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Abstract: Global models have been developed to tackle the challenge of forecasting sets of series
that are related or share similarities, but they have not been developed for heterogeneous datasets.
Various methods of partitioning by relatedness have been introduced to enhance the similarities of
sets, resulting in improved forecasting accuracy but often at the cost of a reduced sample size, which
could be harmful. To shed light on how the relatedness between series impacts the effectiveness
of global models in real-world demand-forecasting problems, we perform an extensive empirical
study using the M5 competition dataset. We examine cross-learning scenarios driven by the product
hierarchy commonly employed in retail planning to allow global models to capture interdependencies
across products and regions more effectively. Our findings show that global models outperform
state-of-the-art local benchmarks by a considerable margin, indicating that they are not inherently
more limited than local models and can handle unrelated time-series data effectively. The accuracy
of data-partitioning approaches increases as the sizes of the data pools and the models’ complexity
decrease. However, there is a trade-off between data availability and data relatedness. Smaller
data pools lead to increased similarity among time series, making it easier to capture cross-product
and cross-region dependencies, but this comes at the cost of a reduced sample, which may not
be beneficial. Finally, it is worth noting that the successful implementation of global models for
heterogeneous datasets can significantly impact forecasting practice.

Keywords: global models; deep learning; data partitioning; time-series features; model complexity;
intermittent demand; retail

1. Introduction

Sales forecasts at the SKU (stock-keeping unit) level are essential for effective inventory
management, production planning, pricing and promotional strategies, and sales perfor-
mance tracking [1]. SKUs represent individual products or product variants within a larger
product line. By forecasting sales at the SKU level, businesses can optimize their inventory
levels to ensure they have enough stock on hand to meet demand without overstocking
and tying up capital. This helps to reduce inventory holding costs and avoid stockouts,
which can result in lost sales and dissatisfied customers [2]. SKU-level sales forecasts can
also help businesses plan their production schedules and ensure they have enough raw
materials and resources to meet demand. This can help reduce production downtime and
minimize waste and inefficiencies. SKU-level sales forecasts can help businesses determine
the optimal pricing and promotional strategies for each SKU. For example, if a particular
SKU is expected to have high demand, a business may choose to increase the price to maxi-
mize profit margins. Alternatively, if a SKU is not selling as well as expected, a business
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may choose to offer discounts or promotions to stimulate sales. SKU-level sales forecasts
also allow businesses to track the performance of individual products and identify trends
and patterns in consumer behaviour. This can help businesses make data-driven decisions
and adjust their strategies accordingly [3].

Retailers typically offer a vast range of products, from perishable items such as fresh
produce to non-perishable goods such as electronics and clothing. Each product has
distinct demand patterns that may differ based on location, time, day of the week, season,
and promotional events. Forecasting sales for each of these items can be a daunting and
complicated task, particularly since retailers often sell products through multiple channels,
including physical stores, online platforms, mobile apps, and marketplaces, each with
its own set of difficulties and opportunities that must be considered when forecasting
sales. Additionally, in the retail sector, demand forecasting is a regular occurrence, often
performed weekly or daily, to ensure optimal inventory levels. As a result, advanced models
and techniques are necessary to tackle the forecasting problem, which must be automated to
reduce manual intervention, robust to handle various data types and scenarios, and scalable
to accommodate large data volumes and changing business requirements [4].

1.1. Local versus Global Forecasting Models

For decades, the prevailing approach in time-series forecasting has been to view each
time series as a standalone dataset [5,6]. This has led to the use of localized forecasting
techniques that treat each series individually and make predictions based solely on the
statistical patterns observed in that series. The Exponential Smoothing State Space Model
(ETS) [7] and Auto-Regressive Integrated Moving Average Model (ARIMA) [8] are notable
examples of such methods. While these approaches have been widely used and have
produced useful results in many cases, they have their limitations [9]. Currently, businesses
often collect vast amounts of time-series data from similar sources on a regular basis.
For example, retailers may collect data on the sales of thousands of different products,
manufacturers may collect data on machine measurements for predictive maintenance,
and utility companies may gather data on smart-meter readings across many households.
While traditional local forecasting techniques can still be used to make predictions in these
situations, they may not be able to fully exploit the potential for learning patterns across
multiple time series. This has led to a paradigm shift in forecasting, where instead of
treating each individual time series separately, a set of series is seen as a dataset [10].

A global forecasting model (GFM) has the same set of parameters, such as weights in
the case of a neural network [11], for all the time series (all time series in the dataset are
forecast using the same function), in contrast to a local model, which has a unique set of
parameters for each individual series. This means that the global model takes into account
the interdependencies between the variables across the entire dataset, whereas local models
focus only on the statistical properties of each individual series. In the retail industry, it is
possible to capture cross-product and cross-region dependencies, which can result in more-
accurate forecasts across the entire range of products. When we talk about cross-product
dependencies, we are referring to the connection between different products. Alterations
in one product can have an impact on the demand or performance of another product.
For instance, if two products are complementary or substitutable, changes in the sales of one
product can affect the sales of the other. Conversely, the demand for a particular product
may exhibit a similar pattern for all varieties, brands, or packaging options in various
stores. Cross-region dependencies refer to the link between different regions or locations.
Changes in one region, such as fluctuations in economic conditions or weather patterns,
may have an effect on the demand or performance in another region. Global forecasting
models, typically built using advanced machine learning techniques such as deep learning
and artificial neural networks, are gaining popularity, as seen in the works of [12–15],
and have outperformed local models in various prestigious forecasting competitions such
as the M4 [16,17] and the recent M5 [18–20], as well as those held on the Kaggle platform
with a forecasting purpose [21]. In summary, the recent paradigm shift in forecasting
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recognizes that analysing multiple time series together as a dataset can yield significant
improvements in accuracy and provide valuable insights into underlying patterns and
trends. This shift has opened up new opportunities for businesses to leverage machine
learning and other advanced techniques to gain a competitive advantage in forecasting
and decision making. However, there are still many challenges to overcome, such as
the need for skilled data scientists, significant amounts of data and time for training the
models, and sufficient computational and data infrastructures. Additionally, to promote the
adoption and sustained usage of GFMs in practice, it is essential to have expertise within the
organization, along with model transparency and intelligibility, which are crucial attributes
for establishing user trust.

1.2. Relatedness between Time Series

The successful aforementioned studies are based on the assumption that GFMs are ef-
fective because there exists a relationship between the series (all come hypothetically from
similar data-generating processes), enabling the model to recognize complex patterns shared
across them. Nevertheless, none of these studies endeavours to elucidate or establish the char-
acteristics of this relationship. Some research has connected high levels of relatedness between
series with greater similarity in their shapes or patterns and stronger cross-correlation [22,23],
while other studies have suggested that higher relatedness corresponds to greater similarity
in the extracted features of the series being examined [24].

Montero-Manso and Hyndman’s recent work [9] is the first to provide insights into
this area. Their research demonstrates that it is always possible to find a GFM capable
of performing just as well or even better than a set of local statistical benchmarks for
any dataset, regardless of its heterogeneity. This implies that GFMs are not inherently
more restricted than local models and can perform well even if the series are unrelated.
Due to the utilization of more data, global models can be more complex than local ones
(without suffering from overfitting) while still achieving better generalization. Montero-
Manso and Hyndman suggest that the complexity of global models can be achieved by
increasing the memory/order of autoregression, using non-linear/non-parametric methods,
and employing data partitioning. The authors provide empirical evidence of their findings
through the use of real-world datasets.

Hewamalage et al. [25] aimed to investigate the factors that influence GFM perfor-
mance by simulating various datasets with controlled characteristics, including the ho-
mogeneity/heterogeneity of series, pattern complexity, forecasting model complexity,
and series number/length. Their results reveal that relatedness has a strong connection
with other factors, including data availability, data complexity, and the complexity of the
forecasting approach adopted, when it comes to GFM performance. Furthermore, in chal-
lenging forecasting situations, such as those involving short or heterogeneous series and
limited prior knowledge of data patterns, GFMs’ complex non-linear modelling capabilities
make them a competitive option.

Rajapaksha et al. [26] recently introduced a novel local model-agnostic interpretability
approach to address the lack of interpretability in GFMs. The approach employs statistical
forecasting techniques to explain the global model forecast of a specific time series using
interpretable components such as trend, seasonality, coefficients, and other model attributes.
This is achieved by defining a locally defined neighbourhood, which can be done through
either bootstrapping or model fitting. The authors conducted experiments on various
benchmark datasets to evaluate the effectiveness of this framework. They evaluated the
results both quantitatively and qualitatively and found that the two approaches proposed
in the framework provided comprehensible explanations that accurately approximated the
global model forecast.

Nevertheless, the major real-world datasets are, by nature, heterogeneous, including
series that are clearly unrelated, such as the M4 forecasting competition, whose dataset is a
broad mix of unaligned time series across many different domains [25].
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1.3. Model Complexity

Kolmogorov’s theory [27] explains the concept of complexity, which can be technically
described as follows. We begin by establishing a syntax for expressing all computable func-
tions, which could be an enumeration of all Turing machines or a list of syntactically correct
programs in a universal programming language such as Java, Lisp, or C. From there, we
defined the Kolmogorov complexity of a finite binary string (every object can be coded as a
string over a finite alphabet—say, the binary alphabet) as the length of the shortest Turing
machine, Java program, etc., in the chosen syntax. Thus, to each finite string is assigned
a positive integer as its Kolmogorov complexity through this syntax. Ultimately, the Kol-
mogorov complexity of a finite string represents the length of its most-compressed version
and the amount of information (in the form of bits) contained within it. Although Kol-
mogorov complexity is generally believed to be theoretically incomputable [28], recent
research by Cilibrasi and Vitanyi [29] has demonstrated that it can be approximated using
the decompressor of modern real-world compression techniques. This approximation in-
volves determining the length of a minimum and efficient description of an object that can
be produced by a lossless compressor. As a result, to estimate the complexity of our models
in this experiment, we rely on the size of their gzip compressions, which are considered
very efficient and are widely used. If the output file of a model can be compressed to a
very small size, it suggests that the information contained within it is relatively simple and
structured and can be easily described using a small amount of information. This would
indicate that the model is relatively simple. Conversely, if the output file of a model is
difficult to compress, and requires a large amount of storage space, this suggests that the
information contained within it is more complex and is structured in a way that cannot be
easily reduced. This indicates that the model is more complex. It is worth noting that this
approach to measuring algorithmic complexity of models may depend on the data used,
but since all models in our experiment are based on the same data, we do not factor the
data into the compression.

The number of parameters in a model can also be a useful heuristic for measuring
the model’s complexity [30]. Each parameter represents a degree of freedom that the
model has in order to capture patterns in the data. The more parameters a model has,
the more complex its function can be, and the more flexible it is to fit a wide range of
training data patterns. Deep learning models differ structurally from traditional machine
learning models and have significantly more parameters. These models are consistently
over-parametrised, implying that they contain more parameters than the optimal solu-
tions and training samples. Nonetheless, research has demonstrated that extensively
over-parametrised neural networks often show strong generalization capabilities. In fact,
several studies suggest that larger and more-complex networks generally achieve superior
generalization performance [31].

1.4. Key Contributions

Despite all of the aforementioned efforts, there has been a lack of research on how
the relatedness between series impacts the effectiveness of GFMs in real-world demand-
forecasting problems, especially when dealing with challenging conditions such as the
highly lumpy or intermittent data very common in retail. The research conducted in this
study was driven precisely by this motivation: to investigate the cross-learning scenarios
driven by the product hierarchy commonly employed in retail planning that enable global
models to better capture interdependencies across products and regions. We provide the
following contributions that help understand the potential and applicability of global
models in real-world scenarios:

• Our study investigates possible dataset partitioning scenarios, inspired by the hier-
archical aggregation structure of the data, that have the potential to more effectively
capture inter-dependencies across regions and products. To achieve this, we uti-
lize a prominent deep learning forecasting model that has demonstrated success in
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numerous time-series applications due to its ability to extract features from high-
dimensional inputs.

• We evaluate the heterogeneity of the dataset by examining the similarity of the time-
series features that we deem crucial for accurate forecasting. Some features, which are
deliberately crafted, prove especially valuable for intermittent data.

• In order to gauge the complexity of our models during the experiment, we offer two
quantitative indicators: the count of parameters contained within the models and the
compressibility of their output files as determined by Kolmogorov complexity.

• A comprehensive evaluation of the forecast accuracy achieved by the global models of
the various partitioning approaches and local benchmarks using two error measures is
presented. These measures are also used to perform tests on the statistical significance
of any reported differences.

• The empirical results we obtained provide modelling guidelines that are easy for both
retailers and software suppliers to implement regarding the trade-off between data
availability and data relatedness.

The layout of the remainder of this paper is as follows. Section 2 describes our
forecasting framework developed for the evaluation of the cross-learning approaches, and
Section 3 provides the details about its implementation. Section 4 presents and discusses
the results obtained, and Section 5 provides some concluding remarks and promising areas
for further research.

2. Forecasting Models

Due to the impressive accomplishments of deep learning in computer vision, its
implementation has extended to several areas, including natural language processing and
robot control, making it a popular choice in the machine learning domain. Despite being a
significant application of machine learning, the progress of using deep learning in time-
series forecasting has been relatively slower compared to other areas. Moreover, the lack
of a well-defined experimental protocol makes its comparison with other forecasting
methods difficult. Given that deep learning has demonstrated superior performance
compared to other approaches in multiple domains when trained on large datasets, we
were confident that it could be effective in the current context. However, few studies
have focused on deep learning approaches for intermittent demand [32]. Forecasting
intermittent data involves dealing with sequences that have sporadic values [33]. This is a
complex task, as it entails making predictions based on irregular observations over time
and a significant number of zero values. We selected DeepAR, which is an autoregressive
recurrent neural network (RNN) model that was introduced by Amazon in 2018 [23].
DeepAR is a prominent deep learning forecasting model that has demonstrated success in
several time-series applications.

2.1. DeepAR Model

Formally, denoting the value of item i at time t by zi,t, the goal of DeepAR is to predict
the conditional probability P of future sales zi,t0 :T based on past sales zi,1:t0−1 and covariates
xi,1:T , where t0 and T are, respectively, the first and last time points of the future

P(zi,t0 :T |zi,1:t0−1, xi,1:T). (1)

Note that the time index t is relative, i.e., t = 1 may not correspond to the first time
point of the time series. During training, zi,t is available in both time ranges
[1, t0− 1] and [t0, T], known respectively as the conditioning range and the prediction range
(corresponding to the encoder and decoder in a sequence-to-sequence model), but during
inference, zi,t is not available in the prediction range. The network output at time t can be
expressed as

hi,t = h(hi,t−1, zi,t−1, xi,t; Θ), (2)
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where h is a function that is implemented by a multi-layer RNN with long short-term
memory (LSTM) cells [34] parameterised by Θ. The model is autoregressive in the sense
that it uses the sales value at the previous time step zi,t−1 as an input, and recurrent in
the sense that the previous network output hi,t−1 is fed back as an input at the next time
step. During training, given a batch of N items {zi,1:T}i=1,...,N and corresponding covariates
{xi,1:T}i=1,...,N , the model parameters are learned by maximizing the log-likelihood of a
fixed probability distribution as follows

L =
N

∑
i=1

T

∑
t=t0

log l(zi,t|θ(hi,t)), (3)

where θ denotes a linear mapping from the function hi,t to the distribution’s parameters,
while l represents the likelihood of the distribution. Since the encoder model is the same
as the decoder, DeepAR uses all of time range [0, T] to calculate this loss (i.e., t0 = 0
in Equation (3)). DeepAR is designed to predict a 1-step forwarded value. To forecast
multiple future steps in the inference, the model repeatedly generates forecasts for the next
period until the end of the forecast horizon. Initially, the model is fed with past sequences
(t < t0), and the forecast of the first period is generated by drawing samples from the
trained probability distribution. The forecast of the first period is then used as an input to
the model for generating the forecast of the second period, and so on for each subsequent
period. As the forecast is based on past samples from the predicted distribution, the model’s
output is probabilistic and not deterministic, and it represents a distribution of sampled
sequences. This sampling process is advantageous as it generates a probability distribution
of forecasts, which can evaluate the accuracy of the forecasts.

To address the issue of zero-inflated distribution in sales demands, we employed the
negative log-likelihood of the Tweedie distribution for the loss function. The Tweedie
distribution is a family of probability distributions that is characterized by two param-
eters: the power parameter, denoted as p, and the dispersion parameter, denoted as φ.
The probability density function of the Tweedie distribution is defined as:

f (y; µ, φ, p) =
yp−1 exp

(
yµ1−p

φ(1−p)

)
φ(1− p)ypΓ

(
1

1−p

) , y > 0, (4)

where µ is the mean parameter of the distribution, Γ is the gamma function, and p and φ
are positive parameters. When 1 < p < 2, the Tweedie distribution is a compound Poisson–
gamma distribution, which is commonly used to model data with a large number of zeros
and positive skewness. The dispersion parameter φ controls the degree of variability or
heterogeneity in the data. When φ is small, the data are said to be highly variable or
dispersed, while a large value of φ indicates low variability or homogeneity in the data.

Our implementation of the DeepAR models used the PyTorch AI framework [35]
with the DeepAREstimator method from the GluonTS Python library [36].

2.2. Benchmarks

Benchmarks are used to evaluate the performance of forecasting models by provid-
ing a standard against which the models can be compared [37]. By using benchmarks,
researchers and practitioners can objectively assess the forecasting accuracy of different
models and identify which model performs best for a given forecasting task. Comparing
the accuracy of a forecasting model against a benchmark provides a baseline measure of its
performance and helps to identify the added value of the model. The two most-commonly
utilized models for time-series forecasting are Exponential Smoothing and ARIMA (Au-
toRegressive Integrated Moving Average). These benchmark models are good references
for evaluating the forecasting performance of more-complex models. They provide a
baseline for comparison and help to identify whether a more-complex model is justified
based on its added accuracy on the benchmark. The seasonal naïve method can be very
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effective at capturing the seasonal pattern of a time series and is also frequently adopted as
a benchmark to compare against more complex models.

2.2.1. ARIMA Models

The seasonal ARIMA model, denoted as ARIMA(p, d, q) × (P, D, Q)m, can be
written as:

φp(B)ΦP(Bm)(1− B)d(1− Bm)Dηt = c + θq(B)ΘQ(Bm)εt, (5)

φp(B) = 1− φ1B− · · · − φpBp, ΦP(Bm) = 1−Φ1Bm − · · · −ΦPBPm,

θq(B) = 1 + θ1B + · · ·+ θqBq, ΘQ(Bm) = 1 + Θ1Bm + · · ·+ ΘQBQm,

where ηt is the target time series, m is the seasonal period, D and d are the degrees of
seasonal and ordinary differencing, respectively, B is the backward shift operator, φp(B)
and θq(B) are the regular autoregressive and moving average polynomials of orders p and
q, respectively, ΦP(Bm) and ΘQ(Bm) are the seasonal autoregressive and moving-average
polynomials of orders P and Q, respectively, c = µ(1− φ1 − · · · − φp)(1−Φ1 − · · · −ΦP),
where µ is the mean of (1− B)d(1− Bm)Dηt and εt is a white-noise series (i.e., serially un-
correlated with zero mean and constant variance). Stationarity and invertibility conditions
imply that the zeros of the polynomials φp(B), ΦP(Bm), θq(B), and ΘQ(Bm) must all lie
outside of the unit circle. Non-stationary time series can be made stationary by applying
transformations such as logarithms to stabilise the variance and by taking proper degrees of
differencing to stabilise the mean. After specifying values for p, q, P, and Q, the parameters
of the model c, φ1 · · · , φp, θ1, · · · , θq, Φ1. · · · , ΦP, Θ1, · · · , ΘQ can be estimated by maximis-
ing the log likelihood. The Akaike’s Information Criteria (AIC), which is based on the log
likelihood and on a regularization term (that includes the number of parameters in the
model) to compensate for potential overfitting, can be used for determining the values of
p, q, P, and Q. To implement the ARIMA models, we used the AutoARIMA function from
the StatsForecast Python library [38], which is a mirror of Hyndman’s [39] auto.arima
function in the forecast package of the R programming language.

2.2.2. Exponential Smoothing Models

Exponential smoothing models comprise a measurement (or observation) equation
and one or several state equations. The measurement equation describes the relationship
between the time series and its states or components, i.e., the level, the trend, and the
seasonality. The state equations express how the components evolve over time [7,40].
The components can interact with themselves in an additive (A) or multiplicative (M)
manner; an additive damped trend (Ad) or multiplicative damped trend (Md) is also
possible. For each model, an additive or multiplicative error term can be considered. Each
component is updated by the error process, which is the amount of change controlled by the
smoothing parameter. For more details, the reader is referred to [7] and [41]. The existence
of a consistent multiplicative effect on sales led us to use a logarithm transformation and,
consequently, to adopt only linear exponential smoothing models. Table 1 presents the
equations for these models in the state-space modelling framework: yt is the time-series
observation in period t, lt is the local level in period t, bt is the local trend in period t,
st is the local seasonality in period t, and m is the seasonal frequency; α, β, γ, and φ are
the smoothing parameters, and εt is the error term usually assumed to be normally and
independently distributed with mean 0 and variance σ2, i.e., εt ∼ NID(0, σ2). To implement
the exponential smoothing models, we used the AutoETS function from the StatsForecast
Python library [38], which is a mirror of Hyndman’s [7] ets function in the forecast
package of the R programming language.
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Table 1. Linear exponential smoothing models.

Seasonal Component
N A

Tr
en

d
co

m
po

ne
nt

N

yt = lt−1 + εt

lt = lt−1 + αεt

yt = lt−1 + st−m + εt

lt = lt−1 + αεt

st = st−m + γεt

A

yt = lt−1 + bt−1 + εt

lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

yt = lt−1 + bt−1 + st−m + εt

lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

st = st−m + γεt

Ad

yt = lt−1 + φbt−1 + εt

lt = lt−1 + φbt−1 + αεt

bt = φbt−1 + βεt

yt = lt−1 + φbt−1 + st−m + εt

lt = lt−1 + φbt−1 + αεt

bt = φbt−1 + βεt

st = st−m + γεt

2.2.3. Seasonal Naïve

The Seasonal Naïve model is a simple time-series forecasting model that assumes the
future value of a series will be equal to the last observed value from the same season. It can
be formulated as follows:

ŷt = yt−m, (6)

where ŷt is the forecasted value of the series at time t, yt−m is the last observed value from
the same season (m periods ago), and m is the number of periods in a season (e.g., seven
for daily data with weekly seasonality).

3. Empirical Setup

In this section, we present experimental scenarios that use hierarchical aggregation
structure-based data partitioning to investigate quantitatively how the relatedness between
series impacts the effectiveness of GFMs and their complexity.

3.1. Dataset

To ensure the significance of a study’s findings, it is crucial that it can be reproduced
and compared with other relevant studies. Therefore, in this study, we used the M5 com-
petition’s well-established and openly accessible dataset, which is widely recognized as a
benchmark for the development and evaluation of time-series forecasting models. The M5
dataset is a large time-series set consisting of sales data for Walmart stores in the United
States. The dataset was released in 2020 as part of the M5 forecasting competition, which
was organized by University of Nicosia and sponsored by Kaggle [19]. The M5 dataset
includes daily sales data for 3049 products and spans a period of 5 years, from 29 January
2011 to 19 June 2016 (1969 days). The dataset is organized hierarchically, with products
being grouped into states, stores, categories, and departments. The 3049 products were sold
across ten different stores, which were located in three states of the USA: California (CA),
Texas (TX), and Wisconsin (WI). California covers four stores (CA1, CA2, CA3, and CA4),
while Texas and Wisconsin represent three stores each (TX1, TX2, TX3 and WI1, WI2, WI3).
For every store, the products are classified into three main categories: Household, Hobbies,
and Foods. These categories are further divided into specific departments. Specifically,
the Household and Hobbies categories are each subdivided into two departments (House-
hold1, Household2 and Hobbies1, Hobbies2), while the Foods category is subdivided into
three departments (Foods1, Foods2, and Foods3). The main goal of the M5 competition
was to develop accurate sales forecasts for the last 28 days from 23 May 2016 to 19 June
2016. The M5 dataset has become a standard reference due to its challenging properties,
including high dimensionality, hierarchical structure, and intermittent demand patterns
(i.e., many products have zero sales on some days).
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A dataset is commonly regarded as heterogeneous when it comprises time series
that exhibit different patterns, such as seasonality, trend, and cycles, and, conceivably,
distinct types of information [9]. Therefore, heterogeneity is often associated with unre-
latedness [25]. Our examination of the heterogeneity in the M5 dataset and assessment of
the relatedness among its time series followed the methodology proposed by [25], which
involved comparing the similarity of the time-series features. Similar to Kang et al.’s
methodology [42], we applied Principal Component Analysis (PCA) [43] to decrease the
feature dimensionality and depicted the similarity of the time-series features using a 2-D
plot. Furthermore, we also identified a set of critical features that significantly impact the
forecastability of a series, namely:

• Spectral entropy (Entropy) to measure forecastability;
• Strength of trend (Trend) to measure the strength of the trend;
• Strength of seasonality (Seasonality) to measure the strength of the seasonality;
• First-order autocorrelation (ACF1) to measure the first-order autocorrelation;
• Optimal Box–Cox transformation parameter (Box–Cox) to measure the variance stability;
• Ratio between the number of non-zero observations and the total number of observa-

tions (Non-zero demand) to measure the proportion of non-zero demand;
• Ratio between the number of changes between zero and non-zero observations and the

total number of observations (Changes) to measure the proportion of status changes
from zero to non-zero demand.

The R programming language’s feasts package [44] was used to calculate time-series
features using the features function. Additionally, we utilized the PCA function from the
FactoMineR package [45] in the R programming language to conduct principal component
analyses. Figure 1 shows the 2-D plot of the M5 dataset’s time-series features selected after
applying principal component analysis. As expected, the time-series features of the M5
dataset show a scattered distribution in the 2-D space, indicating dissimilarity among them.
This dissimilarity is an indicator of the dataset’s heterogeneity regarding those features,
suggesting that we are examining a broad range of series within a single dataset.

Non−zero demand
Changes

ACF1

Trend

Seasonality

Box−Cox
Entropy

−2

0

2

4

−5 0 5
PC1 (53.8%)
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Figure 1. Time-series features of M5 dataset after applying principal component analysis.
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3.2. Data Pools

The approach used in the presented framework employs partial pooling and is inspired
by the hierarchical structure of Walmart. The multi-level data provided are used to prepare
five distinct levels of data, including total, state, store, category, and department, as well
as four cross-levels of data, including state–category, state–department, store–category,
and store–department. Data pools are then obtained for each level and cross-level. The total
pool comprises the entire M5 dataset, which consists of 30,490 time series. At the state
level, there are three data pools corresponding to the three states (CA, TX, and WI). CA
has 12,196 time series, while TX and WI have 9147 time series each. The store level has ten
data pools, including four stores in California (CA1, CA2, CA3, and CA4) and three stores
in both Texas and Wisconsin (TX1, TX2, TX3, and WI1, WI2, WI3), each with 3049 time
series. The category level has three data pools corresponding to the three distinct categories:
Household, Hobbies, and Foods, each with a different number of time series (10,470 for
Household, 5650 for Hobbies, and 14,370 for Foods). The department level has seven data
pools, consisting of three departments for the Foods category (Foods1, Foods2, and Foods3)
and two departments each for the Household and Hobbies categories. The number of time
series in each department ranges from 1490 to 8230. The state–category cross-level consists
of nine data pools, which result from crossing the three states with the three categories.
For instance, CA–Foods contains the products from the Foods category that are available
in CA stores. The number of time series in the state–category pools ranges from 1695 to
5748. Similarly, the state–department cross-level comprises 21 data pools that arise from
the combination of the three states with the seven departments. For example, CA–Foods3
includes the products from the Foods3 department that are sold in CA stores. The number
of time series in the state–department pools varies from 447 to 3292. The store–category
cross-level has 30 data pools generated by crossing the ten stores with the three categories.
For example, CA3–Foods includes the products from the Foods category that are sold in
CA3 store. The number of time series in the store–category pools ranges from 565 to 1437.
Lastly, the store–department cross-level has 70 data pools that arise from the combination
of the ten stores with the seven departments. For instance, CA3–Foods3 comprises the
products from the Foods3 department that are sold in CA3 store. The number of time series
in the store–department pools ranges from 149 to 823. All this information is provided in
Appendix A.

It is noteworthy that we examined all feasible combinations of partial pools from
the multi-level data available. We expect that as the sizes of the data pools decrease and
the relatedness of the time series within them increases, the global models’ performance
will improve, while their complexity will decrease. It is expected that the cross-learning
scenarios developed, driven by the product hierarchy employed by the retailer, will result
in improved global models that can capture interdependencies among products and regions
more effectively. By utilizing data pools at the state and store levels, it may be possible
to better understand cross-region dependencies and the impact of demographic, cultural,
economic, and weather conditions on demand. Additionally, category and department
data pools have the potential to uncover cross-product dependencies and improve the
relationships between similar and complementary products. This partitioning method is
simpler to implement than the current literature-based clustering methods that rely on
feature extraction to identify similarities among the examined series.

3.3. Model Selection

A deepAR model was trained using all the time series available in each data pool,
regardless of any potential heterogeneity. For instance, a deepAR model was trained for
each state, namely CA, TX, and WI, making a total of three different models for the state
level. Similarly, one deepAR model was trained for each store, resulting in ten distinct
deepAR models for the store level, and so forth. Moreover, in the case of the total pool, only
one deepAR model was trained, using the entire M5 dataset, which consists of 30,490 time
series. As a result, a total of 154 separate deepAR models were trained, with each data pool
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having one model. Although complete pooling, which involves using a single forecasting
model for the entire dataset, can capture interdependencies among products and regions,
partial pooling, which uses a separate forecasting model for each pool, is often better suited
for capturing the unique characteristics of each group.

We followed the structure of the M5 competition, which kept the last 28 days of each
time series as the testing set for out-of-sample evaluation (23 May 2016 to 19 June 2016),
while using the remaining data (29 January 2011 to 22 May 2016, 1941 days) for training
the models. It is essential to find the appropriate model that can perform well during
testing in order to achieve the highest possible level of accuracy. Typically, a validation set
is employed to choose the most-suitable model. The effectiveness of a deep learning model
largely depends on various factors such as hyperparameters and initial weights. To select
the best model, the last 28 days of in-sample training from 25 April 2016 to 22 May 2016 were
used for validation. The hyperparameters and their respective ranges that were utilized in
model selection are presented in Table 2. The Optuna optimization framework [46] was
used to carry out the hyperparameter optimization process by utilizing the Root Mean
Squared Error (RMSE) [4] as the accuracy metric for model selection. For both ARIMA
and ETS local benchmarks, a model was chosen for each time series using the AICc value,
resulting in a total of 30,490 models.

Table 2. DeepAR hyperparameter ranges of values considered in the optimization process.

Hyperparameter Values Considered

Context length 28
Prediction length 28

Number of hidden layers {1, 2, 3, 4}
Hidden size {20, 40, 60, 80, 100, 120, 140}

Learning rate [1× 10−5, 1× 10−1]
Dropout rate [0, 0.2]

Batch size {16, 32, 64, 128}
Scaling True

Number of epochs 100
Number of parallel samples 100

Number of trials 50

3.4. Model Complexity

Data partitioning based on relatedness enhances a dataset’s similarities, making it
easier for a model to identify complex patterns that are shared across time series, thereby
reducing the model’s complexity. Therefore, it is essential to have heuristics that can
estimate the model’s complexity. As discussed in Section 1.3, one way to do this is by
counting the number of parameters (NP) in the model of the data pool and measuring the
size of the gzip compression (CMS-compressed model size) of its output file, expressed in
bytes. Each parameter represents a degree of freedom that the model has to capture patterns
in the data. The more parameters a model has, the more complex and flexible it is to fit a
wide range of training data patterns. A model’s output file can be compressed to a small
size if the information contained within it is relatively simple, indicating that the model is
simple. Conversely, if the output file is difficult to compress and requires significant storage
space, this suggests that the information contained within it is more complex, indicating
that the model is more complex. To obtain the total number of parameters (TNP) for each
partitioning approach, we added up the number of parameters (NP) in the model for each
of its data pools. Similarly, we calculated the total compressed model size (TCMS) in bytes
by summing the sizes of the gzip output file of the model for each of its data pools.

Additionally, it should be noted that the complexity of a learned model is affected not
only by its architecture but also by factors such as the distribution and complexity of the
data, as well as the amount of information available. With this in mind, we also computed



Big Data Cogn. Comput. 2023, 7, 100 12 of 23

the weighted average number of parameters (WNP) and the weighted average compressed
model size (WCMS) per model for each partitioning approach, as shown below.

WNP =
1
ds

n

∑
i=1

psi ×NPi, (7)

WCMS =
1
ds

n

∑
i=1

psi ×CMSi, (8)

where ds is the dataset size (number of time series), n is the number of data pools of the
partitioning approach, and psi is the size of the data pool i.

A conservative estimate for the number of parameters in both ARIMA and ETS local
benchmark models was considered. For ARIMA, we assumed a maximum of 16 param-
eters, based on the highest possible orders for the autoregression and moving average
polynomials (p = 5, q = 5, P = 2, Q = 2) as well as the variance of the residuals. In the
case of ETS, we estimated a maximum of 14 parameters per model by taking into account
the number of smoothing parameters (α, β, γ, and φ), initial states (l0, b0, s0, . . . , s6), and the
variance of the residuals. The TNP for both ARIMA and ETS models was calculated by
multiplying the number of separate models (30,490 in total in this case study) by 16 and
14, respectively. As a result, the WNP per model for ARIMA and ETS are 16 and 14, re-
spectively. To obtain the TCMS in bytes for these benchmark models, the sizes of the gzip
output file for each individual model were added together. The WCMS per model can be
calculated by dividing the TCMS by the number of models.

3.5. Evaluation Metrics

The performance of global and local models was evaluated with respect to two per-
formance measures commonly found in the literature related to forecasting [47], namely
the average of the Mean Absolute Scaled Error (MASE) and the average of the Root Mean
Squared Scaled Error (RMSSE):

MASEi =

1
h

n+h

∑
t=n+1

|zi,t − ẑi,t|

1
n− 1

n

∑
t=2
|zi,t − zi,t−1|

, (9)

RMSSEi =

√√√√√√√√√
1
h

n+h

∑
t=n+1

(zi,t − ẑi,t)
2

1
n− 1

n

∑
t=2

(zi,t − zi,t−1)
2

, (10)

where zi,t is the value of item i at time t, ẑi,t is the corresponding forecast, n is the length of
the in-sample training, and h is the forecast horizon (28 days in this case study). RMSSE
was employed to measure the accuracy of point forecasts in the M5 competition [18]. MASE
and RMSSE are both scale-independent measures that can be used to compare forecasts
across multiple products with different scales and units. This is achieved by scaling the
forecast errors using the Mean Absolute Error (MAE) or Mean Squared Error (MSE) of the
1-step-ahead in-sample naive forecast errors in order to match the absolute or quadratic
loss of the numerator. The use of squared errors favours forecasts that closely follow the
mean of the target series, while the use of absolute errors favours forecasts that closely
follow the median of the target series, thereby focusing on the structure of the data.
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3.6. Statistical Significance of Models’ Differences

The MASE and RMSSE errors can be used to conclude if there are any statistically
significant differences in the models’ performance. First, a Friedman test is performed
to determine if at least one model performs significantly differently. Then, the post-hoc
Nemenyi test [48] is used to group models based on similar performance. Both of these tests
are nonparametric, meaning that the distribution of the performance metric is not a concern.
The post-hoc Nemenyi test ranks the performance of models for each time series and
calculates the mean of those ranks to produce confidence bounds. If the confidence bounds
of different models overlap, then it can be concluded that the models’ performances are not
statistically different. On the other hand, if the confidence bounds do not intersect, then it
can only be determined which method has a higher or lower rank. The nemenyi() function
in the R package tsutils [49] was used to implement these tests, and a significance level
of α = 0.5 was employed for all tests.

4. Results and Discussion

In this section, a comprehensive examination of the results achieved by the DeepAR
global models of the various partitioning approaches and local benchmarks is presented.
In addition to evaluating the forecast accuracy using MASE and RMSSE, a comparison
of the complexities of the models is also provided. The results of the empirical study are
presented in Table 3 and Appendix A. Table 3 includes the percentage difference of each
partitioning approach and local benchmark from DeepAR-Total in terms of MASE and
RMSSE. This comparison aims to evaluate the enhancement achieved by partial pooling
using the hierarchical structure of the data. Furthermore, Appendix A exhibits tables that
show the percentage difference of every data-pool model from the most-outstanding one
within its aggregation level based on MASE and RMSSE. It is important to note that the
results presented in these tables are ranked by MASE in each aggregation level. Table 3
highlights the most-effective data-partitioning approach in boldface within the MASE and
RMSE columns. In the field of forecasting, it is common to use forecast averaging as a
complementary approach to using multiple models. Numerous studies have demonstrated
the effectiveness of averaging the forecasts generated by individual models to enhance the
accuracy of forecasts. Based on this idea, we computed the arithmetic mean of forecasts
generated by the various partitioning approaches that were developed from the available
data pools and denoted this as DeepAR-Comb.

The results presented in Table 3 show that the data-partitioning approaches exhibit
significantly better performance than the state-of-the-art local benchmarks. This finding
suggests that global models are not inherently more limited than local models and can
perform well even on unrelated time-series data. In other words, global models can increase
model complexity compared to local models due to their generality. They can afford to be
more complex than local models because they generalize better.

Overall, the partitioning approaches outperform DeepAR-Total across all levels of
aggregation. DeepAR-State–Department achieves the highest performance according to
MASE, while DeepAR-Comb performs best based on RMSSE (which can be explained by
the use of RMSE as an accuracy metric for model selection).

Generally, the accuracy of data-partitioning approaches improves as the sizes of
the data pools decrease. This can be attributed to the increased similarity among the
time series in smaller pools, making it easier to capture cross-product and cross-region
dependencies. As a result, models with lower complexity are needed when the data
become less heterogeneous. We have observed that both the weighted average number of
parameters (WNP) and the weighted average compressed model size (WCMS) decrease
accordingly per model. As anticipated, the application of ARIMA and ETS to each time
series individually leads to substantially lower WNP and WCMS values than those obtained
with global models used in the data-partitioning approaches. The global models tend to be
over-parameterised, with a higher number of parameters than training samples. In the case



Big Data Cogn. Comput. 2023, 7, 100 14 of 23

of WNP, the difference is four orders of magnitude higher, while in the case of WCMS, it is
three orders higher.

Table 3. Performance of global and local models evaluated with respect to MASE and RMSSE. Model
complexity estimated by TNP (total number of parameters), TCMS (total compressed model size),
WNP (weighted average number of parameters), and WCMS (weighted average compressed model
size), per model.

Forecasting Methods No. of MASE RMSSE TNP WNP TCMS WCMS
Pools (Bytes) (Bytes)

Partitioning approaches

DeepAR-Total 1 0.572 — 0.78245 — 204,603 204,603 776,553 776,553
DeepAR-State 3 0.564 −1.38% 0.78060 −0.24% 580,729 203,571 2,178,371 763,894
DeepAR-Store 10 0.560 −1.98% 0.78241 −0.01% 2,121,070 212,107 7,921,985 792,199

DeepAR-Category 3 0.566 −1.08% 0.78094 −0.19% 678,089 296,591 2,595,707 1,136,317
DeepAR-Department 7 0.559 −2.15% 0.78138 −0.14% 1,294,621 226,679 4,821,767 843,542

DeepAR-State-Category 9 0.553 −3.23% 0.78080 −0.21% 1,340,627 168,267 5,015,850 629,156
DeepAR-State-Department 21 0.551 −3.58% 0.78064 −0.23% 2,419,623 131,080 9,042,778 490,142

DeepAR-Store-Category 30 0.556 −2.74% 0.78340 0.12% 3,708,210 134,902 13,867,558 504,447
DeepAR-Store-Department 70 0.554 −3.11% 0.78421 0.23% 10,310,650 155,903 38,339,800 579,556

DeepAR-Comb 154 0.558 −2.37% 0.77620 −0.80% 22,658,222 192,634 83,740,297 723,979

Local benchmarks

ARIMA 1 0.798 39.51% 0.93436 19.42% 487,840 * 16 * 24,431,329 801
ETS 1 0.808 41.24% 0.92853 18.67% 426,860 * 14 * 24,411,454 801

Seasonal Naïve 1 0.905 58.35% 1.23763 58.17% — — — —
* Conservative estimate of the number of parameters in the models. In ARIMA, they include the orders 0 ≤ p ≤ 5,
0 ≤ q ≤ 5, 0 ≤ P ≤ 2, and 0 ≤ Q ≤ 2; c, if it exists, and the residual’s variance; thus, a maximum of 16 parameters.
In ETS models, they include the smoothing parameters α, β, γ, and φ, the initial states l0, b0, s0, . . . , s6, and the
residual’s variance; thus, a maximum of 14 parameters. The most-effective data-partitioning approaches within
the MASE and RMSE columns are highlighted in boldface.

We have observed that the performance gain of the partitioning approaches over
DeepAR-Total is not significant, with an improvement of less than 1% based on RMSSE
and up to 3.6% based on MASE. It is noteworthy that the DeepAR-State-Department
approach, which uses only 21 data pools, outperforms the other approaches with a higher
number of data pools (namely 30 and 70). This suggests that there is a trade-off between
data availability and relatedness, where data partitioning can improve the relatedness
and similarities between time series by increasing homogeneity. This allows for more-
effective capture of the distinct characteristics of the set but at the cost of a reduced sample
size, which has been proven to be harmful. Therefore, the primary goal should be to
optimize this trade-off. Notably, in addition to achieving the highest forecasting accuracy,
the DeepAR-State-Department approach exhibits the lowest weighted average number of
parameters (WNP) and weighted average compressed model size (WCMS) per model.

By referring to Appendix A, it can be observed that the DeepAR models associated
with the Foods category or Foods1, Foods2, and Foods3 departments generally outperform
the models of other categories/departments (see Figures A3–A8). This could be attributed
to the higher proportion of non-zero demand (ratio between the number of non-zero
observations and the total number of observations) in these data pools. However, it is not
possible to establish a direct relationship between data homogeneity and model accuracy
due to the different sizes of the data pools (with the exception of the Store level) and the
different time series included in each data pool at each aggregation level.

Figure 2 presents the mean rank of the global and local models and the post-hoc
Nemenyi test results at a 5% significance level for MASE and RMSSE errors, enabling a
more-effective comparison of their performance. The forecasts are arranged by their mean
rank, with their respective ranks provided alongside their names. The top-performing
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forecasts are located at the bottom of the plot. The variation in the ranks between Table 3
and Figure 2 can be explained by the distribution of the forecast errors. The mean rank is
non-parametric, making it robust to outlying errors.

Once again, we have observed that global models outperform local benchmarks. Based
on the MASE errors, there is no significant difference between ARIMA and ETS. In addi-
tion, DeepAR-State is grouped together with DeepAR-Store-Category and DeepAR-Store,
while DeepAR-Comb does not differ from DeepAR-Store-Department and DeepAR-State-
Category. The DeepAR-State-Department approach is ranked first and exhibits significant
statistical differences from all other approaches. In a similar manner, there is evidence of sig-
nificant differences among the other four models (DeepAR-Department, DeepAR-Category,
DeepAR-Total, and Seasonal Naïve). With regard to the RMSSE, there is no evidence of
statistically significant differences between DeepAR-Department, DeepAR-Total, DeepAR-
Store, DeepAR-State-Category, DeepAR-Store-Category, and DeepAR-Store-Department.
Likewise, DeepAR-State-Department is grouped together with DeepAR-Category and
DeepAR-State, ranking on top. The remaining four models exhibit significant differences.

MASE

DeepAR−State−Department − 5.53
DeepAR−State−Category − 5.99

DeepAR−Comb − 6.03
DeepAR−Store−Department − 6.10

DeepAR−Store − 6.25
DeepAR−State − 6.32

DeepAR−Store−Category − 6.36
DeepAR−Department − 6.65

DeepAR−Category − 6.85
DeepAR−Total − 7.26

ETS − 8.77
ARIMA − 8.78

Seasonal Naive − 10.11

RMSSE

DeepAR−Comb − 5.18
DeepAR−State − 6.02

DeepAR−State−Department − 6.03
DeepAR−Category − 6.11

DeepAR−Department − 6.19
DeepAR−Total − 6.20

DeepAR−Store − 6.22
DeepAR−State−Category − 6.23
DeepAR−Store−Category − 6.27

DeepAR−Store−Department − 6.28
ETS − 8.70

ARIMA − 9.13
Seasonal Naive − 12.46

Figure 2. Post-hoc Nemenyi test results at a 5% significance level based on MASE and RMSSE.

5. Conclusions

Retailers typically provide a wide range of merchandise, spanning from perishable
products such as fresh produce to non-perishable items such as electronics and clothing.
Each of these products exhibits unique demand patterns that can differ based on several
factors, including location, time, day of the week, season, and promotional events. Fore-
casting sales for each product can be a daunting and complex undertaking, particularly
given that retailers often sell through multiple channels, including physical stores, online
platforms, mobile apps, and marketplaces. Furthermore, in the retail industry, demand
forecasting is a routine task that is frequently conducted on a weekly or daily basis to main-
tain optimal inventory levels. Consequently, advanced models and techniques are required
to address the forecasting challenge. These models must be automated to minimize manual
intervention, robust enough to handle various data types and scenarios, and scalable to
handle vast amounts of data and changing business conditions.

GFMs have shown superior performance to local state-of-the-art benchmarks in presti-
gious forecasting competitions such as the M4 and M5, as well as those on Kaggle with a
forecasting purpose. The success of GFMs is based on the assumption that they are effective
if there is a relationship between the time series in the dataset, but there are no established
guidelines in the literature to define the characteristics of this relationship. Some studies
suggest that higher relatedness between series corresponds to greater similarity in the
extracted features, while others connect high relatedness with stronger cross-correlation
and similarity in shapes or patterns.

To understand how relatedness impacts GFMs’ effectiveness in real-world demand
forecasting, especially in challenging conditions such as highly lumpy or intermittent data,
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we conducted an extensive empirical study using the M5 competition dataset. We explored
cross-learning scenarios driven by the product hierarchy, common in retail planning, to allow
global models to capture interdependencies across products and regions more effectively.

Our findings demonstrate that global models outperform state-of-the-art local bench-
marks by a significant margin, indicating their effectiveness even with unrelated time-series
data. We also conclude that data-partitioning-approach accuracy improves as the sizes of
data pools and model complexity decrease. However, there is a trade-off between data
availability and data relatedness. Smaller data pools increase the similarity among time
series, making it easier to capture cross-product and cross-region dependencies but at the
cost of reduced information, which is not always beneficial.

Lastly, it is worth noting that the successful implementation of GFMs for heterogeneous
datasets will significantly impact forecasting practice in the near future. It would be
intriguing for future research to investigate additional deep learning models and assess
their forecasting performance in comparison to the deepAR model.

Author Contributions: Conceptualization, J.M.O. and P.R.; methodology, J.M.O. and P.R.; software,
J.M.O. and P.R.; validation, J.M.O. and P.R.; formal analysis, J.M.O. and P.R.; investigation, J.M.O. and
P.R.; resources, J.M.O. and P.R.; data curation, J.M.O. and P.R.; writing—original draft preparation,
J.M.O. and P.R.; writing—review and editing, J.M.O. and P.R.; visualization, J.M.O. and P.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analysed in this study. These data can
be found here: https://www.kaggle.com/competitions/m5-forecasting-accuracy/data (accessed on
12 December 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Performance of data-pool models evaluated with respect to MASE and RMSSE. Model
complexity estimated by NP (number of parameters) and CMS (compressed model size).

Aggregation Level Data Pool No. of
Time Series MASE RMSSE

Model Complexity
NP CMS

(Bytes)

Total (1) 30,490 0.572 — 0.7824 — 204,603 776,553

State (3)
CA 12,196 0.545 — 0.7945 5.88% 293,523 1,103,829
TX 9147 0.566 3.78% 0.7504 — 82,603 310,970
WI 9147 0.588 7.81% 0.7923 5.59% 204,603 763,572

Store (10)

CA3 3049 0.442 — 0.7715 7.14% 398,443 1,485,258
TX2 3049 0.484 9.50% 0.7201 — 45,483 172,918
CA1 3049 0.487 10.21% 0.7585 5.33% 409,683 1,526,328
CA2 3049 0.542 22.75% 0.8560 18.87% 204,603 764,226
WI1 3049 0.567 28.34% 0.7949 10.38% 131,683 493,603
WI3 3049 0.594 34.39% 0.7698 6.89% 398,443 1,484,911
TX1 3049 0.595 34.76% 0.7537 4.66% 28,003 107,798
TX3 3049 0.608 37.59% 0.7805 8.39% 33,843 129,442
WI2 3049 0.613 38.73% 0.8221 14.16% 177,363 660,158
CA4 3049 0.673 52.42% 0.7969 10.66% 293,523 1,097,343

Category (3)
Foods 14,370 0.431 — 0.7910 4.80% 556,363 2,135,537

Household 10,470 0.670 55.62% 0.7812 3.50% 74,763 281,886
Hobbies 5650 0.715 65.97% 0.7548 — 46,963 178,284

Department (7)

Foods3 8230 0.404 — 0.8006 7.15% 285,403 1,063,266
Foods1 2160 0.435 7.46% 0.7924 6.05% 8923 36,872
Foods2 3980 0.477 17.86% 0.7815 4.59% 177,363 662,457

Household1 5320 0.496 22.55% 0.7742 3.61% 285,403 1,064,539
Hobbies1 4160 0.655 61.97% 0.7472 — 177,363 663,062

Household2 5150 0.832 105.76% 0.7858 5.16% 285,403 1,051,087
Hobbies2 1490 0.837 106.99% 0.7645 2.32% 74,763 280,484

https://www.kaggle.com/competitions/m5-forecasting-accuracy/data
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Table A1. Cont.

Aggregation Level Data Pool No. of
Time Series MASE RMSSE

Model Complexity
NP CMS

(Bytes)

State-Category (9)

CA-Foods 5748 0.397 — 0.8067 8.97% 45,483 172,929
TX-Foods 4311 0.429 7.98% 0.7508 1.42% 183,523 685,556
WI-Foods 4311 0.433 8.95% 0.8118 9.66% 556,363 2,071,918

TX-Household 3141 0.630 58.72% 0.7487 1.13% 8923 36,834
CA-Household 4188 0.639 61.02% 0.7951 7.40% 46,963 178,210

CA-Hobbies 2260 0.677 70.45% 0.7597 2.62% 28,003 107,975
TX-Hobbies 1695 0.681 71.57% 0.7498 1.28% 16,203 63,598
WI-Hobbies 1695 0.708 78.38% 0.7403 — 45,483 171,773

WI-Household 3141 0.742 86.80% 0.7988 7.90% 409,683 1,527,057

State-Department (21)

CA-Foods3 3292 0.371 — 0.8159 13.73% 131,683 493,415
WI-Foods3 2469 0.413 11.21% 0.8163 13.78% 240,523 895,494
TX-Foods3 2469 0.416 12.07% 0.7505 4.62% 293,523 1,095,219

TX-Household1 1596 0.430 16.02% 0.7174 — 61,203 232,020
TX-Foods1 648 0.431 16.04% 0.7669 6.90% 61,203 228,161
CA-Foods1 864 0.438 18.17% 0.8305 15.77% 33,843 128,967
WI-Foods2 1194 0.442 19.13% 0.8012 11.69% 131,683 491,591
CA-Foods2 1592 0.477 28.53% 0.7814 8.92% 123,803 464,170
WI-Foods1 648 0.483 30.05% 0.7993 11.42% 46,963 177,586
TX-Foods2 1194 0.487 31.22% 0.7438 3.69% 82,603 308,889

CA-Household1 2128 0.514 38.58% 0.7971 11.11% 79,843 300,371
WI-Household1 1596 0.522 40.80% 0.8058 12.32% 293,523 1,093,001

TX-Hobbies1 1248 0.624 68.23% 0.7454 3.90% 240,523 897,953
CA-Hobbies1 1664 0.625 68.42% 0.7532 4.99% 74,763 281,545
WI-Hobbies1 1248 0.688 85.39% 0.7481 4.28% 123,803 457,077

CA-Household2 2060 0.721 94.25% 0.7895 10.05% 5563 24,078
WI-Hobbies2 447 0.780 110.19% 0.7558 5.36% 28,003 105,157
TX-Hobbies2 447 0.787 112.00% 0.7507 4.65% 183,523 674,968

TX-Household2 1545 0.823 121.85% 0.7749 8.02% 46,963 178,373
CA-Hobbies2 596 0.827 122.87% 0.7820 9.01% 12,283 49,220

WI-Household2 1545 0.946 154.98% 0.7888 9.95% 123,803 465,523

Store-Category (30)

CA3-Foods 1437 0.306 — 0.7503 5.25% 82,603 311,464
CA1-Foods 1437 0.356 16.09% 0.7648 7.28% 398,443 1,485,242
TX2-Foods 1437 0.394 28.48% 0.7244 1.61% 82,603 310,872
WI2-Foods 1437 0.410 33.94% 0.8221 15.32% 240,523 894,731
WI1-Foods 1437 0.432 41.13% 0.8241 15.60% 183,523 686,270
WI3-Foods 1437 0.441 43.86% 0.7875 10.47% 177,363 663,389
TX1-Foods 1437 0.465 51.94% 0.7393 3.70% 123,803 463,983
CA2-Foods 1437 0.468 52.91% 0.9308 30.56% 177,363 662,127
TX3-Foods 1437 0.472 54.08% 0.7949 11.51% 28,003 107,712
CA4-Foods 1437 0.518 69.28% 0.8060 13.06% 79,843 301,432

CA3-Household 1047 0.527 72.19% 0.8099 13.61% 8923 36,906
TX2-Household 1047 0.536 75.11% 0.7129 — 7603 31,610
CA1-Household 1047 0.570 86.04% 0.7545 5.84% 204,603 763,936
CA2-Household 1047 0.580 89.37% 0.8127 13.99% 74,763 281,706

TX2-Hobbies 565 0.582 89.89% 0.7273 2.01% 2203 11,317
CA3-Hobbies 565 0.591 92.99% 0.7595 6.54% 5563 23,999
CA1-Hobbies 565 0.607 98.32% 0.7421 4.09% 240,523 896,050
WI1-Hobbies 565 0.626 104.50% 0.7201 1.02% 7603 31,629

TX1-Household 1047 0.650 112.07% 0.7657 7.40% 79,843 300,570
CA2-Hobbies 565 0.656 114.04% 0.7572 6.22% 45,483 172,569

TX3-Household 1047 0.687 124.35% 0.7710 8.16% 177,363 660,928
WI3-Hobbies 565 0.697 127.57% 0.7363 3.29% 177,363 658,671

WI1-Household 1047 0.708 131.05% 0.7951 11.54% 398,443 1,483,148
TX3-Hobbies 565 0.727 137.51% 0.7692 7.90% 74,763 279,746
WI2-Hobbies 565 0.765 149.71% 0.7637 7.12% 123,803 459,177
TX1-Hobbies 565 0.784 155.86% 0.7625 6.96% 43,003 163,129

WI3-Household 1047 0.786 156.67% 0.7902 10.84% 5563 23,963
WI2-Household 1047 0.795 159.65% 0.8440 18.40% 204,603 757,647
CA4-Household 1047 0.796 159.78% 0.7940 11.38% 177,363 663,235

CA4-Hobbies 565 0.840 174.22% 0.7863 10.30% 74,763 280,400
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Table A1. Cont.

Aggregation Level Data Pool No. of
Time Series MASE RMSSE

Model Complexity
NP CMS

(Bytes)

Store-Department (70)

CA3-Foods3 823 0.279 — 0.7704 12.10% 45,483 172,555
CA1-Foods3 823 0.313 12.15% 0.7770 13.07% 79,843 300,564
CA2-Foods1 216 0.349 25.33% 0.8540 24.28% 5,563 23,940
TX2-Foods3 823 0.353 26.53% 0.7329 6.65% 28,003 107,549
CA3-Foods2 398 0.364 30.53% 0.7100 3.32% 398,443 1,484,856
TX2-Foods1 216 0.373 33.83% 0.6884 0.17% 16,203 62,830

TX2-Household1 532 0.385 38.08% 0.6872 — 285,403 1,056,979
CA1-Foods1 216 0.389 39.41% 0.7857 14.33% 177,363 654,331
WI2-Foods2 398 0.389 39.49% 0.8219 19.60% 293,523 1,088,478
WI2-Foods3 823 0.397 42.40% 0.8250 20.06% 20,723 80,547
WI1-Foods3 823 0.398 42.65% 0.8334 21.28% 74,763 281,499
CA3-Foods1 216 0.411 47.28% 0.8176 18.98% 12,283 49,156
WI3-Foods3 823 0.419 50.46% 0.7887 14.77% 74,763 281,689
TX1-Foods3 823 0.423 51.73% 0.7380 7.39% 556,363 2,049,755
CA1-Foods2 398 0.429 53.99% 0.7502 9.17% 293,523 1,094,123
CA2-Foods3 823 0.440 57.69% 0.9460 37.66% 123,803 463,412
CA4-Foods3 823 0.440 57.96% 0.7793 13.41% 28,003 107,727

CA1-Household1 532 0.444 59.14% 0.7654 11.38% 74,763 281,499
TX1-Foods2 398 0.448 60.77% 0.6969 1.42% 183,523 686,853
TX2-Foods2 398 0.450 61.38% 0.7342 6.84% 123,803 460,022
WI3-Foods2 398 0.455 63.39% 0.7636 11.11% 398,443 1,473,384

TX1-Household1 532 0.457 64.12% 0.7341 6.83% 204,603 753,716
WI1-Foods1 216 0.458 64.35% 0.8476 23.34% 5,563 23,949
TX3-Foods3 823 0.461 65.54% 0.8044 17.06% 82,603 310,350

CA3-Household1 532 0.462 65.76% 0.8322 21.11% 79,843 300,324
WI2-Foods1 216 0.467 67.63% 0.7934 15.46% 131,683 484,866

TX3-Household1 532 0.468 67.83% 0.7464 8.61% 46,963 178,155
CA2-Household1 532 0.472 69.24% 0.8001 16.43% 131,683 493,217

Store-Department (70)

TX1-Foods1 216 0.473 69.64% 0.8169 18.87% 2203 11,276
WI1-Foods2 398 0.484 73.55% 0.8310 20.92% 79,843 295,408

WI3-Household1 532 0.497 78.40% 0.7590 10.44% 123,803 463,353
CA3-Hobbies1 416 0.517 85.63% 0.7440 8.27% 177,363 657,200

WI2-Household1 532 0.525 88.37% 0.8555 24.49% 123,803 463,933
WI1-Household1 532 0.531 90.34% 0.8069 17.42% 409,683 1,526,577

CA2-Foods2 398 0.541 94.17% 0.8720 26.89% 177,363 661,534
CA1-Hobbies1 416 0.561 101.24% 0.7425 8.05% 285,403 1,060,472
TX2-Hobbies1 416 0.563 102.04% 0.7317 6.48% 123,803 463,582
CA4-Foods2 398 0.578 107.44% 0.8096 17.81% 204,603 764,210
WI3-Foods1 216 0.580 108.05% 0.8108 17.98% 131,683 489,188

WI1-Hobbies1 416 0.582 108.81% 0.7121 3.62% 177,363 654,673
CA3-Household2 515 0.603 116.32% 0.7873 14.57% 8923 36,765

TX3-Foods1 216 0.608 117.95% 0.8813 28.25% 7603 31,574
TX3-Foods2 398 0.631 126.41% 0.8540 24.27% 204,603 760,157

CA4-Household1 532 0.641 130.07% 0.7840 14.09% 556,363 2,051,567
CA4-Foods1 216 0.642 130.47% 0.8920 29.80% 74,763 281,538

WI3-Hobbies1 416 0.654 134.46% 0.7133 3.79% 177,363 656,325
TX2-Hobbies2 149 0.657 135.81% 0.7151 4.07% 82,603 307,310
CA2-Hobbies1 416 0.661 137.24% 0.7674 11.67% 293,523 1,089,744

CA2-Household2 515 0.688 146.99% 0.8254 20.11% 28,003 106,699
TX1-Hobbies1 416 0.689 147.29% 0.7367 7.21% 45,483 172,532

TX2-Household2 515 0.699 150.63% 0.7345 6.88% 293,523 1,074,703
CA1-Household2 515 0.705 152.98% 0.7429 8.11% 398,443 1,469,196

CA2-Hobbies2 149 0.705 153.09% 0.7310 6.38% 20,723 80,526
CA3-Hobbies2 149 0.738 164.93% 0.7762 12.96% 43,003 163,390
WI2-Hobbies1 416 0.740 165.62% 0.7770 13.07% 123,803 463,481
CA4-Hobbies1 416 0.754 170.61% 0.7634 11.09% 556,363 2,053,276
TX3-Hobbies2 149 0.757 171.68% 0.7266 5.73% 293,523 1,088,079
WI2-Hobbies2 149 0.767 175.25% 0.7197 4.73% 104,043 389,680
WI1-Hobbies2 149 0.769 175.77% 0.7534 9.64% 46,963 177,610
TX3-Hobbies1 416 0.790 183.56% 0.8099 17.85% 61,203 229,601
CA1-Hobbies2 149 0.806 189.04% 0.7656 11.41% 79,843 296,575
WI3-Hobbies2 149 0.838 200.56% 0.8004 16.48% 12,283 49,227

WI1-Household2 515 0.852 205.65% 0.7866 14.46% 61,203 231,415
TX1-Household2 515 0.870 212.20% 0.8052 17.18% 177,363 659,714
TX3-Household2 515 0.889 218.87% 0.7906 15.05% 183,523 676,504
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Table A1. Cont.

Aggregation Level Data Pool No. of
Time Series MASE RMSSE

Model Complexity
NP CMS

(Bytes)

WI3-Household2 515 0.900 222.93% 0.7729 12.47% 104,043 386,689
TX1-Hobbies2 149 0.950 240.72% 0.8169 18.88% 28,003 106,599

CA4-Household2 515 0.983 252.58% 0.8069 17.42% 45,483 172,371
CA4-Hobbies2 149 1.006 260.81% 0.8395 22.16% 79,843 299,234

WI2-Household2 515 1.047 275.49% 0.8084 17.64% 123,803 459,988
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Figure A1. Time-series features of state data pools after applying principal component analysis,
ordered by MASE.
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Figure A2. Time-series features of store data pools after applying principal component analysis,
ordered by MASE.
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Figure A3. Time-series features of category data pools after applying principal component analysis,
ordered by MASE.
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Figure A4. Time-series features of department data pools after applying principal component analysis,
ordered by MASE.
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Figure A5. Time-series features of state–category data pools after applying principal component
analysis, ordered by MASE.
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Figure A6. Time-series features of state–department data pools after applying principal component
analysis, ordered by MASE.
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Figure A7. Time-series features of store–category data pools after applying principal component
analysis, ordered by MASE.
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Figure A8. Time-series features of store–department data pools after applying principal component
analysis, ordered by MASE.
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