
Citation: Nogales, R.E.; Benalcázar,

M.E. Hand Gesture Recognition

Using Automatic Feature Extraction

and Deep Learning Algorithms with

Memory. Big Data Cogn. Comput.

2023, 7, 102. https://doi.org/

10.3390/bdcc7020102

Academic Editors: Robail Yasrab

and Md Mostafa Kamal Sarker

Received: 23 March 2023

Revised: 5 May 2023

Accepted: 10 May 2023

Published: 23 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Hand Gesture Recognition Using Automatic Feature Extraction
and Deep Learning Algorithms with Memory
Rubén E. Nogales * and Marco E. Benalcázar

Artificial Intelligence and Computer Vision Research Lab, Escuela Politécnica Nacional, Quito 170517, Ecuador;
marco.benalcazar@epn.edu.ec
* Correspondence: ruben.nogales@epn.edu.ec; Tel.: +593-991977675

Abstract: Gesture recognition is widely used to express emotions or to communicate with other
people or machines. Hand gesture recognition is a problem of great interest to researchers because
it is a high-dimensional pattern recognition problem. The high dimensionality of the problem is
directly related to the performance of machine learning models. The dimensionality problem can be
addressed through feature selection and feature extraction. In this sense, the evaluation of a model
with manual feature extraction and automatic feature extraction was proposed. The manual feature
extraction was performed using the statistical functions of central tendency, while the automatic
extraction was performed by means of a CNN and BiLSTM. These features were also evaluated in
classifiers such as Softmax, ANN, and SVM. The best-performing model was the combination of
BiLSTM and ANN (BiLSTM-ANN), with an accuracy of 99.9912%.

Keywords: hand gesture recognition; feature selection; leap motion controller; feature extraction;
recurrent neural network

1. Introduction

THE quality and quantity of data are closely related to the performance and gener-
alization of machine learning models. The quantity of data depends on the nature of the
problem, the technology used to acquire the data, and the availability of the data. In general,
machine learning models tend to perform better when trained on larger amounts of data.
With more data, the model has a greater opportunity to learn the underlying patterns and
relationships in the data, which can lead to better predictions and generalization with new,
unseen data, while data quality means that the data are free of errors, noise, and bias, which
can improve the accuracy and reliability of machine learning models. Furthermore, data
quality is related to how well the features describe the problem [1–3].

In this sense, machine learning models are closely related to the problem of dimension-
ality. This problem arises when many features are included in machine learning models.
The machine learning models can work in a scenario that is close to falling into an overfit-
ting problem. Overfitting occurs when there is a small amount of data and a large number
of features relative to the amount of training data. Furthermore, the including of too many
features can also increase the computational complexity of the model, making it more
difficult to train and use in practice [4–6].

In this case, it is necessary to use dimensionality reduction techniques. The tech-
niques associated with dimensionality reduction are called feature selection and feature
extraction [7]. Feature selection is the selection of the best functions that can represent the
problem. While feature extraction is the process of selecting and transforming the most
relevant and informative features from a dataset. Feature extraction is a critical step in
machine learning models [8]. This is because the quality and relevance of the features can
greatly affect the performance and accuracy of the model. In many cases, the original data
may contain a large number of features that are redundant, noisy, or irrelevant to the task
at hand, which can lead to overfitting and poor generalization performance. It is important

Big Data Cogn. Comput. 2023, 7, 102. https://doi.org/10.3390/bdcc7020102 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7020102
https://doi.org/10.3390/bdcc7020102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-5275-7262
https://doi.org/10.3390/bdcc7020102
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7020102?type=check_update&version=1

Big Data Cogn. Comput. 2023, 7, 102 2 of 14

to carefully select and preprocess the most relevant and informative features for a given
task to avoid these problems. This can involve domain knowledge, statistical analysis,
and data visualization techniques to identify the most important features and discard the
redundant or irrelevant ones. There are two ways to approach the process of obtaining the
best features: firstly, manual feature extraction and, secondly, automatic feature extraction.

Automatic feature extraction is a machine learning technique that involves deep
learning [9]. Automatic feature extraction for hand gesture recognition that involves the Leap
Motion Controller signal could use the CNN or recurrent neural networks (RNN) [5,10]. In
addition, automatic feature extraction for hand gesture recognition can save time and
effort in feature engineering and can potentially discover more informative and complex
features than manual methods. However, it requires large amounts of training data and
computational resources and may be more difficult to interpret and understand than
manual methods.

Manual feature extraction for hand gesture recognition requires domain knowledge
and expertise in signal processing and feature engineering. It can be time-consuming and
labor-intensive and may require iterative experimentation and refinement to identify the
most informative features for a given application. However, it can also be more interpretable
and understandable than automatic feature extraction techniques because the features are
explicitly defined and selected based on human insight and intuition.

Related Works

In this subsection a search in the scientific literature for published work on hand
gesture recognition will be performed. The input data should be spatial positions as
time series retrieved from the Leap Motion Controller. Furthermore, the data should be
evaluated on classifiers such as CNN-ANN, CNN-SVM, BiLSTM-ANN, and BiLSTM-SVM.

In [10] they propose a sequence of images as a time series. They also propose to use
CNN in combination with LSTM because CNN extracts features and LSTM works with
time series as a recurrent neural network.

In [11] the authors use a pre-trained network, such as AlexNet, to extract features and
then use an SVM as a classifier. They also perform dimensionality reduction using PCA.
They developed this work for American Sign Language recognition. In the same sense,
in [12], they use a faster R-CNN, the aim of this study being to segment the video bond
and the static gesture.

In [13], the authors proposed dynamic hand gesture recognition (DHGR) based on
the convolutional neural network (CNN) and long short-term memory (LSTM). The data
were collected using the Leap Motion Controller. They use a dataset that consists of data
extracted from the Leap Motion Controller. The dataset consists of eight gestures: these
are expanded, grab, pinch, tap, clockwise, anticlockwise, swipe left and swipe right, and
named LMDI. Each gesture is performed 10 times and data are collected from 10 users. The
sampling rate is 50 frames per second. The authors mention in the paper that they have a
relative accuracy of 98%. However, there is no evidence that the authors are proposing an
increase in data. This is since deep algorithms are classified as data hungry. In addition,
data from only 10 users with 8 gestures is considered too little data to generalize.

In [14], the authors propose a hand gesture recognition system using data from the
Leap Motion Controller. However, in this work, the authors propose using traditional
machine learning algorithms such as KNN with k = 3. In this sense, the feature extraction
is manual. The features were a set of five normalized distances between each fingertip and
the palm center.

In [15], they present gesture recognition using data from a webcam for gesture control
in a game and use CNN. In [16], they present motion recognition for virtual reality, they
propose a BiLSTM with a fully convolutional network (FCN). In Springer, you can also
find studies using Leap Motion Controller signals for medical cases such as Alzheimer’s
detection using a CNN.

Big Data Cogn. Comput. 2023, 7, 102 3 of 14

In [17], the authors propose a hybrid model for hand gesture recognition using the
Leap Motion Controller. In this model, they first use an LSTM classifier, then a BiLSTM
classifier. Finally, they propose the HBU-LSTM hybrid model. They present an average
recognition rate of 90%. The model is tested on two public datasets, the LeapGestureDB
dataset and the RIT dataset. The LeapGestureDB dataset presents 11 gestures: thumb up,
index left or right, release up or down, grip in or out, index left or right, and hand swipe
left or right. Meanwhile, the RIT dataset presents 12 different gestures: grab, release, one
finger tap, two finger tap, swipe, wipe, capital ‘E’, capital ‘F’, pinch, check mark, number
‘8′, and lowercase ‘e’, with 100 subjects participating.

In [18], the authors propose a new approach to extract features based on chronological
pattern indexing. As a classifier, they use KNN based on Hamming distance. To evaluate
the proposal, they use a RIT dataset and a LeapGestureDB dataset.

In this context, this paper proposes the performing of an evaluation of manual and
automatic feature extraction for the hand gesture recognition problem using data extracted
from the Leap Motion Controller. The manual extraction is performed using statistical
features such as: pulse percentage rate (MYOP), detector log (LD), wavelength (WL),
enhanced wavelength (EWL), difference absolute standard deviation value (DASDV), and
standard deviation (SD), while the automatic features are abstracted by CNN and BiLSTM.
In addition, the extracted features are evaluated on Softmax, ANN, and SVM classifiers.

It is also necessary to explain the difference between classification and recognition
since, in this paper, we propose the evaluating of features in a hand gesture recognition
system. The classification problem is given an observation, the classification algorithm
returns a label, and this label is mapped to a set of predefined labels, finally classifying
the observation to the corresponding class. Meanwhile, the recognition problem is that, in
addition to classifying an observation into a predicted class, the algorithm must be able to
return the time at which the gesture is performed.

The rest of the paper is organized as follows: the methodology section presents
the overview of work, the dataset building, machine learning algorithms, CNN, and
BiLSTM; the experimentation and result section; and finally, the paper presents conclusions
and discussion.

2. Materials and Methods

This section describes the general work overview, building dataset, and machine
learning and deep learning algorithms used.

2.1. General Work Overview

This work uses the spatial positions and directions retrieved by the Leap Motion
Controller (LMC). The LMC represents the position of the fingertips at time t using the ma-

trix Pt =

[
p(x)
(1,t), p(y)

(1,t), p(z)
(1,t) ; . . . ; p(x)

(5,t), p(y)
(5,t), p(z)

(5,t)

](leap)

t
,
[

p(x)
(i,t), p(y)

(i,t), p(z)
(i,t)

]
being the vector

with the spatial positions of the i-th finger with respect to the sensor coordinate axes.
The directions of the fingertips at time t are represented using the matrix:

Dt =

[
d(x)
(1,t), d(y)

(1,t), d(z)
(1,t) ; . . . ; d(x)

(5,t), d(y)
(5,t), d(z)

(5,t)

](leap)

t
,
[
d(x)
(i,t), d(y)

(i,t), d(z)
(i,t)

]
being the vector with

the directions of the i-th finger with respect to the sensor coordinate axes.
As can be seen in the previous paragraphs, each spatial and directional position is

formed by values (X, Y, Z). For this work, we use the data of the tips of each finger. Then,
at each time, t, we obtain two matrices Pt and Dt. The change in the values of the matrices
at the times t1, t1+i, . . . tn characterize the hand gesture. These data, organized in matrix
form, are processed. In essence, they are processed by statistical functions that manually
extract features. They are also processed by deep learning algorithms to extract features
automatically. In both cases, the features obtained are evaluated in classifiers such as ANN
and SVM, as shown in Figure 1.

Big Data Cogn. Comput. 2023, 7, 102 4 of 14

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 4 of 15

automatically. In both cases, the features obtained are evaluated in classifiers such as ANN

and SVM, as shown in Figure 1.

Figure 1. Overview schema about the work.

2.2. Dataset Building

The dataset was built using 56 volunteers from the Universidad Técnica de Ambato,

including students and teachers, women, and men, aged 18 to 46 years old. None of the

volunteers had injuries to the right upper extremity. The device used to acquire the data

was a LMC. We used this device because it is small and cheaper. It is specialized to track

the hand. The LMC has three LED sensors and two depth cameras. Furthermore, this de-

vice retrieves the spatial positions, directions, and velocity of hands and fingers according

to the coordinate axis, whose center is the center of the device [19] Figure 2.

Figure 2. Leap Motion Controller description.

In addition, each user developed five gestures. Figure 3 shows the types of gestures.

These gestures were open hand, fist, wave in, wave out, and pinch. The time defined for

the user to perform the gesture was 5 s. In this sense, the user could perform the hand

movement representing the gesture at any time during the 5 s [20].

Figure 1. Overview schema about the work.

2.2. Dataset Building

The dataset was built using 56 volunteers from the Universidad Técnica de Ambato,
including students and teachers, women, and men, aged 18 to 46 years old. None of the
volunteers had injuries to the right upper extremity. The device used to acquire the data
was a LMC. We used this device because it is small and cheaper. It is specialized to track the
hand. The LMC has three LED sensors and two depth cameras. Furthermore, this device
retrieves the spatial positions, directions, and velocity of hands and fingers according to
the coordinate axis, whose center is the center of the device [19] Figure 2.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 4 of 15

automatically. In both cases, the features obtained are evaluated in classifiers such as ANN

and SVM, as shown in Figure 1.

Figure 1. Overview schema about the work.

2.2. Dataset Building

The dataset was built using 56 volunteers from the Universidad Técnica de Ambato,

including students and teachers, women, and men, aged 18 to 46 years old. None of the

volunteers had injuries to the right upper extremity. The device used to acquire the data

was a LMC. We used this device because it is small and cheaper. It is specialized to track

the hand. The LMC has three LED sensors and two depth cameras. Furthermore, this de-

vice retrieves the spatial positions, directions, and velocity of hands and fingers according

to the coordinate axis, whose center is the center of the device [19] Figure 2.

Figure 2. Leap Motion Controller description.

In addition, each user developed five gestures. Figure 3 shows the types of gestures.

These gestures were open hand, fist, wave in, wave out, and pinch. The time defined for

the user to perform the gesture was 5 s. In this sense, the user could perform the hand

movement representing the gesture at any time during the 5 s [20].

Figure 2. Leap Motion Controller description.

In addition, each user developed five gestures. Figure 3 shows the types of gestures.
These gestures were open hand, fist, wave in, wave out, and pinch. The time defined for
the user to perform the gesture was 5 s. In this sense, the user could perform the hand
movement representing the gesture at any time during the 5 s [20].

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 4 of 15

automatically. In both cases, the features obtained are evaluated in classifiers such as ANN

and SVM, as shown in Figure 1.

Figure 1. Overview schema about the work.

2.2. Dataset Building

The dataset was built using 56 volunteers from the Universidad Técnica de Ambato,

including students and teachers, women, and men, aged 18 to 46 years old. None of the

volunteers had injuries to the right upper extremity. The device used to acquire the data

was a LMC. We used this device because it is small and cheaper. It is specialized to track

the hand. The LMC has three LED sensors and two depth cameras. Furthermore, this de-

vice retrieves the spatial positions, directions, and velocity of hands and fingers according

to the coordinate axis, whose center is the center of the device [19] Figure 2.

Figure 2. Leap Motion Controller description.

In addition, each user developed five gestures. Figure 3 shows the types of gestures.

These gestures were open hand, fist, wave in, wave out, and pinch. The time defined for

the user to perform the gesture was 5 s. In this sense, the user could perform the hand

movement representing the gesture at any time during the 5 s [20].

Figure 3. Types of hand gestures.

Each user repeated each gesture 30 times. In this sense, the dataset comprised
1680 observations of each gesture, with 8400 observations total. The LMC states in its
manufacturer’s information manual that the sampling frequency is 200 Hz/s. However,
since our dataset stored images as well as spatial positions and directions, the performance
of the LMC decreased. For the development of this study, it was decided to sample at
70 Hz, since the perception of motion continuity is presented at 30 frames/sg. However,
we sampled at twice the required rate. These criteria eliminated redundancy in the data. In

Big Data Cogn. Comput. 2023, 7, 102 5 of 14

this context, the dataset was 8400 × 70. Each dataset instance had five fingers and three
channels of X, Y, and Z data [19].

2.3. Convolutional Neural Network

A CNN is a neural network that has several convolutional layers. According to [21], a
convolutional layer is a small logistic regression where the convolution mask determines
the weights, and the input data values determine the constants. The mask can be a matrix
or a vector. It is a matrix when the input data are two-dimensional (2D) and a vector when
the input data are one-dimensional (1D). The output of the convolutional layer can be
the same size as the input data if an artifice called padding is used and the stride is one.
Padding consists of adding values of −1 or 0 outside the size of the input data; the number
of values added depends on the size of the mask. A stride is the number of jumps in which
the convolution is performed. In addition, a CNN has a pooling layer. This layer reduces
the dimensionality of the input data. Finally, a CNN returns a vector that is smaller than
the input data with a good abstraction or representation of the input data. Figure 4 shows
the generic process of a CNN.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 5 of 15

Figure 3. Types of hand gestures.

Each user repeated each gesture 30 times. In this sense, the dataset comprised 1680

observations of each gesture, with 8400 observations total. The LMC states in its manufac-

turer’s information manual that the sampling frequency is 200 Hz/s. However, since our

dataset stored images as well as spatial positions and directions, the performance of the

LMC decreased. For the development of this study, it was decided to sample at 70 Hz,

since the perception of motion continuity is presented at 30 frames/sg. However, we sam-

pled at twice the required rate. These criteria eliminated redundancy in the data. In this

context, the dataset was 8400 × 70. Each dataset instance had five fingers and three chan-

nels of X, Y, and Z data [19].

2.3. Convolutional Neural Network

A CNN is a neural network that has several convolutional layers. According to [21],

a convolutional layer is a small logistic regression where the convolution mask determines

the weights, and the input data values determine the constants. The mask can be a matrix

or a vector. It is a matrix when the input data are two-dimensional (2D) and a vector when

the input data are one-dimensional (1D). The output of the convolutional layer can be the

same size as the input data if an artifice called padding is used and the stride is one. Pad-

ding consists of adding values of −1 or 0 outside the size of the input data; the number of

values added depends on the size of the mask. A stride is the number of jumps in which

the convolution is performed. In addition, a CNN has a pooling layer. This layer reduces

the dimensionality of the input data. Finally, a CNN returns a vector that is smaller than

the input data with a good abstraction or representation of the input data. Figure 4 shows

the generic process of a CNN.

Figure 4. Convolutional neural network.

2.4. Recurrent Neural Networks

Figure 5 shows the recurrent neural network (RNN) architecture. A RNN is designed

to perform prediction or classification based on a sequential dataset where certain attrib-

utes maintain a dependency. These datasets can be, for example, time series or words

within a sentence. In time series, the values of time 𝑡 are inferred from the values of time

𝑡 . In the same sense, the values of time 𝑡 are inferred from the values of time 𝑡. In
this context, an RNN must be able to receive and process inputs at time 𝑡 in the same

order in which they are present at 𝑡 and 𝑡 . However, the input values at different

times may be different. In this sense, a challenge for RNNs is to construct a neural network

with multiple fixed parameters [22].

The types of RNNs are defined by the different architectures that these neural net-

works present. Between the different kinds of RNN, we have long short-term memory

(LSTM) and gated recurrent unit (GRU). There is also a variant of LSTM, a bi-directional

long short-term memory (BiLSTM).

Figure 4. Convolutional neural network.

2.4. Recurrent Neural Networks

Figure 5 shows the recurrent neural network (RNN) architecture. A RNN is designed
to perform prediction or classification based on a sequential dataset where certain attributes
maintain a dependency. These datasets can be, for example, time series or words within
a sentence. In time series, the values of time t are inferred from the values of time tt−1.
In the same sense, the values of time tt+1 are inferred from the values of time t. In this
context, an RNN must be able to receive and process inputs at time t in the same order in
which they are present at tt−1 and tt+1. However, the input values at different times may be
different. In this sense, a challenge for RNNs is to construct a neural network with multiple
fixed parameters [22].

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 6 of 15

Figure 5. Internal LSTM architecture.

RNNs can assume different types of configurations depending on the problem to be

solved. These types of configurations are sequence-to-sequence, sequence-to-target, tar-

get-to-sequence, and target-to-target. The target-to-target configurations are similar to

feed-forward neural networks in that this type of neural network is without memory. The

target-to-sequence configurations correspond to one input in a time instant, and the model

obtains many targets. The network configuration that corresponds to a sequence-to-target

is one that has an input data sequence, and in which the network can predict an output

target. Finally, the sequence-to-sequence configuration corresponds when the input is the

sequence of data where each piece of data is a time instant, and the model forecasts a

sequence of targets a label for each time instant.

3. Experiments

The experiments were carried out on an Alienware computer with six cores and

twelve logical processors of the sixth generation 3.4 GHz Core i7, 32 GB of RAM, and

Windows 10. The design of the experiments was based on the dataset described in the

previous section. In all experiments, we measured the accuracy of testing and recognition

of hand gestures. In addition, during the execution of the experiments, the processing time

in the classification test was measured. Time is an important parameter in the evaluation

of recognition algorithms. This is because these algorithms are used in real-time applica-

tions. Real-time, in the hand gesture recognition problem, consists in obtaining a response

from the algorithm in less than 300 ms after the gesture is executed [23]. In the same con-

text, for all cases of experimentation, training and testing was performed with cross-vali-

dation with a k = 5.

This work was oriented in two approaches. The first was manual feature extraction, and

the second was automatic feature extraction. The manual feature extraction was performed

by combining statistical functions, while the automatic feature extraction was performed

by means of a CNN and a BiLSTM. In the same context, features were evaluated in Soft-

max, ANN, and SVM classifiers.

With respect to manual feature extraction, in this work, we used the following feature

extraction function: pulse percentage rate (MYOP), this function is adjusted by leap mo-

tion controller signal; detector log (LD) is good at estimating the exerted force; wavelength

(WL) can be calculated by simplifying the cumulative length of the waveform summation;

enhanced wavelength (EWL) is an extension of WL; p-value, a value that is used to select

a region of the signal; difference absolute standard deviation value (DASDV) is the square

root of the average of the difference between the squared adjacent values; and standard

deviation (SD). These feature extractions were obtained after applying the sequential fea-

ture selection method. This feature selection method had as input 17 feature extraction

functions. These 17 feature extraction functions were statistical functions of central

Figure 5. Internal LSTM architecture.

Big Data Cogn. Comput. 2023, 7, 102 6 of 14

The types of RNNs are defined by the different architectures that these neural networks
present. Between the different kinds of RNN, we have long short-term memory (LSTM)
and gated recurrent unit (GRU). There is also a variant of LSTM, a bi-directional long
short-term memory (BiLSTM).

RNNs can assume different types of configurations depending on the problem to
be solved. These types of configurations are sequence-to-sequence, sequence-to-target,
target-to-sequence, and target-to-target. The target-to-target configurations are similar to
feed-forward neural networks in that this type of neural network is without memory. The
target-to-sequence configurations correspond to one input in a time instant, and the model
obtains many targets. The network configuration that corresponds to a sequence-to-target
is one that has an input data sequence, and in which the network can predict an output
target. Finally, the sequence-to-sequence configuration corresponds when the input is the
sequence of data where each piece of data is a time instant, and the model forecasts a
sequence of targets a label for each time instant.

3. Experiments

The experiments were carried out on an Alienware computer with six cores and
twelve logical processors of the sixth generation 3.4 GHz Core i7, 32 GB of RAM, and
Windows 10. The design of the experiments was based on the dataset described in the
previous section. In all experiments, we measured the accuracy of testing and recognition
of hand gestures. In addition, during the execution of the experiments, the processing time
in the classification test was measured. Time is an important parameter in the evaluation of
recognition algorithms. This is because these algorithms are used in real-time applications.
Real-time, in the hand gesture recognition problem, consists in obtaining a response from
the algorithm in less than 300 ms after the gesture is executed [23]. In the same context,
for all cases of experimentation, training and testing was performed with cross-validation
with a k = 5.

This work was oriented in two approaches. The first was manual feature extraction, and
the second was automatic feature extraction. The manual feature extraction was performed
by combining statistical functions, while the automatic feature extraction was performed
by means of a CNN and a BiLSTM. In the same context, features were evaluated in Softmax,
ANN, and SVM classifiers.

With respect to manual feature extraction, in this work, we used the following feature
extraction function: pulse percentage rate (MYOP), this function is adjusted by leap motion
controller signal; detector log (LD) is good at estimating the exerted force; wavelength
(WL) can be calculated by simplifying the cumulative length of the waveform summation;
enhanced wavelength (EWL) is an extension of WL; p-value, a value that is used to select a
region of the signal; difference absolute standard deviation value (DASDV) is the square
root of the average of the difference between the squared adjacent values; and standard
deviation (SD). These feature extractions were obtained after applying the sequential
feature selection method. This feature selection method had as input 17 feature extraction
functions. These 17 feature extraction functions were statistical functions of central tendency
that the scientific literature report as the most utilized. This was investigated in greater
depth in [24].

The signal consisting of the spatial positions and directions of the fingers was used for
the experiments. The data of the five fingers were used in the classification and recognition
algorithms. In addition, each of these fingers represented the data of the three channels
X, Y, and Z. Furthermore, we used cross-validation with a k-fold equal to five. Window
splitting was the technique that was used to extract the data and feed them to the classifiers.
The signal was divided into windows of 20 with a step size of 15. Each data window was
fed to the classifier, which returned a label. Finally, we obtained a vector of labels. By a
majority vote, it returned the label that was repeated the highest number of times, while
for recognition, each window was taken and associated with the instant of time in which
the gesture was developed. In this sense, the signal was detected as rest and gesture. This

Big Data Cogn. Comput. 2023, 7, 102 7 of 14

signal was compared with a threshold. This threshold signal was segmented beforehand.
Then, the input signals and the threshold signal were compared and, if the intersection was
greater than τ ≥ 0.25, the gesture was recognized according to ρ = 2x |A∩B|

|A|+|B| , if ρ ≥ τ [25].
Additionally, this paper will report the average time the algorithm took to return a response
after the gesture was executed. This time was measured for each sample in the test dataset.
The clock was started when the sample was given to the classification test algorithm, and
the clock was stopped when the classifier returned a response. Additionally, before giving
the data to the algorithms, the data were mixed randomly. In this context, the algorithms
used were ANN and SVM.

In this work, we used a feed-forward ANN with two hidden layers. The first hidden
layer used ReLU as an activation function with 25 neurons. The second hidden layer
used logsig as an activation function and 15 neurons. The input of ANN was the number
of features according to the number of combinations of feature selection functions. As
optimization function used cross-entropy, a gradient descended as a technic of weights adjusted.
Additionally, ANN used 2000 iterations and a regularization factor of 1.0 × 101 Furthermore,
the SVM classifier needed to set up its hyperparameters as the kernel and scale. In this
work, the kernel was gaussian, and the scale was of order ten. Table 1 presents the results
of evaluating hand gesture testing and recognition using manual feature extraction on the
described ANN and SVM architecture.

Table 1. Average classification testing and recognition for manual feature extraction.

Manual Feature Extraction

Algorithms Classification Testing Average Time of Classification Testing Recognition

ANN 92.936
57 ms

83.227
SVM 91.370 79.863

For automatic feature extraction, we performed hand gesture recognition using the
CNN. The input to the network was a time series of 30 features and 70 observations. The
30 features were composed of 15 features of each finger’s X, Y, and Z spatial positions and
15 directions of the tips of each finger. In this sense, the initial tensor was 30 × 70, and this
tensor was used to feed the CNN with a 1D architecture.

The first convolution block was formed by a first convolution layer consisting of
4 filters of 1 × 3 with a stride of 1. The second layer was a batch normalization layer with
a mean decay of 0.1. The third layer was a leaky ReLU layer with a scale of 0.01. While
the fourth layer was an average pooling layer with a pool size of 5, a stride of 1, and a
padding of 0.

The second convolution block consisted of 8 filters of 1 × 3 and a stride one. The
second layer was a batch normalization layer with a mean decay of 0.1. The third layer was
a leaky ReLU layer with a scale of 0.01, while the fourth layer was an average pooling layer
with a pool size of 5, a stride of 1, and a padding of 0.

The convolution layers were connected to a fully connected layer with 5 resulting
classes. The output of this layer was normalized by a layer normalization layer with
an epsilon of 1 × 10−5. Since it is a multi-class problem, it was connected to a softmax
layer and finally connected to a classification layer. Figure 6 shows the schema of the
CNN classification.

The cost function optimization technique was a stochastic gradient descent with
momentum (sgdm). The CNN had configurable parameters. These parameters tuned the
network to achieve better average accuracy. In this paper, MATLAB was used to design
the CNN architecture. We set parameters such as learn rate schedule = piecewise. This
parameter allowed us to reduce the learning rate during training. This parameter was
associated with learn rate drop factor = 0.2. This parameter was a multiplicative factor
that allowed us to reduce the learning rate every certain number of epochs. In this sense,
learn rate drop period = 1, which meant that the learning rate was updated at the end of

Big Data Cogn. Comput. 2023, 7, 102 8 of 14

each epoch. Similarly, initial learn rate = 1 × 10−4 was the value of the initial learning
rate. The algorithm was trained for 20 epochs, specified by max. epochs = 20. Finally, the
training algorithm grouped the data into mini-batches to evaluate the gradient of the loss
function and update the weights with mini batch size = 32. Furthermore, as deep learning
algorithms need a great amount of data, we used the data augmentation technique. We
added random noise to the original signal, making sure that the signal did not change
shape. Finally, we obtained a dataset three times larger than the original dataset. Table 2
shows the results of the classification of testing and recognition of training a CNN.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 8 of 15

The convolution layers were connected to a fully connected layer with 5 resulting

classes. The output of this layer was normalized by a layer normalization layer with an

epsilon of 1 × 10−5. Since it is a multi-class problem, it was connected to a softmax layer

and finally connected to a classification layer. Figure 6 shows the schema of the CNN clas-

sification.

Figure 6. Schema of automatic feature extraction using CNN and softmax.

The cost function optimization technique was a stochastic gradient descent with mo-

mentum (sgdm). The CNN had configurable parameters. These parameters tuned the net-

work to achieve better average accuracy. In this paper, MATLAB was used to design the

CNN architecture. We set parameters such as learn rate schedule = piecewise. This param-

eter allowed us to reduce the learning rate during training. This parameter was associated

with learn rate drop factor = 0.2. This parameter was a multiplicative factor that allowed

us to reduce the learning rate every certain number of epochs. In this sense, learn rate

drop period = 1, which meant that the learning rate was updated at the end of each epoch.

Similarly, initial learn rate = 1 × 10−4 was the value of the initial learning rate. The algorithm

was trained for 20 epochs, specified by max. epochs = 20. Finally, the training algorithm

grouped the data into mini-batches to evaluate the gradient of the loss function and up-

date the weights with mini batch size = 32. Furthermore, as deep learning algorithms need

a great amount of data, we used the data augmentation technique. We added random

noise to the original signal, making sure that the signal did not change shape. Finally, we

obtained a dataset three times larger than the original dataset. Table 2 shows the results

of the classification of testing and recognition of training a CNN.

Table 2. Average classification testing and recognition for automatic feature extraction using CNN

and softmax as a classifier.

Automatic Feature Extraction

Algorithms Classification Testing Recognition

CNN‐softmax 93.971 88.005

In addition, the layers fully connected layer, layer normalization layer, softmax, and

classification layer were excluded from the model because the particular interest of the

work was to obtain the features abstracted by the convolution blocks. In this sense, we

invaded the CNN architecture once it abstracted the problem and obtained the features

before passing them to the fully connected layer. This gave us a tensor of 8 × 70. This tensor

was flattened, resulting in a feature vector of 560 predictors. This feature vector was fed

to the SVM and ANN classification algorithms. The SVM algorithm was trained with a

Gaussian kernel and a scale of 10. While the architecture of ANN consisted of 1 hidden

layer, this hidden layer had 25 neurons and its activation function was a ReLU function.

Figure 6. Schema of automatic feature extraction using CNN and softmax.

Table 2. Average classification testing and recognition for automatic feature extraction using CNN
and softmax as a classifier.

Automatic Feature Extraction

Algorithms Classification Testing Recognition

CNN-softmax 93.971 88.005

In addition, the layers fully connected layer, layer normalization layer, softmax, and
classification layer were excluded from the model because the particular interest of the
work was to obtain the features abstracted by the convolution blocks. In this sense, we
invaded the CNN architecture once it abstracted the problem and obtained the features
before passing them to the fully connected layer. This gave us a tensor of 8 × 70. This
tensor was flattened, resulting in a feature vector of 560 predictors. This feature vector was
fed to the SVM and ANN classification algorithms. The SVM algorithm was trained with a
Gaussian kernel and a scale of 10. While the architecture of ANN consisted of 1 hidden
layer, this hidden layer had 25 neurons and its activation function was a ReLU function.
The output layer consisted of a softmax layer. Additionally, since the input feature vector
was large, a lambda regularization factor of 2.5 × 101 was defined. Figure 7 presents the
automatic feature extraction scheme using CNN with an ANN and an SVM as classifiers.

Table 3 shows the obtained results of automatic feature extraction with an ANN and
an SVM used as a classifier.

Table 3. Average classification testing for automatic feature extraction using CNN-ANN and CNN-
SVM as classifiers.

Automatic Feature Extraction

Algorithms Classification Testing Average Processing Time

CNN-ANN 99.795
30 msCNN-SVM 99.403

Big Data Cogn. Comput. 2023, 7, 102 9 of 14

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 9 of 15

The output layer consisted of a softmax layer. Additionally, since the input feature vector

was large, a lambda regularization factor of 2.5 × 101 was defined. Figure 7 presents the

automatic feature extraction scheme using CNN with an ANN and an SVM as classifiers.

Figure 7. Schema for classification using ANN and SVM algorithms with automatic feature extrac-

tion by convolution.

Table 3 shows the obtained results of automatic feature extraction with an ANN and

an SVM used as a classifier.

Table 3. Average classification testing for automatic feature extraction using CNN-ANN and CNN-

SVM as classifiers.

Automatic Feature Extraction

Algorithms Classification Testing Average Processing Time

CNN-ANN 99.795
30 ms

CNN-SVM 99.403

In this work, we evaluated an RNN of type BiLSTM sequence-to-sequence. This al-

gorithm was fed with the fingertips’ X, Y, and Z spatial positions and direction values.

The architecture is shown in Figure 8. This algorithm returned a vector of labels, one for

each time point. This vector of labels allowed us to generate the recognition process.

Figure 7. Schema for classification using ANN and SVM algorithms with automatic feature extraction
by convolution.

In this work, we evaluated an RNN of type BiLSTM sequence-to-sequence. This
algorithm was fed with the fingertips’ X, Y, and Z spatial positions and direction values.
The architecture is shown in Figure 8. This algorithm returned a vector of labels, one for
each time point. This vector of labels allowed us to generate the recognition process.

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 10 of 15

Figure 8. Schema for classification using BiLSTM with softmax, ANN, and SVM algorithms with

automatic feature extraction.

The Bilstm has 34 layers, an input sequence layer, 7 convolution layers, 7 normaliza-

tion layers, 7 ReLU layers, 5 pooling layers, 2 dropout layers, 1 flatten layer, 1 Bilstm, 1

fully connected layer, 1 softmax layer, and a classification layer. Figure 8 shows each of

the layers with their configuration parameters. The convolution layers presented a vector

of weights or convolution of 1 × 3 with 8, 16, 32, and 64 filters, respectively. In addition,

all normalization layers had a normalization factor of 0.1. Similarly, the pooling layers

worked with the max function with a pool of 5 and jumps of 1. Furthermore, to avoid

overfitting, the dropout layer was configured with a regularization factor of 1 × 10−4. Fi-

nally, the bilstm layer presented 128 gates. Table 4 shows the classification and recognition

accuracy evaluated in the softmax classifier.

Table 4. Average classification testing and recognition for automatic feature extraction using

BiLSTM and softmax as a classifier.

Automatic Feature Extraction

Algorithms Classification Testing Recognition

BiLSTM‐softmax 95.6161 91.8601

The features automatically generated by BiLSTM were also obtained. These features

were obtained at the output of the BiLSTM layer. These features fed an ANN-based clas-

sifier. In the same way, an SVM-based classifier was fed. The ANN and SVM configura-

tions were exactly the same as those used to train the algorithms described in the previous

experiments. Table 5 shows the training and testing accuracy of BiLSTM-ANN and

BiLSTM-SVM.

Table 5. Average classification testing for automatic feature extraction using BiLSTM-ANN and

BiLSTM-SVM as classifiers.

Figure 8. Schema for classification using BiLSTM with softmax, ANN, and SVM algorithms with
automatic feature extraction.

The Bilstm has 34 layers, an input sequence layer, 7 convolution layers, 7 normalization
layers, 7 ReLU layers, 5 pooling layers, 2 dropout layers, 1 flatten layer, 1 Bilstm, 1 fully
connected layer, 1 softmax layer, and a classification layer. Figure 8 shows each of the
layers with their configuration parameters. The convolution layers presented a vector of
weights or convolution of 1 × 3 with 8, 16, 32, and 64 filters, respectively. In addition, all

Big Data Cogn. Comput. 2023, 7, 102 10 of 14

normalization layers had a normalization factor of 0.1. Similarly, the pooling layers worked
with the max function with a pool of 5 and jumps of 1. Furthermore, to avoid overfitting,
the dropout layer was configured with a regularization factor of 1 × 10−4. Finally, the
bilstm layer presented 128 gates. Table 4 shows the classification and recognition accuracy
evaluated in the softmax classifier.

Table 4. Average classification testing and recognition for automatic feature extraction using BiLSTM
and softmax as a classifier.

Automatic Feature Extraction

Algorithms Classification Testing Recognition

BiLSTM-softmax 95.6161 91.8601

The features automatically generated by BiLSTM were also obtained. These features
were obtained at the output of the BiLSTM layer. These features fed an ANN-based classifier.
In the same way, an SVM-based classifier was fed. The ANN and SVM configurations were
exactly the same as those used to train the algorithms described in the previous experiments.
Table 5 shows the training and testing accuracy of BiLSTM-ANN and BiLSTM-SVM.

Table 5. Average classification testing for automatic feature extraction using BiLSTM-ANN and
BiLSTM-SVM as classifiers.

Automatic Feature Extraction

Classification

Algorithms Training Testing Average Processing Time

BiLSTM-ANN 99.999 99.9912
27 msBiLSTM-SVM 99.999 99.8840

Figure 9 shows a summary of the accuracies obtained from the experiments with
manual and automatic feature extraction. It is grouped by feature extraction methods and
evaluated in classification algorithms such as ANN, SVM, and softmax.

As can be seen in Figure 9, the baseline with 95% confidence is an overlap of the
algorithms. This does not indicate that there was a significant difference. In this context,
we generated a statistic to determine if there were significant differences.

Firstly, a Shapiro–Wilk normality test was performed, which confirmed that the p-value
was less than 0.05. Next, a homogeneity of variances test was performed, which also confirmed
that the p-value was less than 0.05. Finally, an ANOVA was performed to determine if there
were significant differences. Table 6 presents the statistical analysis to determine if there
was a significant difference.

Table 6. Pairwise test to determine the method that has a significant difference.

diff lwr Upr P adj

CNN-BiLSTM −0.1964286 −0.3639679 −0.02888928 0.0205355
Manual-BiLSTM −6.9910714 −7.1654519 −6.81669101 0.0000000
Manual-CNN −6.7946429 −6.9690233 −6.62026243 0.0000000

In order to perform the pairwise analysis, the results of the ANN were filtered since
it was the one that reported the highest accuracy. Furthermore, the hypothesis contrast
statistic shows that there was a significant difference between BiLSTM-ANN and CNN-
ANN, with BiLSTM-ANN being the best. It was also observed that there was a difference
between the automatic feature extraction of the two methods compared to the manual
feature extraction.

Big Data Cogn. Comput. 2023, 7, 102 11 of 14

Big Data Cogn. Comput. 2023, 7, x FOR PEER REVIEW 11 of 15

Automatic Feature Extraction

 Classification

Algorithms Training Testing Average Processing Time

BiLSTM-ANN 99.999 99.9912
27 ms

BiLSTM-SVM 99.999 99.8840

Figure 9 shows a summary of the accuracies obtained from the experiments with

manual and automatic feature extraction. It is grouped by feature extraction methods and

evaluated in classification algorithms such as ANN, SVM, and softmax.

Figure 9. Accuracy of ANN, SVM, and Softmax classifiers with automatic feature extraction by CNN

and BiLSTM. Accuracy of ANN and SVM classifiers with manual feature extraction.

As can be seen in Figure 9, the baseline with 95% confidence is an overlap of the

algorithms. This does not indicate that there was a significant difference. In this context,

we generated a statistic to determine if there were significant differences.

Firstly, a Shapiro–Wilk normality test was performed, which confirmed that the p-

value was less than 0.05. Next, a homogeneity of variances test was performed, which also

confirmed that the p-value was less than 0.05. Finally, an ANOVA was performed to de-

termine if there were significant differences. Table 6 presents the statistical analysis to de-

termine if there was a significant difference.

Figure 9. Accuracy of ANN, SVM, and Softmax classifiers with automatic feature extraction by CNN
and BiLSTM. Accuracy of ANN and SVM classifiers with manual feature extraction.

Finally, Table 7 shows the performance of simple models with traditional algorithms
and the behavior of complex models using traditional machine learning algorithms can
be observed.

Table 7. Summary of the performance of simple and complex models.

Clasification Tetsing Recognition Processing Time

ANN
Manual Feature extraction

92.9360% 83.227%
57 msSVM 91.3700% 79.863%

CNN-softmax

Automatic Feature extraction

93.9710%
88.005% 30 msCNN-ANN 99.7950%

CNN-SVM 99.4030%

BiLSTM-Softmax 95.6161%
91.8601% 27 msBiLSTM-ANN 99.9912%

BiLSTM-SVM 99.8840%

4. Conclusions

This paper analyzes a hand gesture recognition model’s classification test accuracy,
recognition, and processing time. The data used to evaluate the model were acquired by
the LMC. Both accuracy and processing time were measured on a model with manual
feature extraction and a model with automatic feature extraction. Manual feature extraction
was performed by applying statistical functions of central tendency such as MYOP, LD,
WL, EWL, DASDV, and SD. These functions were chosen based on a previous study by
the same authors. Furthermore, keeping the same order of feature extraction functions
was necessary because the combination gives the best results. The application technique

Big Data Cogn. Comput. 2023, 7, 102 12 of 14

for feature extraction was window splitting. In the same sense, two classifiers, ANN
and SVM, were evaluated. The results obtained were 92.936% for ANN and 91.370% for
SVM for testing while, for recognition, they were 83.227% for ANN and 79.863% for SVM.
Additionally, the average classification test time was reported. The test returned 57 ms.
This time was taken over the test set, from when an instance fed the classifier to when a
label was returned. This evaluation showed that the model was running in real-time.

For automatic feature extraction, a CNN and a BiLSTM were used. The CNN was
used to obtain an abstraction of the 1D input problem based on convolutions. The 1D
input feature vector consisted of 2100 features. A total of 516 features were obtained after
automatic feature extraction, which was processed by the convolutional layers of the CNN.
These features fed the classifiers. The classifiers used were Softmax, ANN, and SVM. For
the softmax classifier, the results obtained were 93.971% for the classification test and
88.005% for the recognition while, for the evaluation of the features extracted by the CNN
and classified with an ANN (CNN-ANN), 99.795% accuracy was obtained. In the same
context, the CNN-SVM evaluation reported 99.403% accuracy. The average processing time
reported for the classification test with CNN-ANN and CNN-SVM was 30 ms.

A BiLSTM was used because the data obtained for gesture recognition were a time
series. The configuration of BiLSTM was sequence-to-sequence. This is because the algo-
rithm returned a label for each time point, and this was used for recognition. The BiLSTM
evaluated on a softmax classifier gave a test accuracy of 95.6161% and, for recognition, it
gave 91.8601%. The same features extracted by BiLSTM were evaluated on ANN; BiLSTM-
ANN gives 99.9912% and BiLSTM-SVM gives 99.8840%. Likewise, the processing time in
the classification test for the BiLSTM-ANN algorithm and for BiLSTM-SVM was evaluated,
with an average processing time of 27 ms.

After the evaluation of the models, simple with manual feature extraction and complex
with automatic feature extraction, in terms of the number of parameters and layers that
needed to be adjusted, it was observed that there was no significant difference between
the two complex models evaluated. It was observed that there was a significant difference
between the simple models and the complex models. However, between the two complex
models, CNN-ANN and BiLSTM-ANN, the difference was 0.1962% which was an almost
negligible difference. It is important to understand that the CNN-ANN model is a deep
model with few layers, while the BiLSTM-ANN model is a model with many layers, and
it is also a model with memory. In this sense, when analyzing the CNN-ANN model,
we could think about the portability of hand recognition systems with deep models. In
addition, the response times of these models were less than 300 ms, which allowed us to
conclude that they are models that run in real-time.

Author Contributions: All authors contributed to the study conception and design. Material prepa-
ration, data collection, and analysis were performed by R.E.N. and M.E.B. The first draft of the
manuscript was written by R.E.N. and all authors commented on previous versions of the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The authors have published the hand gesture dataset, the statistical analysis,
and the data obtained from the experiments at the following link. https://utaedu-my.sharepoint.com/:f:
/g/personal/re_nogales_uta_edu_ec/Eq08ii7fupJCnMzRmOeZTBcB7TmA3tntuHSWX87vVk9mJw?
e=qFLwrx (accessed on 22 March 2023).

Acknowledgments: The authors would like to express gratitude to the Escuela Politécnica Nacional
and its doctoral program in computer science for having the best human resources for the develop-
ment of its students. Thanks are also due to the Universidad Técnica de Ambato for providing the
facilities for continuous improvement.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

https://utaedu-my.sharepoint.com/:f:/g/personal/re_nogales_uta_edu_ec/Eq08ii7fupJCnMzRmOeZTBcB7TmA3tntuHSWX87vVk9mJw?e=qFLwrx
https://utaedu-my.sharepoint.com/:f:/g/personal/re_nogales_uta_edu_ec/Eq08ii7fupJCnMzRmOeZTBcB7TmA3tntuHSWX87vVk9mJw?e=qFLwrx
https://utaedu-my.sharepoint.com/:f:/g/personal/re_nogales_uta_edu_ec/Eq08ii7fupJCnMzRmOeZTBcB7TmA3tntuHSWX87vVk9mJw?e=qFLwrx

Big Data Cogn. Comput. 2023, 7, 102 13 of 14

References
1. Kariluoto, A.; Kultanen, J.; Soininen, J.; Pärnänen, A.; Abrahamsson, P. Quality of Data in Machine Learning. In Proceedings of

the 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C), Hainan, China,
6–10 December 2021; pp. 216–221. [CrossRef]

2. Valderrama, C.E.; Marzbanrad, F.; Stroux, L.; Martinez, B.; Hall-Clifford, R.; Liu, C.; Katebi, N.; Rohloff, P.; Clifford, G.D.
Improving the quality of point of care diagnostics with real-time machine learning in low literacy LMIC settings. In Pro-
ceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, Menlo Park and San Jose, CA, USA,
20–22 June 2018. [CrossRef]

3. Alhazmi, K.; Alsumari, W.; Seppo, I.; Podkuiko, L.; Simon, M. Effects of annotation quality on model performance. In Proceedings
of the 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Republic
of Korea, 13–16 April 2021; pp. 63–67. [CrossRef]

4. Kolluri, J.; Kotte, V.K.; Phridviraj, M.S.B.; Razia, S. Using Novel L1 / 4 Regularization Method. IEEE Access. In Proceedings of the
2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli, India, 15–17 July 2020;
pp. 934–938. [CrossRef]

5. Naguri, C.R.; Bunescu, R.C. Recognition of dynamic hand gestures from 3D motion data using LSTM and CNN architectures. In
Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico,
18–21 December 2018; pp. 1130–1133. [CrossRef]

6. Dynamic, A.I.; Warping, T. Author’s Accepted Manuscript An Image-to-Class Dynamic Time Warping Approach for both 3D
Static and Trajectory Hand Gesture Recognition. Pattern Recognit. 2016, 55, 137–147. [CrossRef]

7. Normani, N.; Urru, A.; Abraham, L.; Walsh, M.; Tedesco, S.; Cenedese, A.; Susto, G.A.; O’Flynn, B. “A Machine Learning
Approach for Gesture Recognition with a Lensless Smart Sensor System. In Proceedings of the 2018 IEEE 15th International
Conference on Wearable and Implantable Body Sensor Networks (BSN), Las Vegas, NV, USA, 4–7 March 2018; pp. 4–7.

8. Núñez, J.C.; Cabido, R.; Pantrigo, J.J.; Montemayor, A.S.; Vélez, J.F. Convolutional Neural Networks and Long Short-Term
Memory for skeleton-based human activity and hand gesture recognition. Pattern Recognit. 2018, 76, 80–94. [CrossRef]

9. Shaheen, F.; Verma, B. An ensemble of deep learning architectures for automatic feature extraction. In Proceedings of the 2016
IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016. [CrossRef]

10. Gunawan, M.R.; Djamal, E.C. Spatio-Temporal Approach using CNN-RNN in Hand Gesture Recognition. In Proceedings of the
2021 4th International Conference of Computer and Informatics Engineering (IC2IE), Depok, Indonesia, 14–15 September 2021;
pp. 385–389. [CrossRef]

11. Sahoo, J.P.; Ari, S.; Patra, S.K. Hand gesture recognition using PCA based deep CNN reduced features and SVM classifier. In
Proceedings of the 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, India,
16–18 December 2019; pp. 221–224. [CrossRef]

12. Muchtar, R.A.; Yuniarti, R.; Komarudin, A. Hand Gesture Recognition for Controlling Game Objects Using Two-Stream Faster
Region Convolutional Neural Networks Methods. In Proceedings of the 2022 International Conference on Information Technology
Research and Innovation (ICITRI), Jakarta, Indonesia, 10 November 2022; pp. 59–64. [CrossRef]

13. Ikram, A.; Liu, Y. Skeleton based dynamic hand gesture recognition using LSTM and CNN. In Proceedings of the 2020 2nd
International Conference on Image Processing and Machine Vision, Bangkok, Thailand, 5–7 August 2020; pp. 63–68. [CrossRef]

14. Clark, A.; Moodley, D. A System for a Hand Gesture-Manipulated Virtual Reality Environment. In Proceedings of the Annual
Conference of the South African Institute of Computer Scientists and Information Technologists, Johannesburg, South Africa,
26–28 September 2016; pp. 1–10. [CrossRef]

15. Aggarwal, K.; Arora, A. Hand Gesture Recognition for Real-Time Game Play Using Background Elimination and Deep Convolu-
tion Neural Network. In Virtual and Augmented Reality for Automobile Industry: Innovation Vision and Applications; Hassanien, A.E.,
Gupta, D., Khanna, A., Slowik, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 145–160.

16. Thenmozhi, R.; Aslam, S.M.; Jovith, A.A.; Avudaiappan, T. Modeling of Optimal Bidirectional LSTM Based Human Motion
Recognition for Virtual Reality Environment. In Virtual and Augmented Reality for Automobile Industry: Innovation Vision and
Applications; Hassanien, A.E., Gupta, D., Khanna, A., Slowik, A., Eds.; Springer International Publishing: Cham, Switzerland,
2022; pp. 161–174.

17. Ameur, S.; Khalifa, A.B.; Bouhlel, M.S. A novel hybrid bidirectional unidirectional LSTM network for dynamic hand gesture
recognition with Leap Motion. Entertain. Comput. 2020, 35, 100373. [CrossRef]

18. Ameur, S.; Khalifa, A.B.; Bouhlel, M.S. Chronological pattern indexing: An efficient feature extraction method for hand gesture
recognition with Leap Motion. J. Vis. Commun. Image Represent. 2020, 70, 102842. [CrossRef]

19. Nogales, R.; Benalcazar, M.E.; Toalumbo, B.; Palate, A.; Martinez, R.; Vargas, J. Construction of a Dataset for Static and Dynamic
Hand Tracking Using a Non-invasive Environment. In Advances and Applications in Computer Science, Electronics and Industrial
Engineering: Proceedings of CSEI 2020; Springer: Singapore, 2021; Volume 1307 AISC, pp. 185–197. [CrossRef]

20. Nogales, R.; Benalcázar, M. Real-Time Hand Gesture Recognition Using the Leap Motion Controller and Machine Learning. In
Proceedings of the 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Guayaquil, Ecuador, 11–15
November 2019; pp. 1–6.

21. Xin, R.; Zhang, J.; Shao, Y. Complex network classification with convolutional neural network. Tsinghua Sci. Technol. 2020,
25, 447–457. [CrossRef]

https://doi.org/10.1109/QRS-C55045.2021.00040
https://doi.org/10.1145/3209811.3209815
https://doi.org/10.1109/ICAIIC51459.2021.9415271
https://doi.org/10.1109/ICOEI48184.2020.9142992
https://doi.org/10.1109/ICMLA.2017.00013
https://doi.org/10.1016/j.patcog.2016.01.011
https://doi.org/10.1016/j.patcog.2017.10.033
https://doi.org/10.1109/SSCI.2016.7850047
https://doi.org/10.1109/IC2IE53219.2021.9649108
https://doi.org/10.1109/iSES47678.2019.00056
https://doi.org/10.1109/ICITRI56423.2022.9970207
https://doi.org/10.1145/3421558.3421568
https://doi.org/10.1145/2987491.2987511
https://doi.org/10.1016/j.entcom.2020.100373
https://doi.org/10.1016/j.jvcir.2020.102842
https://doi.org/10.1007/978-981-33-4565-2_12
https://doi.org/10.26599/TST.2019.9010055

Big Data Cogn. Comput. 2023, 7, 102 14 of 14

22. Gouhara, K.; Watanabe, T.; Uchikawa, Y. Learning Process. In Proceedings of the 1991 IEEE International Joint Conference on
Neural Networks, Singapore, 8–21 November 1991; pp. 746–751. [CrossRef]

23. Benalcázar, M.; Motoche, C.; Zea, J. Real-Time Hand Gesture Recognition Using the Myo Armband and Muscle Activity Detection.
In Proceedings of the 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017.
[CrossRef]

24. Nogales, R.; Benalcázar, M. Analysis and evaluation of feature selection and feature extraction methods. under review.
25. Nogales, R.; Benalcázar, M. Real-Time Hand Gesture Recognition Using KNN-DTW and Leap Motion Controller. In Proceedings

of the Information and Communication Technologies: 8th Conference, TICEC 2020, Guayaquil, Ecuador, 25–27 November 2020;
Springer International Publishing: Cham, Switzerland, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ijcnn.1991.170489
https://doi.org/10.1109/ETCM.2017.8247458

	Introduction
	Materials and Methods
	General Work Overview
	Dataset Building
	Convolutional Neural Network
	Recurrent Neural Networks

	Experiments
	Conclusions
	References

