, to develop a nonlinear model, researchers applied a quasi-Newton Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [31,33]. They applied the algorithm on the
same dataset as used in the research works discussed in [30,31,34]. The details of the dataset
are shown in Table S1.

In the BFGS algorithm, there is no need to specify the rate or momentum. Furthermore,
it undergoes fast training. However, it is unable to determine small and medium scale
minimizing functions. It requires a large amount of memory, and therefore, it involves a
huge extent of numerical operations [35].

These challenges can be resolved by employing the Artificial Neural Networks (ANN)
models [36,37]. Although the potential of neural network models in data analysis [38], pattern
recognition [39], and object detection [40] is proven in various application areas such as
healthcare [41–43], agriculture [44], and material science [45], only a few researchers employed
the ANN-based models for predicting the absorption maxima (λmax) of dye [30,31]. Thus, there
is a huge scope to extend their applicability. In this research, we propose an ANN-based
QSPR model for correctly predicting the value of λmax for inorganic ruthenium complex
dyes used in DSSC.

The major objectives of this research are as follows.

(i) To develop an ANN-based model for predicting the absorption maxima of the dye
sensitizer used in DSSC.

(ii) To minimize the difference in the experimental and calculated values of absorp-
tion maxima.

(iii) To showcase the impacts of the atomic weight of each atom and molecular weight on
the value of λmax.

(iv) To demonstrate the impact of different types of bonds on the value of λmax.
(v) To justify the impact of different activation functions, optimizers, and loss functions

on the prediction accuracy of λmax using the ANN model.

The structure of the article is as follows: Section 1 provides the introduction. It gives
an overview of the research topic, introduces the research problem, highlights the gaps
in existing knowledge, and presents the objectives of the study. Section 2 describes the
data collection and methodology of the research work. Section 3 illustrates the results. It
presents the findings of the study. It includes tables, figures, and statistical analyses to
support the findings. Section 4 presents the discussion of the research work. It interprets
and analyzes the results, relates them to the objectives, and compares them with previous
research. Section 5 presents the conclusion of the work. It summarizes the main findings
and their implications. It also offers insights for future investigations.

2. Materials and Methods
2.1. Data Set

To prepare the dataset, the molecular structures of 81 ruthenium dye complexes were
taken from the literature. From these structures of ruthenium dye complexes, molecular
weight, atomic weight, number of all types of bonds such as C-C, C=C, C-N, Ru-N,
C=O, Ru-NCS, C-O, and other bonds were calculated for each dye. The prepared dataset
comprises 81 rows and 15 columns. The sample dataset is shown in Table 1 and the complete
dataset is shown in Table S1. As reported in the earlier works [46,47], the experimental
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values of λmax are also dependent on the solvent. Therefore, to ignore the impact of solvent,
the dataset is collected for a single solvent viz. Dimethylformamide (DMF). It is obvious
from the sample dataset shown in Table 1 that the values of λmax lie in the range from 473 to
631 nm in the collected dataset. This large variation in the range of values is important for
improving the robustness of the ANN model. It means that the performance of the model
does not degrade with any change in the value of λmax. So, the model works efficiently for
a wide range of dyes to correctly predict the value of λmax.

Further, the number of each type of bond was inferred from the structure of dyes.
These are shown as N+Bu4 =2, O-H=1, O-Na=1, O-H=2, C-S=4, C-S=8, C-Se=4, C-S=12,
N+(C4H9)4=1, C-S=2, O-H=3, C-F=3, N≡N=1, C-F=6, O-H=7, N≡N=2, TBA+=1, N-H=2,
N-H=4, O-H=4, and TBA+=1. Here, the symbol shows the type of bond, and the digit
denotes the number of bonds or functional groups present in a dye molecule. For example,
N+Bu4 =2 means that the dye contains two N+Bu4 groups, and O-H=1 means that the dye
contains one O-H bond. The other groups can be interpreted in the same way.

2.2. Experiments
2.2.1. Architecture of Model

An Artificial Neural Network (ANN) is a machine learning model that is inspired by
the structure and function of biological neurons in the brain. An ANN consists of multiple
interconnected nodes i.e., neurons, organized into layers. Each neuron in the network
has a set of weights associated with it, which determine the strength of its connections to
other neurons in the network. The input layer of an ANN receives input data, which is
then passed through one or more hidden layers. Each hidden layer applies a non-linear
transformation to the input. During the training phase, its neurons adjust the weights
to minimize the difference (value of loss function) between the predicted output and the
actual output. Finally, the output layer of the network provides the prediction.

Rather than using the ANN models available in the literature [30,31], a customized
ANN-based shallow network has been designed in this research. Its architecture is shown
in Figure 1.
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The designed model can deal with observable outliers available in the data. Further-
more, the model requires a smaller dataset for training. Before, the final selection of the
architecture, the ANN-based architectures with dense layers comprising 16, 32, 64, and
1024 Units were implemented on a trial-and-error basis. Furthermore, the experiments by
employing different activation functions viz. Leaky ReLu, ReLu, Softmax, and Sigmoid;
optimizers viz. Adam, AdaGrad, SGD, and RMSProp; and loss functions viz. Mean Ab-
solute Error, Mean Square Error, Mean Squared Logarithmic Error, Binary Cross-Entropy,
and Kullback Leibler Divergence Error were employed for experiments. The experimental
results obtained by employing the above-mentioned parameters are shown in the subse-
quent Section 2.2. The impacts of these parameters on the prediction accuracy justify the
selection of the ‘Relu’ activation function, Mean Absolute Error (MSE) loss function, and
‘Adam’ optimizer in the proposed ANN architecture.
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Table 1. Collected and calculated data of Ruthenium dyes.

Dye Structure Formula Mol.
Weight

Atomic
Weight

λmax
(MLCT) Solvent C-C

Bond
C=C
Bond

C-N
Bond

Metal-
N

Bond

C=O
Bond

Metal-
NCS
Bond

C-O
Bond

Other
Bonds/
Groups

Ref.

N749
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The proposed ANN model comprises one input layer, two dense layers, and one
output layer. The first and second dense layers comprise 512 and 128 units, respectively.
Further, the model contains 20,480; 65,664 parameters at the first and second dense layers,
respectively. The number of trainable parameters was reduced to 129 at the output layer.
This shows that the employed ANN model involves 86,273 trainable parameters. It does
not involve any non-trainable parameter in its architecture. The model is trained with a
batch size of 40 for 1000 epochs. Its efficacy is evaluated by using the evaluation metrics
defined below.

i Difference λmax: This is the difference in the predicted and experimental value of
absorption maxima, as defined in Equation (1):

Difference λmax = Predicted λmax − Experimental λmax (1)

ii Percentage error (Error%): This is the percentage of difference in the predicted and
experimental value of absorption maxima, as defined in Equation (2).

Error % =
Difference λmax

Experimental λmax
× 100 (2)

iii Correlation matrix: This matrix shows the correlation between (i) λmax and all bonds
in dye molecule (ii) λmax and other additional groups present in a dye structure
(iii) λmax and atomic and molecular weight. The matrix represents the direct as well
as inverse correlation. The value ‘0’ denotes no correlation, ‘1’ indicates complete and
direct correlation. Whereas ‘−1’ shows that the given parameters have a complete
and inverse correlation. The values increasing from 0 to 1 show an increasing degree
of direct correlation. On the other hand, values approaching from 0 to −1 indicate the
increasing degree of negative correlation between the parameters.

2.2.2. Selection of Hyperparameters

In this sub-section, the experiments conducted to select the optimum parameters
are demonstrated.

Selection of Activation Function

Activation functions are employed in the neural networks to introduce non-linearity
and enabling them to learn complex patterns in the input data. In this research, we
employed the ReLU (Rectified Linear Unit) activation function. It is a simple and com-
putationally efficient function that sets all negative values in the input to zero and leaves
positive values unchanged as defined in Equation (3).

f (x) = max(0, x) (3)

Here, x is the input to the function, and f (x) is the output. The ReLU function returns
the input x, if it is positive, and returns 0 otherwise. This makes the ReLU function a simple
yet powerful way to introduce non-linearity into neural networks.

The selection of ReLU activation function is based on the set of experiments conducted.
The performance of ANN by employing different activation functions viz. Leaky ReLU,
ReLU, Sigmoid, and Softmax are demonstrated in Figure 2. The difference in the predicted
and experimental values of absorption maxima was observed. Further, the percentage
error was calculated by employing the above-mentioned activation functions. It is evident
from the results demonstrated in Figure 2 that employing the ReLu activation function in
the proposed ANN model reports the minimum, whereas the softmax activation function
results in the maximum percentage error in predicting of λmax. Therefore, the ReLu
activation function was employed in this research.
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Selection of Loss Function

In this work, the selection of loss functions is accomplished strategically. Initially, the
loss functions viz. mean absolute error, mean squared error, mean squared logarithmic
error, categorical cross entropy and Kullback–Leibler divergence error were employed
individually for predicting the value of λmax. The values of percentage error in the λmax
obtained for each loss function were evaluated. It is evident from the results demonstrated
in Figure 3 that the mean absolute error reports the minimum value of percentage error.
Thus, this loss function is employed in the architecture of the proposed ANN model.
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Selection of Optimizer

Selecting the most suitable optimizer plays an important role in improving the predic-
tion accuracy and minimizing the percentage error. For selecting the appropriate optimizer
for the proposed model, a series of experiments were conducted. The optimizers, namely
Adam, SGD, RMSProp, AdaGrad, were employed individually and the values of percent-
age error in the λmax were recorded. It is clear from the results shown in Figure 4 that the
Adam optimizer results in the minimum value of percentage error. Therefore, the Adam
optimizer was employed with the proposed ANN model.
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3. Results

The proposed ANN model is trained for 1000 epochs. The results of the trained model
were recorded on the validation and testing datasets. The predicted values of absorption
maxima based on the structure of the dye molecule, numbers of bonds, molecular weight,
and atomic weight are demonstrated in the correlation matrices shown in Figures 5–9.
The details of the correlation obtained are discussed below. Two more machine learning
algorithms ‘XGBoost’, and random forest were applied, and their performance is compared
with the ANN model. The comparative analysis is demonstrated in Figures 10 and 11.
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3.1. Prediction of λmax Based on the C-C, C=C, C-N, C=O, Metal-NCS, C-O, Metal-N Bonds

The correlation between λmax and different types of bonds is demonstrated in Figure 5.
The correlation studied from the correlation matrix is observed as linear. The range of
λmax varies from 1 to −1. Values of 1 or close to 1 indicate a higher positive correlation,
whereas the value ‘−1’ or close to ‘−1’ denote a negative correlation between the considered
parameters. For example, it is evident from the sixth row and first column of the correlation
chart shown in Figure 5 that the metal-NCS bond reports the value 0.77 which is close to
1. It shows the highest correlation between the metal-NCS bond and the value of λmax.
Furthermore, it is evident from its positive value that the increase in the metal-NCS bond
leads to an increase in the value of λmax proportionally.
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Further, the value ‘−0.74’ shown in the eighth row, the first column of the correlation
matrix indicates the high inverse correlation of metal-N bond with the value of λmax. This
means that the increase in the number of metal-N bonds in a dye leads to a decrease in the
value of λmax. Similarly, the value ‘−0.48’ in the fourth row and first column shows that
λmax and C–N bond are inversely correlated but the degree of correlation is lower than a
metal-N bond. Next, the observation from column one of the second and ninth row shows
that the C–C bond and DMF have a negligible correlation with the value of λmax.

Additionally, the correlation matrix also shows the correlation between different bonds
and functional groups present in a dye. For example, the value ‘0.54’ recorded in the third
column, the second row indicates that the number of C=C increases with an increase in the
number of C-C single in the molecular structure of a dye. In contrast, the correlation of C-C
with C-N is 0.38, C=O is 0.25, the metal-NCS bond is 0.18 and C-O is 0.11. These values are
too small to have an impact on each other.

Similarly, the inter-correlation of C-N with C-C bond is 0.38, C=C bond is 0.47, C=O
is 0.26, metal-NCS is −0.47, C-O is −0.19, and with the metal-N bond is 0.49. It reflects
that the C-N bond has the highest correlation with the metal-N bond among all the above-
stated bonds.

Next, the C=O bond is correlated to C-C, C=C, C-N, metal-NCS, C−O, and metal-N
bonds with the values 0.25, −0.24, 0.26, −0.063, 0.13, and 0.072 respectively. The highest
value of the Metal-N bond indicates that it has the maximum and direct correlation with
C=O. In contrast, the smaller values for the other bonds mentioned above show their trivial
impact on C=O.

Moreover, metal-NCS bond shows 0.18, 0.052, −0.47, −0.063, 0.16, with C-C bond,
C=C bond, C-N bond, C=O bond, C-O bond, respectively. All the positive values are too
small to impact each other. However, the value −0.99 reported in the sixth row and eighth
column of fig 5 indicates the highest inverse correlation of the metal-NCS bond with the
Metal-N bond. The presence of one such bond is a strong hindrance for another bond in
the same dye.

Next, the C-O bond shows 0.11, −0.065, −0.19, 0.13, 0.16, −0.15 with C-C bond, C=C
bond, C-N, C=O, metal-NCS bond, and metal-N bond respectively. This indicates the
minimum impact of these bonds on the presence of a C-O bond in a dye.

Further, the Metal-N bond shows −0.14, −0.017, 0.49, 0.072, −0.99, −0.15 with C-C
bond, C=C bond, C-N, C=O, metal-NCS bond, C-O bond respectively. It is clear from these
values that the Metal-N bond has the maximum direct correlation with the C=O bond, and
the highest inverse correlation with the metal-NCS bond.

Based on the above interpretation, it is obvious that the highest direct correction value
of λmax is 0.77, observed with metal-NCS bonds. Whereas the maximum inverse correlation
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is −0.74, observed with metal-N bonds. Therefore, if we want to fabricate a dye with
a higher value of λmax, the dye with a greater number of metal-NCS bonds should be
fabricated and vice versa.

3.2. Prediction of λmax Based on N+Bu4, O-H, O-Na, C-S, and C-Se Bonds

The correlation between λmax and other bonds viz. N+Bu4=2, O-H=1, O-Na=1, O-H=2
C-S=4, C-S=8, and C-Se=4 present in a dye molecule was also studied. The correlation of
these bonds with the value of λmax as well as a favor for co-existence of these bonds are
shown in Figure 6. The highest correlation of λmax is 0.19 is observed in the first row and
fifth column when two O-H groups are present in a dye. The positive correlation of 0.13,
0.1, 0.15, 0.19, 0.045 is observed between λmax and other bonds N+Bu4=2, O-H=1, O-Na=1,
O-H=2 and C-Se=4 respectively. In contrast, a negative correlation of−0.0068,−0.065 exists
with bond C-S=4, C-S=8 respectively. So, it is evident from the results reported in Figure 6
that the above-stated bonds have a negligible impact on the value of λmax. Therefore, the
study of a number of these bonds can be ignored while fabricating a dye with the desired
value of λmax.

More analysis of the results given in Figure 6 shows that the maximum correlation
of 0.87 is observed in the number of O-H and O-Na groups. However, these also have a
negligible impact on the value of λmax.

3.3. Prediction of λmax Based on C-S, N+(C4H9), O-H, C-F, N≡N Bonds

Now, the correlation of absorption maxima with the bonds such as twelve C-S groups,
one N+(C4H9), two C-S, three O-H, three C-F, one N≡N, six C-F was also studied as shown
in Figure 7. The analysis of results given in Figure 7 shows that the λmax is negatively
correlated with C-S, O-H, C-F, N≡N with a negligible impact. On the other hand, the λmax
is positively correlated with N+(C4H9) and C-S groups with values of 0.034 and 0.37. These
values indicate that the C-S group has the highest impact on the value of λmax. However,
the degree of correlation is not very significant. The remaining groups have a negligible
impact on the value of λmax.

Further, it is clear from the results shown in Figure 7 that C-F, O-H, and N≡N bonds
favor their coexistence in a dye. Therefore, while fabricating a dye with the desired value
of λmax, the number of C-S groups should be considered. Furthermore, the number of C-F,
O-H, and N≡N bonds can be increased or decreased in proportion to each other.

3.4. Prediction of λmax Based on O-H, N≡N, TBA+, N-H Bond

Now, the correlation of λmax with different bonds such as O-H=7, N≡N=2, TBA+=1,
N-H=2, N-H=4, O-H=4, and TBA+=1 was also studied. It has been observed that only the
presence of one TBA+ group in a dye have a significant and direct correlation with the
value of λmax. Increasing the number of TBA+ groups can result in the dye with a higher
value of λmax. However, there is a negligible direct impact of the N-H group on the value
of λmax.

Similarly, there is an insignificant inverse impact of O-H=7, N≡N=2, O-H=4 groups
on the value of λmax. Furthermore, it is clear from the values reported in Figure 8 that the
aforementioned bonds do not favor or hinder their co-existence.

3.5. Prediction of λmax Based on Atomic and Molecular Weight

The value of λmax is also dependent on the atomic mass of an atom present in a dye
molecule. Furthermore, it is dependent on the molecular mass of a molecule present in a dye
and the complete molecule of a dye. The inter-correlation of λmax with the individual atomic
masses of Carbon (C), Hydrogen (H), Nitrogen (N), Oxygen (O), Ruthenium (Ru), Sulfur (S),
Sodium (Na), Selenium (Se), Fluorine (F) is demonstrated in Figure 9. Furthermore, the
directly or inversely correlated atoms or groups of a dye are presented in Figure 9.

The absorption maxima show a negative correlation with an atomic weight of N and
F in proportion to values −0.32 and −0.58 respectively. However, it shows a positive
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correlation with C, H, O, S, Na and molecular weight of the dye in proportion to the
values 0.16, 0.36, 0.098, 0.44, 0.16, and 0.17 respectively. It is obvious from these values that
increasing the mass of Sulfur in a dye leads to a significant increase in the value of λmax.

Increasing the mass of Fluorine may lead to a decrease in the value of λmax. Thus,
it is apparent that if we want to fabricate the dye with a higher value of λmax then the
number of Sulfur atoms in a dye molecule must be increased. On the other hand, if we
want to fabricate a dye with a lower value of λmax, then the number of F atoms in a dye
molecule must be increased. The other atoms, viz. C, H, N, O, Ru, Na, and Se, have a
negligible impact on the value of λmax. Furthermore, the molecular weight of a dye has
an insignificant impact on the value of λmax. The impact is in proportion to the value of
0.17 only.

Further, it is evident from the results reported in Figure 8 that the atomic weight of
C shows a correlation to H, N, O, S, Na, F with values 0.75, 0.37, 0.14, 0.26, 0.26, and 0.34,
respectively. The C atom is in a strong correlation of 0.95 with the molecular weight of a
dye. This shows that a greater number of C atoms are present in a dye with high molecular
weight and vice versa.

Similarly, the atomic weight of the H atom shows a correlation with C, N, O, S, Na,
and F in proportion to values 0.75, 0.21, 0.32, 0.23, −0.043, and −0.42 respectively. These
values indicate that C and H atoms significantly favor their co-existence in a dye molecule.
Whereas H and F atoms hinder the co-existence of each other. Other atoms, viz. N, O, S,
and Na, have a negligible impact on the presence of H atoms in a dye molecule. Further,
the H atom shows a correlation of 0.78 with the molecular weight of a dye. The higher
molecular weight of a dye favors the presence of a greater number of H atoms in it.

Next, it is evident from Figure 8 that the atomic weight of N is correlated to atomic
weights of C, H, O, S, Na, and F, with values 0.37, 0.21, 0.094, 0.36, −0.0066, and 0.39,
respectively. These values are too small to have any significant effect on each other. Further,
it is correlated to the molecular weight of dye in proportion to the value 0.42.

Similarly, the molecular weight of the O atom is also correlated with the molecular
weight of C, H, N, S, Na, Se, F in proportion to values 0.14, 0.32, 0.094, −0.021, 0.24, −0.074,
and −0.028, respectively. These values indicate that the O atom has minimum interference
with the presence of the other atoms in a dye molecule. Moreover, the molecular weight
of a dye also has a minimum correlation of 0.098 with the presence of an O atom in a
dye molecule.

Further, the atomic weight of the S atom shows values 0.26, 0.23, −0.36, −0.021, 0.073,
−0.036,−0.53, for the atomic weight of C, H, N, O, Na, Se, and F, respectively. Its correlation
with the molecular weight of a dye is observed as 0.33. These values show that the atomic
weight of S is inversely correlated with the atomic weight of N, O, Se, and F atoms but the
degree of correlation is not significant. It is, however, directly correlated to atomic weights
of C, H, and Na. Furthermore, the degree of direct correlation is insignificant.

The atomic weight of Na also shows a correlation with the atomic weight of C, H,
N, O, Ru, Se, S, and F with values 0.16, 0.026, −0.043, −0.0066, 0.24, 0.073, −0.032, −0.15,
respectively. It is apparent from these values that the direct, as well as inverse correlation
of atomic weight of Na with above-stated atoms, is negligible.

Now, it has been observed from Figure 9 that the atomic weight of Se is correlated
with C, H, N, O, S, Na, and F with values −0.066, −0.046, −0.1, −0.074, −0036, −0.032,
−0.061, respectively. The low positive, as well as negative values, clearly show that the
presence of the Se atom in a dye molecule is not determined by the presence of other atoms.

Similarly, the atomic weight of F is correlated with the atomic weights of C, H, N, O, S,
Na, and Se with the values of −0.34, −0.42, 0.39, −0.028, −0.53, −0.15, −0.061, respectively.
These values indicate that the presence is F is inversely related to all the above-mentioned
atoms except N. However, the degree of correlation is not very high.

Further, the molecular weight of the dye is also correlated with absorption maxima
and atomic weights of C, H, N, O, S, Na, Se, and F in proportion to the values 0.95, 0.78,
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0.42, 0.27, 0.33, 0.054, −0.023, −0.25, respectively. It indicates that the molecular weight is
highly dependent on the atomic weight of carbon and H.

3.6. Difference and Percentage Error

To validate the reliability and accuracy of the proposed model, we calculated the
difference in the experimental values of λmax reported in the literature and the predicted
values [30,31]. Furthermore, we calculated the percentage error in the experimental and
predicted values of λmax. The values of difference and percentage error of individual dyes
are demonstrated in Table 2. Its first column shows the name of the dye, the second column
shows the experimental value of λmax, the third column includes the predicted value of
λmax, the fourth column shows the difference in λmax values, and the last column contains
the values of percentage error.

Table 2. Comparison of experimental and predicted values of absorption maxima.

Dye λmax
(Experimental)

λmax
(Predicted) Difference Percentage

Error t-Score Ref.

N749 600 599.9605103 −0.039489746 0.006581625 2.962804 [48]
N719 525 525.0811157 0.081115723 0.015450614 2.573224 [52]
Z907 520 518.3882446 −1.611755371 0.309952945 2.554664 [51]
YS-1 536 535.9921265 −0.007873535 0.001468943 2.633939 [51]
YS-2 536 536.6464233 0.64642334 0.120601371 2.637666 [51]
YS-3 539 538.6637573 −0.336242676 0.062382687 2.65839 [51]
YS-4 535 534.9170532 −0.082946777 0.015504071 2.642976 [51]
YS-5 555 554.8757324 −0.124267578 0.022390554 2.746662 [51]

CYC-B1 553 554.9368896 1.936889648 0.350251287 2.737349 [53]
CYC-B3 544 543.5513306 −0.448669434 0.082475998 2.699216 [54]
SJW-E1 546 545.9083252 −0.091674805 0.016790258 2.713337 [54]

C101 547 545.3406372 −1.659362793 0.303357005 2.72482 [55]
C102 547 545.6287842 −1.37121582 0.250679314 2.728966 [55]
C103 550 549.0956421 −0.90435791 0.164428711 2.74789 [56]
C104 553 554.3543701 1.354370117 0.24491322 2.764281 [57]
C105 550 546.0117188 −3.98828125 0.725142062 2.759501 [58]
C106 550 549.9251099 −0.074890137 0.013616389 2.759075 [55]
C107 559 558.5645142 −0.43548584 0.07790444 2.808949 [56]
K19 545 545.203064 0.203063965 0.037259445 2.740354 [59]
K77 546 544.6682739 −1.331726074 0.243905872 2.752063 [60]

CYC-B11 554 552.9317627 −1.068237305 0.19282262 2.796931 [61]
CYC-B6L 551 545.9569702 −5.043029785 0.915250421 2.790254 [62]
CYC-B6S 548 547.302124 −0.697875977 0.12734963 2.774375 [62]
CYC-B7 551 552.8936157 1.893615723 0.343668908 2.791177 [63]
CYC-B13 547 548.375 1.375 0.251371115 2.775524 [64]

JK-55 539 538.1456909 −0.854309082 0.158498898 2.74214 [65]
JK-56 537 538.4175415 1.417541504 0.26397422 2.734822 [65]
RC-31 560 558.7681274 −1.231872559 0.219977245 2.860881 [66]
RC-32 564 562.3169556 −1.683044434 0.298412144 2.884413 [66]
RC-36 547 545.4786377 −1.521362305 0.278128386 2.798735 [66]
PRT1 520 520.6152954 0.61529541 0.118326038 2.663049 [67]
PRT2 517 517.5576172 0.557617188 0.107856326 2.652854 [67]
PRT3 519 519.3753052 0.375305176 0.072313137 2.668113 [67]
PRT4 519 514.8287964 −4.171203613 0.803700089 2.678184 [67]

PRT21 514 515.2487793 1.248779297 0.242953166 2.651222 [68]
PRT22 520 519.6818237 −0.31817627 0.061187744 2.688368 [68]
PRT23 536 537.9351196 1.935119629 0.361029774 2.774103 [68]
PRT24 537 537.1176147 0.117614746 0.021902187 2.787605 [68]

TF1 510 509.9632568 −0.036743164 0.007204542 2.653727 [69]
TF2 509 510.1255798 1.125579834 0.221135527 2.651082 [69]
TF3 513 513.4284058 0.428405762 0.083509892 2.676337 [69]
TF4 516 516.3215942 0.321594238 0.062324464 2.69655 [69]
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Table 2. Cont.

Dye λmax
(Experimental)

λmax
(Predicted) Difference Percentage

Error t-Score Ref.

MJ-4 594 594.5967407 0.596740723 0.100461401 3.109695 [70]
MJ-6 608 606.5596313 −1.440368652 0.236902744 3.174494 [70]
MJ-7 603 606.5596313 3.559631348 0.590320289 3.119411 [70]

MJ-10 630 630.5605469 0.560546875 0.088975698 3.233595 [70]
MJ-11 630 630.5605469 0.560546875 0.088975698 3.149689 [70]
MJ-12 631 632.057312 1.057312012 0.167561337 3.010226 [70]

TFRS-1 532 534.241333 2.241333008 0.421303183 2.251667 [71]
TFRS-2 533 533.7162476 0.716247559 0.1343804 2.269726 [71]
TFRS-3 503 503.7233887 0.723388672 0.143814847 2.151846 [71]
TFRS-4 501 501.8835449 0.883544922 0.176356271 2.146519 [71]

TFRS-21 499 500.2005005 1.200500488 0.240581259 2.137079 [72]
TFRS-22 473 473.5461426 0.546142578 0.115463547 2.022101 [72]
TFRS-24 485 485.4335938 0.43359375 0.089400776 1.963301 [72]
TFRS-51 499 499.3976135 0.397613525 0.079682067 1.925546 [73]
TFRS-52 495 495.3208618 0.320861816 0.064820565 1.866991 [73]
TFRS-53 500 500.4888611 0.488861084 0.097772218 1.795062 [73]
TFRS-54 496 496.4121094 0.412109375 0.083086565 1.695218 [73]

CS9 518 518.0759277 0.075927734 0.014657863 1.573186 [74]
A597 539 538.2700806 −0.729919434 0.135421053 1.632301 [75]
CS27 517 517.1707764 0.170776367 0.033032179 1.590288 [76]
CS28 518 517.486084 −0.513916016 0.099211589 1.579045 [76]
CS32 518 518.0393066 0.039306641 0.007588155 1.557655 [76]
CS43 518 518.1796875 0.1796875 0.034688707 1.529054 [76]
CS17 530 529.7614136 −0.238586426 0.045016307 1.521574 [76]
CS22 533 532.6157837 −0.384216309 0.072085612 1.578218 [76]
LXJ-1 549 548.1496582 −0.850341797 0.154889211 1.686294 [56]

KW-1# 515 514.050293 −0.949707031 0.184409127 1.566551 [77]
KW-2# 550 549.9004517 −0.09954834 0.018099697 1.529517 [77]
HRD-1 543 542.3900757 −0.609924316 0.112324923 1.449902 [78]

K-73 545 545.2966309 0.296630859 0.05442768 1.48967 [79]
KC-5# 537 537.1211548 0.121154785 0.022561412 1.454641 [80]
KC-6# 531 527.5883179 −3.411682129 0.642501354 1.539624 [80]
KC-7# 533 530.7481079 −2.25189209 0.422493815 1.649544 [80]
KC-8 522 522.1340332 0.134033203 0.02567686 1.730241 [80]

MH06 541 540.6497192 −0.350280762 0.064746909 1.841917 [81]
MH11 547 546.6559448 −0.344055176 0.062898569 1.987435 [81]
MC119 548 548.0170898 0.017089844 0.003118585 1.976855 [82]

S3 516 515.6741333 −0.325866699 0.063152462 1.256043 [83]
S4 518 519.6868286 1.686828613 0.325642586 1.462133 [83]

# These compounds were named after the initials of the first author of the reference cited.

It is evident from the results shown in Table 2 that the predicted values of λmax
are closer to the experimental values of λmax collected from the literature. The range
of difference in predicted and experimental values is −5.04 to 3.559, which is very low.
Furthermore, the percentage error observed in the experimental and predicted values lie is
in the range of 0.00145 to 0.915. The low values prove the reliability of the model.

Statistical Analysis: For statistical analysis of the results shown in Table 2, we applied
the t-test as defined in Equation (4). The value of t as shown in column 6 of Table 2 lies
in the range of 1.25 to 3.25. A positive absolute value of t indicates a moderate difference
between the means of the two sets of values. It also suggests that the difference between the
means is statistically significant, implying that the predicted values significantly deviate
from the experimental values.

t− score =
Difference between experimental and predicted value

standard error
(4)
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4. Discussion

The research work proposed in this work meets the objectives of accurately predicting
the absorption maxima. The ANN model designed in this research correctly predicts the
value of absorption maxima of the dye sensitizer based on the structure of the dye molecule,
numbers of bonds, molecular weight, and atomic weight. The model, trained with different
sets of values of these parameters and their corresponding value of the compound, learns to
predict the correct value of the absorption maxima. It magnificently reduced the difference
and percentage error in the experimental and predicted values of λmax of a dye, reported in
the literature [30,31]. Furthermore, it predicted the impact of collective atomic weights of
each atom type and molecular weight of the dye molecule on the value of λmax of a dye.
Moreover, the proposed research work successfully showed the impact of different bonds
between constituent atoms of a dye on its absorption maxima.

To achieve the first objective ANN model is trained to predict the absorption maxima
of inorganic dye mainly ruthenium complexes used in DSSC. Further, the calculated values
of absorption maxima are very close to the experimental values collected from the literature
as shown in Table S1. Moreover, it reported the lesser difference in experimental and
calculated values of absorption maxima reported by Xu et.al. [30,31]. They reported the
difference in range of −27.3 to 27.1 [30] and −16.6 to 16.2 [31]. In contrast, the difference
reported in the work proposed in this manuscript lies in the range of −5.043029785 to
3.559631348. This shows that the proposed model more accurately predicts the value of
λmax. Moreover, the statistical analysis of the difference in the experimental and predicted
values in terms of the t-test validates the obtained result. The t-score obtained in the range
of 1.25 to 3.23 signifies the importance of the t-test.

In addition, the percentage error observed from the experimental results lies in the
range of 0.01468943 to 0.915250421, which are 96.63 and 94.35% less than the percentage
error calculated in the works reported in [30,31].

To demonstrate the impacts of the atomic weight of each atom and molecular weight
on the value of λmax, a correlation matrix was studied as shown in Figure 9. The atomic
weight of sulfur and fluorine shows a considerable impact on λmax value. The λmax value
is directly proportional to the sulfur atoms, whereas it is indirectly proportional to the
fluorine atoms.

Further, the correlation matrix of λmax with different bonds was studied as shown in
Figures 5–8. Initially, the correlation matrix of λmax with C-C, C=C, C-N, C=O, Metal-NCS,
C-O, Metal-N bonds as demonstrated in Figure 5 shows that the λmax directly depends only
on the Metal-NCS bond and inversely depends on Metal-N bonds. The next correlation
matrix as shown in Figure 6 indicates the relation of λmax and N+Bu4=2, O-H=1, O-Na=1,
O-H=2 C-S=4, C-S=8, and C-Se=4. It is concluded that the λmax directly depends on the
bond O-H=2, whereas it inversely depends on the C-S=8 bond. Likewise, the correlation
of λmax based on C-S, N+(C4H9), O-H, C-F, N≡N bonds were studied. It is observed
that λmax directly depends on the C-S bonds and is inversely dependent on the C-F bond.
Furthermore, the correlation of λmax based on O-H, N-N, TBA+, N-H bonds were studied.
It is concluded that the impact on the λmax is observed at its maximum with the increase
in the TBA+ group in dye structure, whereas the λmax value decreases with an increase in
N≡N bonds.

The impacts of activation function ‘ReLU’, loss function Mean Absolute Error (MSE),
and optimizer ‘Adam’ on the prediction accuracy of λmax using the ANN model were
observed. It is concluded that the proposed model is more efficient than the methods
available in the literature [30,31]. It accounts for the diminishing difference in predicted
and experimental values of λmax. Furthermore, justify the relation of λmax with other bonds
of dye molecule as well as the impact of atomic and molecular weight on it.

Further, the superiority of the customized ANN model over the traditional machine
learning models is proved by conducting the experiments. The values of Mean Square
Error (MSE), and Percentage Error reported by ANN, Xgboost, and Random Forest models
were recorded for each epoch. These values are illustrated in Figures 10 and 11, respectively.
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This is evident from Figure 10, that the ANN model reports the lowest value of MSE among
all the three models. This proves that ANN model outperforms the Xgboost and Random
Forest in predicting the value of absorption maxima.

Similarly, the results demonstrated in Figure 11 prove that the ANN model reports the
lowest value of percentage error among all the above-stated three models. This justifies the
efficacy of ANN model in correctly predicting the value of absorption maxima.

5. Conclusions

In this manuscript, a customized ANN model is developed for automating the predic-
tion of the value of absorption maxima of dye without actually fabricating the dye. Further,
the ANN model is fine-tuned to minimize the difference in the experimental and predicted
values. The model precisely predicted values of absorption maxima. The difference re-
ported in the proposed work is −22.3 to 23.6 values lower than the range of difference
reported in [30,31]. Similarly, the difference is lower by values from 11.56 to 12.7. This
proves the supremacy of the proposed work over the reported methods in the literature.

Furthermore, the research work available so far does not focus on showing the impact
of the atomic weight of atoms in a dye molecule, the number, and types of bonds available
in a dye molecule. The research works presented in this manuscript showcase the role
of atomic weights and different types of bonds present in dye molecules on the value of
their absorption maxima. Furthermore, they show the direct and inverse correlation of
individual atoms present in a dye molecule on the value of absorption maxima. Moreover,
they predict the inter-correlation among different atoms present in a dye molecule. The
experimental results prove the efficacy of the proposed work, minimizing the requirements
for hit and trial experiments. Therefore, it is a cost-saving approach for fabricating the dye
of desired characteristics.

The model is purely dependent on the descriptors originated from the chemical
structure of the dye molecule and valid for regular dyes of whichever chemical structure.
Therefore, this model would be beneficial for the synthesis of new sensitizers with preferred
absorption maxima values for DSSC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/bdcc7020115/s1, Table S1: Dataset.
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