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Abstract: For the last two decades, artificial neural networks (ANNSs) of the third generation, also
known as spiking neural networks (SNN), have remained a subject of interest for researchers. A
significant difficulty for the practical application of SNNs is their poor suitability for von Neumann
computer architecture, so many researchers are currently focusing on the development of alternative
hardware. Nevertheless, today several experimental libraries implementing SNNs for conventional
computers are available. In this paper, using the RCNet library, we compare the performance of
reservoir computing architectures based on artificial and spiking neural networks. We explicitly
show that, despite the higher execution time, SNNs can demonstrate outstanding classification
accuracy in the case of complicated datasets, such as data from industrial sensors used for the fault
detection of bearings and gears. For one of the test problems, namely, ball bearing diagnosis using an
accelerometer, the accuracy of the classification using reservoir SNN almost reached 100%, while the
reservoir ANN was able to achieve recognition accuracy up to only 61%. The results of the study
clearly demonstrate the superiority and benefits of SNN classificators.

Keywords: artificial neural networks; spiking neural networks; reservoir computing; fault diagnosis

1. Introduction

Artificial neural networks (ANNSs) are currently applied to a wide range of industrial
tasks, such as image and speech recognition, temporal data processing, fault diagnosis,
and object detection [1]. ANN may be very effective in many cases, but sometimes the
problem of decreasing or exploding gradients appears, jeopardizing the learning process.
Recent studies indicate [2,3] that the energy and time costs required for the training and
deployment of networks can increase unnecessarily when trying to achieve better accuracy
using conventional ANNSs. This encourages scholars to look for new solutions. Possible
ways include but are not limited to novel neuron models and novel architectures. One
prospective technology is a reservoir computing (RC) architecture with spiking neurons.

A brief description of various generations of neural networks is presented in Figure 1.
The Rosenblatt perceptron belongs to the first generation. Its key feature is the binary
activation function applied to the sum of input signals. However, by the end of the 1960s, it
became clear that the capabilities of the perceptron are limited. Today’s wave of interest in
neural networks comes from the invention of the continuous activation function. Examples
of such functions are sigmoid, hyperbolic tangent, and ReLU [4]. All of them are non-
linear, resulting in the complex nonlinear dynamics of the whole network. Unlike the
first generation, the second one provides the ability to activate input neurons with analog
signals. The second generation includes a lot of widely used solutions, such as deep
learning, convolutional, and generative neural networks. Spiking neurons are the third
generation of artificial neuron models, which closely mimic the dynamics of biological
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neurons [5]. Spiking neural networks (SNN) operate not with numbers but with one-time
pulses (spikes) and their trains (bursts). The distribution of impulses over time makes
it possible to encode and process the information. Neurons of the third generation also
have an activation function, which, at a certain threshold of magnitude, generates an
impulse, and thereafter the neuron is put to reset and a recovery period begins. SNNs are
usually considered as having more potential than traditional ANNSs due to the fact they
outperform in terms of energy efficiency and are better suited to work with time-varying
data [6]. However, the widespread use of SNNss is limited by several shortcomings. First,
one needs to choose a method for representing data in the form of pulses [7]. A choice of
encoding technique may be of key importance in terms of the network’s computational
and energy costs [2]. Second, special learning methods are in demand for SNN. Finally,
the most important limitation is modern von Neumann'’s architecture itself, which is
poorly adapted to reproduce the dynamics of spiking networks [8], which has led to the
absence of time-efficient software solutions. However, with the development of dedicated
architectures (e.g., memristor-based computers), this problem may be solved. Reservoir
computing is a framework designed for computing based on the theory of recurrent neural
network architecture, which maps input signals to higher-dimensional computational
spaces through the dynamics of a fixed non-linear system called a reservoir [9]. After
the input signal enters the tank, which is considered a “black box”, a simple readout
mechanism is trained to read the state of the tank and output it in the desired format. The
key advantage of this framework is that learning takes place only on the output layer
since the reservoir dynamics are fixed. Reservoirs can be either physical or virtual. Virtual
reservoirs are usually randomly generated to be similar to real neural networks. In virtual
reservoirs, connections between blocks are randomized and remain unchanged throughout
the computation process. The key factor for the correct operation of a reservoir neural
network is the distinguishability condition: the system must be sufficiently distinguishable
relative to the other patterns of behavior of reservoir neurons for different data classes [10]
. While several types of reservoir computing exist, this work mainly focuses on the echo
state network and the liquid state machine. The reservoir computing paradigm also aims
to address the problem of the energy-inefficient operation of ANN [9]. Recall that a neural
network containing more than one hidden layer is called a deep neural network [3]. To
enforce the strength of the deep network, the recursive propagation of data through the
network is performed. This is beneficial for overall accuracy, but the computational costs
can be very high. Reservoir computing implements the opposite idea: the internal layers,
which are called a reservoir, are not trained. They follow only their own dynamic properties
affected by the input data and/or environment. Connection weights are deliberately
optimized only at the output layer. The immutability of the hidden layers results in a
huge advantage of RC: the facilitated learning process [3]. Figure 2 briefly represents the
RC architecture.
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Figure 1. Three generations of neural networks.

RC and SNN, separately and in combination, have recently shown their advantages in
solving many practical tasks. Morando et al. [11] used reservoir computing with automatic
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parameter optimization for proton-exchange membrane fuel cell (PEMFC) fault diagnostic.
A possibility of online diagnostics without changing the system operating conditions
with an error of less than 5% was shown. Zhang et al. [12] used pre-classified reservoir
computing (PCRC) for the fault diagnosis of 3D printers equipped with a low-cost attitude
sensor. An echo state network (ESN) was used as an RC for extracting faulty features
and for the simultaneous classification of condition patterns. The authors demonstrated
that the PCRC method has the best performance in comparison with RC, random forest
(RF), support vector machine (SVM), and sparse auto-encoder (SAE). In [13], Kulkarni
and Rajendran demonstrated the use of SNNs for handwritten digit recognition. In their
experiments, an accuracy of 98.17% had been achieved on the MNIST dataset using the
normalized approximate descent (NormAD) learning algorithm. Yan Z. et al. [14] used SNN
for ECG classification. The authors provide a comparison between SNN and convolutional
neural networks and show that SNN is much more energy efficient and, at the same
time, demonstrates higher accuracy. Oikonomou et al. [15] successfully applied SNN in
combination with deep learning in a robotic arm target-reach task. The authors of [16]
used a probabilistic spiking response model (PSRM) with a multi-layer structure to classify
bearing vibration data: the model was proven to be an effective tool for fault diagnosis.
However, in the current scientific literature, there is a lack of comparison between
the second and third generations of neural networks with a reservoir architecture, which
should be studied not only in terms of accuracy but also in learning and classification
speed. In particular, the question arises: if ANNs are so expensive in terms of computing
resources, can they be surpassed by SNNs on the same conventional computer?

Input layer  Reservoir Output layer

Figure 2. Reservoir computing architecture.

Driven by this motivation, we designed the current study to perform the comparative
evaluation of the second- and third-generation neural networks with reservoir architecture,
namely, ESN and LSM, on the same datasets representing data from different types of
sensors. The dependence of accuracy and speed on the number of neurons in the reservoir
is evaluated. For the experimental study, we use the same hardware (personal computer),
as well as the same open-source RCNet library.

The rest of the paper is organized as follows. In Section 2, we briefly describe ESN
and LSM architectures, as well as datasets used in the study. In Section 3, the experimental
results are presented. Section 4 discusses the obtained results and concludes the paper.

2. Materials and Methods
2.1. Neuron Models

The neurons in SNNs are built on mathematical descriptions of biological neurons
(see Figure 3). There are two main groups of methods for modeling a neuron: either
models based on conductivity (the Hodgkin—-Huxley model, the Izhikevich model, the
FitzHugh-Nagumo model, etc.) or threshold models (ideal, fluid, adaptive, exponential,
and other integrate-and-fire models) [17]. One of the most common models for an SNN
neuron is the leaky integrate-and-fire (LIF) model [18].
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Figure 3. Biological neuron and its model used to build artificial neural networks.

2.2. Learning Methods for Neural Networks

Learning methods of neural networks are divided into two main types: supervised
learning and unsupervised learning. In some cases, elements of these two types are
combined (reinforcement learning). Supervised learning implies that the learning material
contains pairs of an example and the corresponding correct answer. A key aspect of
learning is error calculation. This may be performed in two stages: forward or backward
propagation of the error, respectively [19]. This learning method uses the so-called “chain
rule” for functioning: after each pass through the network, an opposite pass is made in
order to adjust its parameters. The result of running a neural network on a given training
example is a numerical value that can be compared with the correct answer and evaluate
the error. The estimation is made using a loss function, e.g., root mean square error (RMSE)
or cross-entropy. Then, based on the value of this function, back-propagation is performed
with the adjustment of the connection weights to get closer to the desired result of the
network operation. Thus, the task of supervised learning can be described as finding the
minimum estimated error (the result of the loss function). For this purpose, optimization
algorithms are used. The number of learning process iterations may be referred to as the
number of epochs and is often used as a comparative parameter. The authors of [20] show
in detail how supervised learning is applied to spiking neural networks (Figure 4).

2.2.1. Echo State Network

The echo state network (ESN) [21] is a type of reservoir computing that uses a recurrent
neural network with a sparsely connected hidden layer. Weights of connections between
hidden neurons are randomly determined and fixed. The weight of the output neuron
connections can be changed through training, so specific temporal patterns created by the
reservoir can be interpreted. ESN is a second-generation neural network.
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Figure 4. Supervised learning.

In paper [22], experimental data on activation functions” performance was obtained.
The tested neural networks were using a feedforward multilayer-perceptron architecture
with one hidden layer. Firstly, there were 10 neurons in the hidden layer, and secondly
there were 40 neurons. Five activation functions were tested, three of them being uni-polar
sigmoid, bi-polar sigmoid, and hyperbolic tangent (Figure 5). Though the learning rates of
these functions were not the fastest, their accuracy greatly exceeded the results obtained
from the other two functions: conic section and the radial basis function. The hyperbolic
tangent (tanh) showed the best accuracy rate with both 10 and 40 neurons. Based on this
result, tanh was chosen as an activation function for ESN.
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Figure 5. (a) Unipolar sigmoid, (b) bipolar sigmoid, and (c) hyperbolic tangent.

A hyperbolic tangent function can be expanded as the ratio of the half-difference and
half-sum of two exponential functions in the points x and —x as follows:

e* —e "

tt/mh(x) = m,

)

2.2.2. Liquid State Machine

The liquid state machine (LSM) [23] is a type of reservoir computing that implements
spiking reservoir architecture. The “soup” of a large number of recurrently connected
neurons forms a large variety of non-linear functions. With a sufficient variety of these
non-linear functions, it becomes possible to obtain linear combinations, respectively, to
perform any mathematical operations necessary to achieve a given goal, such as speech
recognition or computer vision. The name comes from an analogy with a stone that has
fallen into a liquid: it creates circles on its surface. Thus, the input (movement of the falling
stone) was translated into a spatiotemporal pattern of fluid movement (circles).
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For LSM, an adaptive exponential integrate-and-fire model was chosen. According
to [24], this model is both biologically accurate and simple enough to potentially show
good results in terms of both accuracy and speed.

The traditional integrate-and-fire model combines linear filtering of input currents
with a strict voltage threshold. Exponential integrate-and-fire neurons allow for the replace-
ment of the strict voltage threshold by a more realistic smooth spike initiation zone, and
the addition of a second variable allows for the inclusion of subthreshold resonances or
adaptation [24]. An integrate-and-fire model with adaptation is defined as:

av
C—=f(V)—w+1 2
dt
where C is the membrane capacitance, w is an adaptation variable, I is the synaptic cur-

rent, V is the membrane potential, and f(V) is a function that characterizes the spiking
mechanism and is taken as a combination of linear and exponential functions:

f(V)=gL(V—Ep) +8LAT€XP(V;TVT); 3)

where g is the leak conductance, E; is the resting potential, At is the slope factor, and
Vr is the threshold potential.
The resulting model is called adaptive exponential integrate-and-fire [24].

2.3. Libraries, Programming Languages, and Hardware

The RCNet library by Old¥ich KoZelsky was chosen for implementing both ESN and LSM.
The mathematical background of the library is taken from the book by Gerstner et al. [25],
summarizing the basics of modern computational and theoretical neuroscience. This library
provides features such as converting analog signals to spikes, which can be used in further
studies of the applicability of spiking neural networks.

One of the main features of the RCNet library is that the reservoir architectures of both
generations of neural networks are built identically, up to the possibility of combining two
generations of neurons in different layers without loss of functionality. In the RCNet library,
input and hidden layers are combined in a single component NeuralPreprocessor, which,
together with ReadoutLayer, form StateMachine, an instance of a complete neural network.
The number of input layer neurons is determined automatically by the length of input data.
The number of hidden layer neurons is defined freely; in our study, it was chosen as the
number from 50 to 250 with the step of 50. The number of output layer neurons is defined
according to the number of data classes.

The programming language used was C#, and the development environment was
Visual Studio 2022. All of the computations were performed using the PC with the follow-
ing configuration.

*  Model: ASUS ROG STRIX G15 G513IH-HN002;
e CPU: AMD Ryzen 7 4800H 8 cores 2.9-4.2 GHz;
¢  GPU: GeForce GTX 1650;

e RAM: DDR4 8 Gb;

*  Storage device: SSD M.2 PCle 512 Gb.

2.4. Datasets
2.4.1. ETU Bearing Dataset

This dataset was created especially for research and development of electric motor
faults diagnosis systems based on the phase currents analysis. It was named after Saint
Petersburg Electrotechnical University (ETU), where the data was collected.

For a long time, the main instrument for diagnosing motor faults was the accelerom-
eter capturing the vibration signals. Vibration signatures of faults are well-recognizable,
even in presence of the background noise. However, the disadvantage of measuring vi-
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bration with accelerometers is the need for additional sensors and signal processing units,
which is not always reasonable or even possible. The authors of [26] first proposed the
idea to consider the rotor of the electric motor as an accelerometer itself, which makes
possible the application of vibration analysis methods for current data without external
sensors. The idea of phase current diagnostics and the relationship between signals from
the accelerometer and current sensors is presented in Figure 6: a mechanical defect can be
detected not only by the accelerometry but also with current measurements as the similar
disturbances are induced in the phase current signals. Theoretically, a single-phase signal
should be sufficient for analysis purposes. The authors of [27] first used this approach to
detect motor bearing faults.

E

accelerometer near bearing

phase A

hase B
E as.e bearing fault
earing shaft

rotor

phase C

Motor currents

disturbance\ :
1 L
O >
AF |
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Figure 6. Ball bearing fault detection by phase currents of the asynchronous motor. An accelerometer
signal is presented for comparison.

The classical bearing fault detection algorithms are based on spectrum analysis. It is
known that different bearing faults induce specific mechanical frequencies in the signal
spectrum. For the rotor frequency Fg, the ball diameter D, the pitch diameter D,, the
number of rolling elements N, and the ball contact angle 5, mechanical frequencies for the

faults will be:

Np Dycosp

F = 7PR(l + D, ) 4)
Fo = %PR(l - Dbgzsﬁ ); 5)
Fa = ekl - (25702 ©)

where Fj is the inner race fault frequency, Fp is the outer race fault frequency, and Fp is the
ball fault frequency.

The commonly used approach of evaluating the frequencies of defects is based on
the representation of vibration as a torque component that generates a chain of frequency
components Fy, in the current signal.
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To perform the analysis of signal with frequencies F,, it is first required to separate
the mechanical characteristic signal from the carrier f, which can be done in different ways,
for example, by bandpass filtering of the signal.

With all of its advantages, phase current analysis possesses its difficulties and limi-
tations. The exact characteristics of the motor as a sensor are unknown, and the current
signals induced from mechanical defects are weak, and they must be detected in the pres-
ence of a powerful component-the supply frequency. Additionally, the motor itself, even in
good condition, generates a wide range of harmonics that must be distinguished from me-
chanical signals. Immovilli et al. [28] conclude that only defects characterized by relatively
low mechanical frequency can be detected in such a way. However, the recent development
of machine learning and neural networks has led to promising results. Wagner and Som-
mer [29] show that phase current analysis by a multilayer perceptron in the feature space
makes it possible not only to recognize bearing faults at different motor rotation speeds
but also to adapt the trained model to conditions different from those where the model
learning was performed.

Figure 7 presents the experimental bench for ETU bearing dataset recording. It includes
a 0.75-kW asynchronous motor (AIR71V4U2) and electromagnetic brake, connected via
the clutch. The bench allows for simulating the nominal state of electric motor operation,
as well as the overload mode. Currents are acquired by the Hall effect sensors LTS 25-NP
with a frequency band of up to 100 kHz. Sensor data is collected through the SCB-68A
analog input/output unit. The acquired signals are transferred to the 16-bit ADC of the NI
PXI-6123 board, where they are digitized with a sampling rate of 10 kS/s. The digitized
signals are processed and recorded into TDMS files using the NI PXI-8106 device and NI
LabVIEW 2020 software.

(b)

Figure 7. The photograph of the experimental test bench (a) and measurement equipment

(b): (1) 0.75 kW electric motor; (2) electromagnetic brake providing the motor load; (3) cabinet
with control and measurement equipment; (4) piezoelectric accelerometer for vibration recording;
(5) driver and amplifier for acceleration measurement; and (6) NI PXI digital processing unit with
PC-like user interface.

Table 1 presents the content of the dataset used for the study. The motor had no load
and ran at a speed of 1498 RPM. The bearing with artificially induced inner race fault was
installed to record data for broken bearing. Each of the 10 recordings lasts for 60 s, and
for the dataset, 50 pieces (each 5 s long) were randomly taken from every phase current
A waveform. At a pre-processing stage, the waveforms were cleared from the supply
frequency and bandpass filtered to leave the frequency content only in the range from 1 Hz
to 260 Hz.

The difficulty of the classification task in this dataset is that the introduced bearing
fault had not noticeably affected the phase currents due to strong mechanical vibrations in
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the electromagnetic brake bearings and inaccurate alignment of the motor and brake axes.
Thus, the collected data present a challenge for classification algorithms.

Table 1. Classes of ETU Bearing Dataset for 1498 RPM.

Number of Number of
Number of If the Class Is Segments of Segments of
Classes Points in Used in This 50,000 Points 50,000 Points
Waveforms Work Length for Length for
Training Testing
Healthy 6,000,000 yes 30 20
Broken 6,000,000 yes 30 20

2.4.2. Bearing Data Center Dataset

The popular dataset by [30] contains ball bearing test data for normal and faulty
bearings. Experiments were conducted using a 2-horse-power reliance electric motor. The
acceleration data was recorded at locations that were near and remote from the motor
bearings. There are ten classes of data: one for normal bearing and nine for three types of
fault (ball defect, inner race defect, and outer race defect) and three degrees of damage-refer
to Table 2. Before feeding the data into the neural network, the waveform is converted into
a spectrogram using short-time Fourier transform (STFT), a technique that is widely used in
signal-processing tasks such as human voice detection and machine pattern recognition [31]
(see Figure 8 for examples and Section 2.5 for deeper explanation).

Normal Inner race defect .014”

-40

-60

Power/frequency (dB/Hz)
Power/frequency (dB/Hz)

-100

1 2 3 4 5 02 04 06 08 1 1.2
Time(s) Time(s)
Outer race defect .014” 0 Ball defect .014”

Power/frequency (dB/Hz)
Power/frequency (dB/Hz)

-100

Time(s)

Figure 8. Spectrograms of an electric motor with normal and faulty bearings with different defects of
0.014" size. For the illustration, drive end accelerometer data recorded in no load condition (rotation
speed 1797 RPM) were used. With no load, the defects were revealed most clearly.

2.4.3. Gearbox Fault Diagnosis Dataset

The last used dataset is [32] available at Kaggle online platform. It includes the
vibration data recorded from SpectraQuest’s Gearbox Fault Diagnostics Simulator and
contains data on healthy and broken tooth conditions. The dataset has been recorded with
the help of four vibration sensors (A1-A4) placed in four different directions (see Table 3).
Load values vary from 0 to 90 percent. For this work, the load value was taken as 90 percent,
and measurements from sensor A2 were used as samples.
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Table 2. Classes of bearing data center dataset for drive end accelerometer and 1797 RPM speed.

Number of Points in If the Class Is Used in Number of Segments Number of Segments

Classes Waveform This Work of Length 24.10? Points  of Length 2490 points
for Training for Testing
Normal 243,938 yes 50 50
B007 244,739 yes 50 50
B014 249,146 yes 50 50
B021 243,938 yes 50 50
IR007 243,938 yes 50 50
IR014 63,788 yes 50 50
IR021 244,339 yes 50 50
ORO007 244,739 yes 50 50
ORO014 245,140 yes 50 50
ORO021 246,342 yes 50 50

In Figure 9, examples of records from the dataset are given. Samples present vibration
waveforms taken from the accelerometer, with values in conventional units. There are no
noticeable signs of a defect in the waveforms, so it is necessary to apply a preliminary
analysis to enable the neural network to find the defect features. The spectrograms of
healthy and broken gearboxes are shown in Figure 10.

15 T T
2 M MI
<
:ﬁ
S 5

1000 2000 3000 4000 5000 6000 7000 8000 9000

[n]

15

T T T

o

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

[n]

10

a, units

Figure 9. Examples of data samples in gearbox fault diagnosis dataset. Recordings from accelerometer A2.

Table 3. Classes of gearbox dataset for load value of 90.

Number of Points in If the Class is Used in Number of Segments Number of Segments

Classes Waveform This Work of Length 1(?,0.00 Point  of Length 10,900 Point
for Training for Testing
Healthy Al 106,752 no - -
Broken A1l 105,728 no - -
Healthy A2 106,752 yes 50 50
Broken A2 105,728 yes 50 50
Healthy A3 106,752 no - -
Broken A3 105,728 no - -
Healthy A4 106,752 no - -
Broken A4 105,728 no - -

2.5. Datasets Pre-Processing

All three datasets consist of long recordings. In order for the classification process to
be effective, not all of the data have to be worked with. The data must be mapped into
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a feature space, the number of which should not exceed the order of 103. As a feature
extraction algorithm, we utilized fast and efficient short-time Fourier transform (STFT).
The amount of short signal segments is equal for every class of data and is 10 samples at
minimum. The full process of a dataset pre-processing is demonstrated in Figure 11.

-10

[
th
Power/frequency (dB/Hz)
[

R
Power/frequency (dBHz)

200 400 600 800 200 400 600 800
t,ms t,ms

(a) (b)

Figure 10. Healthy (a) and broken (b) gearbox vibration spectrograms for load value 90. Visualization
is performed in the assumption of the 10 kS/sec rate.

Examples of the data ready for feeding into the RCNet neural network are represented
as images and are shown in Figures 12 and 13. Every line corresponds to one sample of
the training or testing dataset. Depending on the settings, the repeated patterns of the
spectrogram appear in the dataset. It can be seen that the repetitions are slightly different,
which is a consequence of the variability of the spectrum of the analyzed waveforms.

Does every
class have enough
samples?

Yes

Does current
class have enough
samples?

ﬁaking a random unique segment of data]

:

[ Filtering the values in the segment ]

:

[ Forming an STFT sample ]
[ Specifying sample's class ]

I

[ Forming a .csv file with all of the ]

classes' samples

\V/

Figure 11. Order of operations in forming a dataset.
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Figure 12. ETU bearing dataset. The presented image was obtained using phase current waveforms
fragments from 1498 RPM records of 5-sec length each to build each sample (the line of an image).
On the right, there are the designations of the classes.
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Figure 13. Bearing data center dataset. The presented image was obtained using acceleration
waveform fragments from 1797 RPM records of 0.05-s length to build each sample (line of an image).
On the right, there are the designations of the classes; for details, see Table 2.

2.6. Comparative Evaluation

To compare the effectiveness of neural networks with each other, three parameters
were identified: training time, testing time, and accuracy. Accuracy was calculated as the
ratio of correct network classifications to their total number. These parameters were used
to analyze the speed and accuracy of the networks under test.

The number of neurons in the hidden layer (reservoir) was set as a variable parameter.
Thus, the dependence of the three previously described parameters on the volume of the
reservoir was established.

Hyperparameters, when possible, were chosen to be equal for ESN and LSM. The
main parameters were set as follows: number of training attempts was 5; the number of
epochs within one attempt was 400. Thus, each training attempt had a sufficient number
of epochs to create a potentially optimal neural network, and, due to several training
attempts, the influence of the randomness factor was reduced, as the best configuration
was chosen automatically.
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3. Results and Discussion
3.1. Training Time

As a result of testing, the comparative data obtained are shown in Figure 14 (logarith-
mic axis scale) and Table 4. One may see that a spiking neural network requires an order
longer time to train for a dataset with a small number of classes. However, in the case of a
dataset with a large number of classes (bearing data center), the difference in training time
is times, not orders. Figure 14 shows the training time in the case of different datasets vs.
the number of neurons N. For ESN, this value depends on N almost linearly, but for LSM,
this dependence is exponential (notice the logarithmic scale of Y axis).

Table 4. Comparative training time values.

Bearing Data Bearing Data Gearbox Fault  Gearbox Fault

N;;T;;flgf ET]E:JSEee:::g_ ET]EJSII\alf asrézg— Center— Center— Diagnosis— Diagnosis—
! ! ESN, sec LSM, sec ESN, sec LSM, sec
50 47.353 543.39 114.633 373.073 21.896 180.414
100 48.093 592.891 149.854 628.645 24.776 210.002
150 61.192 680.536 198.986 934.213 27.655 258.775
200 76.618 819.313 243.586 1402.423 32.759 306.776
250 86.761 1023.68 306.056 1985.818 27.649 371.039
ESN LSM
350 : : ; ;
300 |
< 250 <>
o O
& &
Q | o
g 200 g
-~ -~
D >
£ 150 1 8
g g
3 3
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&~ 100 &~
1
i
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0 L | L . J 10?2 . . . [
50 100 150 200 250 50 100 150 200 250
N neurons N neurons

Figure 14. Comparative training time.

3.2. Testing Time

As a result of testing, the comparative data obtained are shown in Figure 15 (loga-
rithmic axis scale) and presented in Table 5. The spiking neural network requires an order
longer time for testing in all cases. In Figure 15, the testing time vs. the number of neurons
N is plotted. One can see that the testing time of ESN increases exponentially with the
growth of N in the case of 2 of 3 datasets, but for LSM these curves are more linear.
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Table 5. Comparative testing time values.

Number of ETU Bearing- ETU Bearing- Bearing Data Bearing Data Gea'rbox F.ault Gea.rbox F.ault
neurons ESN. sec LSM. sec Center— Center— Diagnosis— Diagnosis—
! ! ESN, sec LSM, sec ESN, sec LSM, sec
50 10.512 153.374 10.87 282.399 11.572 156.648
100 11.231 333.218 16.197 536.306 14.684 203.9
150 14.51 301.042 23.358 814.411 16.932 245.516
200 19.453 367.4 33.259 1263.825 18.923 287.556
250 25.124 505.474 51.35 1694.431 20.647 341.287
LSM
50 i T T
45 |
40 | .
10°
35 F
3 30} S
X NG
2 o5) 2 !
2 =
> =
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w n
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15+
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Gearbox Fault Diag.
. . . 102 . I I 1
50 100 150 200 250 50 100 150 200 250
N neurons N neurons
Figure 15. Comparative testing time.
3.3. Accuracy
As a result of testing, the comparative data obtained are shown in Figure 16 and
presented in Table 6. Figure 16 shows the dependence of accuracy on the number of
neurons N. One may see that for both architectures, the increase of N from 50 to 250 usually
leads to an increase of accuracy up to 10%. Nevertheless, in the case of the ETU bearing
dataset and ESN, accuracy does not increase. This may be considered a case of overtraining
as the features presented in the dataset cannot be captured by ESN, in contrast to LSM.
Table 6. Comparative accuracy values.
Number of !ETU ETU Bearing- Bearing Data Bearing Data Gea.rbox F.ault Gea'rbox F?ult
Neurons Bearing-ESN, LSM. Percent Center—ESN, Center- LSM, Diagnosis— Diagnosis—
Percent ’ Percent Percent ESN, Percent LSM, Percent
50 67.5 85 51 100 81 100
100 75 80 50 100 86 100
150 72.5 90 53.8 100 82 100
200 72.5 82.5 60.8 100 90 100
250 65 87.5 55.2 100 89 100




Big Data Cogn. Comput. 2023, 7, 110

150f18

100 : : : 1)) R S Sl GE——

S S
> >
3 3
N S 70+ g
3 3
) Q
) )
< <
60 | g
==& ETU Bearing
+ Bearing Data Center
Gearbox Fault Diag.
50 1 1 1 J
50 100 150 200 250 50 100 150 200 250
N neurons N neurons

Figure 16. Comparative accuracy. Dashed black lines are trend lines.

3.4. Discussion

Generalizing the obtained results, we have found a large superiority of SNN over
ANN in the spectrogram’s recognition accuracy, which is one of the important insights of
our study. For all three considered datasets, SNN provides much fewer errors than ANN.
The use of a small amount of samples with specific patterns for teaching may result in
recognition accuracy of SNN up to 100%, while ANN fails.

With that, we should list some limitations of the approach. First, we cannot gener-
alize our results to all ANNs. We compared SNN to ANN, whose architecture differed
in the dynamics of individual neurons but not in the structure of layers or the type of
learning. Second, we believe that SNN would show their best performance in dedicated
neuromorphic hardware but not in conventional computers. Figures 14 and 15 clearly show
that training and testing times increase dramatically when using SNN, up to 10 times and
higher, in comparison with ANN.

4. Conclusions

In this study, we performed a comparative evaluation of artificial and spiking neuron
networks with reservoir architecture. The research was carried out using three datasets for
solving the following tasks: ball bearing fault detection using an induction motor phase
currents signals (ETU bearing dataset), ball bearing fault detection using signals from an
accelerometer (bearing data center dataset), gearbox broken tooth detection using signals
from the accelerometer (gearbox fault diagnosis dataset). The spectral analysis, namely;,
STFT, was used for feature extrication from the waveforms and the preparation of samples
for learning and tests.

The experimental results show that the second-generation reservoir architecture (ESN)
is significantly inferior to the third-generation (LSM) in terms of accuracy (11-64%). The
training time of the third generation neural network (LSM) exceeds those for ESN by
2.2-10 times, and an operating time by one order (12-25 times) . The brief comparison of
numerical values for ESN and LSM is shown in Table 7.

Additionally, we obtained some observations on the neural network training and test-
ing times and accuracy in the dependence on the number of neurons N. For ESN, training
time linearly grows with an increase of N but testing time grows rather exponentially. For
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LSM, this was found to be converse. Additionally, with growths of N from 50 to 250, the
total increase of accuracy for both architectures was not more than 10%. In the case of the
ETU bearing dataset, the accuracy of ESN even decreased.

Table 7. Comparative peak values.

. . Dataset 2: Bearing Dataset 3: Gearbox
Dataset 1: ETU Bearing Data Center Fault Diagnosis
3rd gen overcame 2nd gen in 20% 64.47% 11.11%
peak accuracy
2nd gen overcame 3.rd gen in 1047.53% 225.45% 723.96%
peak training time
2nd gen overcame 3rd gen in 1359.04% 2497.97% 1253.68%

peak testing time

We may conclude that LSM architecture is able to show exceptional accuracy for fault
detection in electrical and mechanical machines. However, due to its high computational
demands, the use of LSM for real-time diagnostics may be limited. For a wider application
of third-generation neural networks, it is necessary to continue the search for solutions that
would reduce the time of their work and training. One of the promising directions in this
area may be the creation of hardware architectures based on memristive elements.
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The following abbreviations are used in this manuscript:
ANN  Artificial neural network

SNN  Spiking neural network

LIF Leaky integrate-and-fire

ESN  Echo state network

RC Reservoir computing
LSM  Liquid state machine
PC Personal computer

CPU  Central processing unit
GRU  Graphics processing unit
RAM  Random access memory
RMSE Root-mean-square error
SSD Solid-state drive
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