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Abstract: Microbiomic analysis of human gut samples is a beneficial tool to examine the general
well-being and various health conditions. The balance of the intestinal flora is important to prevent
chronic gut infections and adiposity, as well as pathological alterations connected to various diseases.
The evaluation of microbiome data based on next-generation sequencing (NGS) is complex and their
interpretation is often challenging and can be ambiguous. Therefore, we developed an innovative
approach for the examination and classification of microbiomic data into healthy and diseased by
visualizing the data as a radial heatmap in order to apply deep learning (DL) image classification.
The differentiation between 674 healthy and 272 type 2 diabetes mellitus (T2D) samples was chosen
as a proof of concept. The residual network with 50 layers (ResNet-50) image classification model
was trained and optimized, providing discrimination with 96% accuracy. Samples from healthy
persons were detected with a specificity of 97% and those from T2D individuals with a sensitivity of
92%. Image classification using DL of NGS microbiome data enables precise discrimination between
healthy and diabetic individuals. In the future, this tool could enable classification of different
diseases and imbalances of the gut microbiome and their causative genera.

Keywords: human intestinal microbiome; next-generation sequencing; type 2 diabetes; deep learning;
image classification

1. Introduction

The analysis of the human microbiome is an innovative field of research, which in
particular investigates the interaction of the intestinal flora and aims to draw conclusions
about the general state of health and causes of diseases. The microbiome is composed of all
microorganisms that colonize multicellular organisms. These are also termed microbiota
and consist of a variety of interacting bacteria, viruses, and fungi. In this context, the
term dysbiosis is associated with an imbalance in the intestinal flora, which can have
various reasons [1].

Research has shown that alterations of the gut microbiome or the presence of certain
pathologically relevant species can be associated with vitamin deficiency [2], obesity [3],
inflammatory bowel diseases [4] and colon cancer [5], and autoimmune [6] and neurodegen-
erative disorders [7]. The microbiome is an intensively researched field, but the relevance
of many factors still remains to be fully explained and it is uncertain to what extent the
intestinal flora is influenced by genetic factors or environmental conditions (diet, sport,
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etc.) [8]. To highlight the importance of this area of research, the European cooperation in
science and technology (COST) action ML4microbiome (statistical and machine learning
techniques in human microbiome studies) was launched, bringing together microbiome re-
searchers and experts in the field of machine learning (ML). The objective is to optimize and
standardize analytical methods and to provide publicly available benchmark datasets [9].

In general, a fast and accurate classification of a disease is essential for its treatment,
and early diagnoses improve the chances of recovery and can help to minimize consequen-
tial damage. Furthermore, this knowledge promotes a better understanding of a disease
and can help to assess its evolution. This can form the basis for the development of effective
drugs or treatment methods and a possible “early warning system” for diseases.

In the case of type 2 diabetes mellitus (T2D), special attention is paid to pre-diabetes—a
precursor of diabetes mellitus disease in which glycemic parameters are already elevated,
but the threshold for T2D has not yet been reached [10]. Early diagnosis and therapy can
delay or prevent the development of possible secondary diseases such as diabetic foot
syndrome, diabetic retinopathy, or diabetic neuropathy; all are severe and potentially lead
to amputation, blindness, or even death [11].

Next-generation sequencing (NGS) technology can identify and quantify the majority
of all bacterial and fungal species from a stool sample [12]. Herein the analysis of the
obtained sequence reads is performed in several steps until biologically normalized counts
per taxonomic level are received. For this purpose, the calculation of the abundances
can be performed using Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt2) [13]. Multi-omics data are known to be complex and
heterogeneous, requiring the application of advanced dimensionality reduction techniques.
Regarding the microbiome, it is a dynamic ecosystem with active host regulation [14],
which significantly increases the complexity in the analysis and interpretation of data.
For example, missing values and large numbers of sparse values have to be handled [15].
One way to address these challenges is to transform the data into a different format of
representation. The creation of a suitable depiction reduces the complexity and simplifies
the analysis situation by making it more compact. This opens up the possibility of imple-
menting other approaches and methods. For example, visualized data representations can
be processed and analyzed using methods from the field of computer vision. Limitations
of tabular data can thus be overcome [15].

For the analysis of complex and large datasets, ML/deep learning (DL) has proven to
be particularly advantageous. Different ML techniques, such as clustering and dimensional-
reduction-based approaches, random forest (RF), regression models, and support vector
machines (SVMs) have been applied to analyze microbiome sequence data. These methods
have been used to investigate the microbial community and their influence on different
phenotypes. Recent research studies are mainly concerned with the identification of disease-
related profiles and risk-prediction biomarkers [16]. For the detection of T2D, regression
models, Bayes classifiers, RF, and SVM were used [17,18]. Based on operational taxo-
nomic units (OTUs), these conventional classification methods achieve a maximum area
under the curve (AUC) of 0.74 with RF [17] and a sensitivity of 75% and specificity of 69%
(AUC = 0.76) with a regression model [18]. DL techniques as recurrent neural networks
were used to investigate temporal dependencies from long-term datasets for the prediction
of food allergies, nutrition, and diseases. Autoencoders were applied for dimensionality
reduction to create latent representations that improve prediction accuracies [19]. Re-
searchers classified colorectal cancer (CRC) using the OTU table and deep neural networks
with a sensitivity of 88% and a specificity of 98% [20]. DL image recognition can also
contribute to the diagnosis, and the application of a residual network (ResNet) [21] to
microscopic images showed an accuracy of 80%, a sensitivity of 87%, and a specificity of
83% [22]. In the field of image recognition, DL convolutional neural networks (CNNs)
are characterized by accuracy, robust deployment, and generalization potential [23,24].
Furthermore, several research efforts are attempting to apply the potential and advantages
of these methods to non-image data. Gene expression and microbiome sequence data have
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been visualized using different methods, and CNNs have been used to classify phenotypes
and diseases. Reiman et al. generated phylogenetic and taxonomic trees of microbiome
data and transformed them into matrices [25,26]. These could be classified as images to
predict phenotypes of origin such as skin, mouth, and gut. To classify T2D, liver cirrhosis
(LC), obesity, and CRC, researchers have used taxonomic representations [27], OTU cluster-
ing [17], colormaps [28], and phylogenetic trees [29]. The CNNs outperform conventional
ML techniques such as RF or SVM, but still achieve moderate values for T2D prediction,
such as maximum AUC values of 0.81 [27], 0.67 [29], and 0.75 [17], and an accuracy of
0.68 [28]. Other researchers transformed gene expression data into feature matrices or
heatmaps to predict cancer, lymphoma, and Parkinson’s disease [30,31].

State-of-the-art DL models comprise the family of ResNets [21] that have been used for
many problems and datasets (e.g., ImageNet [32], Modified National Institute of Standards
and Technology (MNIST) database [33], and Canadian Institute For Advanced Research
(CIFAR) dataset [34]). ResNet models solved the degradation problem originating from
vanishing gradients by the introduction of residual blocks that allow skipping of certain lay-
ers and contain non-linearities (ReLU—rectifier linear units). Thereby, ResNet offers good
performance with a large number of layers and reasonable training efforts. Furthermore,
in comparison to other network architectures (e.g., GoogLeNet [35] or visual geometry
group (VGG) [36]), ResNet generates a higher classification accuracy [24] and can also
serve as a backbone for advanced image recognition tasks (e.g., object detection [37,38] or
image segmentation [39,40]). Research effort has been made to use the ResNet model for
taxonomic representations of sequenced microbiome datasets to classify T2D, CRC, and LC.
The drawbacks of this approach are overfitting and the detrimental influence of ImageNet
pretrained weights [27]. Michel-Mata et al. tried to use ResNet to predict microbiome
compositions from different communities, but their concept suffered from restrictions of the
dataset [41]. Consequently, neither the visualization or DL CNN approaches are capable of
predicting T2D from microbiome data with satisfying accuracy, sensitivity, and specificity;
nor has ResNet been successfully used in this context.

An important consideration is that due to the lack of standards, the characteristics and
quality of microbiome data in publicly available databases vary. This is caused not only
by different experimental conditions and sample preparation factors, but also by different
methods of data preprocessing, such as sequence filtering, clustering, and taxonomic
assignment, as well as other methods and tools used in bioinformatic pipelines. Moreover,
the integration of relevant metadata such as gender, age, nutrition, lifestyle, and other
factors that are critical for obtaining meaningful information from microbiome studies is
difficult due to the lack of detailed and structured metadata in public data resources [16].

The aim of this research work was to develop an appropriate visualization technique
for microbiome sequence data that enables the use of DL image recognition to analyze their
characteristics. For this purpose, the DL model ResNet was trained and optimized with
the visualized data to enable accurate classification between healthy and sick individuals.
In this context, the disease T2D was selected as a proof-of-concept. The results were
evaluated by determining accuracy, specificity, and sensitivity. Different visualizations of
the microbiome data at phylum, class, and genus levels were explored to assess robustness
and generalization potential.

This work is structured as follows: Section 2 describes the NGS methods used to
generate the microbiome dataset and its characteristics, the applied visualization techniques,
and the parameters of the DL image classification model ResNet. Section 3 presents and
evaluates the classification results for all visualizations. Section 4 discusses the results in
the context of previous research and suggests approaches for further investigation.

2. Materials and Methods
2.1. Sample Preparation and NGS Data Processing

A detailed outline of the sample preparation, NGS, and processing of the sequence
reads follows Siptroth et al. [42]. Stool samples from customers of BIOMES NGS GmbH
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served as a source for microbiome data and were collected from self-tests for the analysis
of the intestinal flora. These tests are not a diagnostic product under medical surveillance.
Only data for which the study participants have declared their agreement to scientific
research were used. Samples were stored frozen until lysis and DNA extraction, and library
preparation for sequencing on Illumina MiSeq was performed. Processing of the bacterial
16S ribosomal DNA sequence reads started by filtering of the determined paired-end reads
followed by the clustering of the reference sequences according to their similarity using
Cluster Database at High Identity with Tolerance (CD-HIT) [43,44]. The calculation of the
biologically normalized counts was conducted using the PICRUSt2 pipeline.

2.2. Dataset and Study Group

The dataset contains more than 29,000 samples including microbiome profiles and
associated individual lifestyle data that include information on age, body mass index (BMI),
diet, and other characteristics (details in Siptroth et al. [42]). These lifestyle data are self-
reported by the study participants in a questionnaire, the results of which are provided by
BIOMES NGS GmbH. The microbiome profiles contain relative counts per taxonomic level
(phylum to species). The inclusion criterion for all participants for this research was an
age between 18 and 80 years. For classification into the selected groups ‘healthy’ and ‘T2D’
the main parameter was the self-report of a subject as a type 2 diabetes mellitus patient.
In the healthy group, exclusion criteria were a BMI lower than 18.5 or higher than 27.5,
or any known diseases, gastrointestinal complaints, gluten intolerances, medication, or
probiotics intake within the last three months. Further exclusion criteria were daily alcohol
consumption, a well-being score lower than 4 (out of 10), or a health score lower than 6
(out of 10). This narrowed down the number of eligible samples to 674 for the healthy
group and 272 for the T2D group. Table 1 lists the age, sex, and BMI parameters for the two
study groups.

Table 1. Distribution of the age, sex, and body mass index (BMI) parameters for the healthy and type
2 diabetes mellitus (T2D) groups.

Study Group Age [Years] Women/Men/Other BMI [kg/m2]

healthy 42.55 ± 12.12 340/318/16 23.13 ± 2.24
T2D 59.71 ± 12.27 143/127/2 31.05 ± 6.38

2.3. Visualization Methods

In order to perform image classification, the obtained relative counts of all microbial
genera in the NGS data were transformed into another form of representation. Different
visualization methods (t-distributed stochastic neighbor embedding (t-SNE), taxonomic
trees and graphs, and histograms and stacked histograms) were evaluated. On the one hand
the represented formats were basically not suitable for DL image classification because
visualizations at the sample level were not useful (t-SNE), scaling was difficult due to
very small and large values and non-uniform image sizes (histogram), or the resulting
representations were just too wide (taxonomic trees and graphs). On the other hand, no
classification success could be achieved (stacked histogram) mainly because of the lack of
features. A heatmap visualization implemented by the Python library seaborn [45] was
chosen to display the data, showing the relative counts at genus level. These were filtered
by excluding all unspecific genera (no exact assignment could be made at this or a higher
taxonomic level) and those present in less than 5% of all samples. Out of 2445 genera,
362 remained for visualization. These were sorted alphabetically by family level and gray-
scales were used to represent the relative abundance of each genus. Logarithmic scaling of
the color palette was performed to obtain a higher sensitivity towards small values. The
gray-scale representation and the corresponding scaling were particularly advantageous in
comparison to a color-based visualization. This approach showed the best contrast and
revealed very small abundances that offered the most suitable representation for image
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classification with a large number of evaluable features. An image for each sample was
generated as a 1D heatmap. An image of a sample of the T2D group and the respective
legend for logarithmic scaling of abundances as gray-scales can be seen in Figure 1.
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Figure 1. The relative counts of the genus levels of a T2D sample represented by a 1D heatmap. The
legend shows the logarithmic scaling of abundances of the bacteria as gray-scales.

These 1D heatmaps were transformed further into a radial representation (using the
polar projection of seaborn [45]) by extracting the intensities from left to right and plotting
them starting at 12 o’clock, which represented 0◦. All abundances were given the same
circular area so that each of the respective 362 genera filled 0.99◦. For the radial heatmap
representation, a high resolution of 2000 × 2000 pixels (px) was chosen with the aim to
compress the images and to convert them to a suitable format for DL image classification
with easily distinguishable intensities (Figure 2). All other information (axis labels, legends,
etc.) was removed.
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× 2000 px). The abundances of the bacteria are shown as logarithmically scaled gray levels.

The same approach was used to convert the relative counts of the phylum and class
levels into radial heatmaps. For the phylum level, 62 phyla of 76, and for the class level 115
out of 228, remained after filtering.

To ensure the robustness of the visualization, the training was performed with different
modifications of the original dataset at the genus level. The visualization was rotated,
mirrored, and shuffled. Table 2 lists the modifications.
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Table 2. Modifications of original dataset.

Dataset Properties

original genera sorted alphabetically by family level
90◦ original dataset 90◦ rotated clockwise

180◦ original dataset 180◦ rotated clockwise
270◦ original dataset 270◦ rotated clockwise

vertical original dataset vertical mirrored
horizontal original dataset horizontal mirrored
shuffled_a original dataset randomly shuffled
shuffled_b original dataset randomly shuffled

A Monte Carlo cross validation (MCCV) with three repetitions [46] was performed
with the ratio of 60:20:20 of these datasets resulting in three training, validation, and test
sets. The training sets contained 566 images (404 healthy, 162 T2D), and the validation and
test sets each contained 190 images (135 healthy, 55 T2D). Accordingly, for each modified
dataset three individual models were trained. To evaluate the reliability of the trained
classifiers, a dataset with mislabeled data was prepared: from the original dataset, 50% of
T2D samples were labeled as ‘healthy’ and the corresponding amount of the healthy group
was labeled as ‘T2D’.

2.4. ML/DL Algorithms and Training

For image classification, the well-known and powerful residual network with 50 layers
(ResNet-50) model was selected [21]. Training, validation, and testing was conducted
with the ResNet-50 keras implementation. Keras is a high-level application programming
interface (API) and DL library that simplifies the usage of neural networks [47]. Training
parameters for ResNet-50 have been customized for the existing graphics processing unit
(GPU) infrastructure (GPU NVIDIA Tesla V100, DDR4-RAM 384 GB) and the task of image
classification. In order to optimize the classification accuracy, the network was trained from
scratch (no pretrained weights were used), all layers were set as trainable, and the settings
shown in Table 3 were applied.

Table 3. Training parameters for ResNet-50.

Epoch
Number

Loss Batch Size Image Size Optimizer

Class Learning Rate Epsilon

100 categorical
cross-entropy 4 512 × 512 px Adam 0.001 10−8

During the training process, resizing of the original images to 512 × 512 px proved to
be particularly beneficial. A larger image size did not improve classification accuracy and
increased training time significantly.

The results of the image classification models were compared with conventional ML
techniques such as RF [48] and SVM [49]. For this purpose a 5-fold cross validation [46]
was applied to 80% of the dataset and the remaining test data were used to evaluate the
performance. A grid search approach determined the best hyperparameter set.

3. Results

The aim of this research was to provide a simple, fast, and accurate classification of
visualized microbiome profiles of healthy persons and individuals with T2D using DL
image recognition. Several models of the ResNet-50 neural network were trained with
radial heatmap visualizations of phylum, class, and different arrangements of genera level
including a MCCV with three repetitions. The results were evaluated in terms of accuracy,
specificity, and sensitivity. By determining the true positives (TP), false positives (FP), true
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negatives (TN), and false negatives (FN), these parameters can be calculated using the
following equations:

accuracy = (TP + TN)/(TP + FP + FN + TN) = all correct predicted samples/all samples (1)

sensitivity = TP/(TP + FN) = all samples correctly predicted as diseased/all diseased samples (2)

specificity = TN/(TN + FP) = all samples correctly predicted as healthy/all healthy samples (3)

During the training process, the models were optimized with the accuracy and loss
metric. The accuracy expression basically describes which proportions of the two groups
(healthy, T2D) were correctly classified on average. The loss value is calculated from the
neural network objective function and represents the error to be minimized. Training with
the phylum and class level visualizations was not successful. Accuracies of about 0.7 were
achieved, resulting in only the healthy class being detected. Therefore, the data derived
from the phylum and class level were not explored further. At genus level, the accuracy
for the training set was always 1.0 after 100 training epochs; hence, the results for this
set will not be investigated more closely. After approximately 50 epochs, the values for
the validation sets were stable. However, to really ensure training success, 100 epochs
were chosen for the entire training. No over-fitting, which would have been visible by
a decrease in accuracies, was detected. In order to represent these investigations, the
following figure shows the training and validation accuracy (Figure 3a) and loss (Figure 3b)
that are represented for an example model of the original dataset at the genus level.
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Figure 3. Accuracy and loss of the training and validation set from the original dataset. Results are
presented for genus level data. Parameters for the training set are visualized as a blue line and for the
validation set as an orange line. The values were tracked with keras [47]. (a) Accuracy of the training
and validation set during the training of 100 epochs. (b) Training and validation set loss during the
training of 100 epochs.

The display shows that for the training set, the accuracy immediately rises and reaches
values around 1.0 after 10 epochs. The loss is described by small values in the beginning
and does not fluctuate. For the validation set, accuracy and loss vary a lot during early
epochs. After 10 epochs, the loss becomes very small, and the accuracy starts to increase
and becomes stable around 50 epochs. For all other datasets, the accuracy and loss behave
similarly, and it can be assumed that 50 epochs would be sufficient for training (a higher
number of epochs has no disadvantages, because over-fitting could not be detected).

Subsequently, the trained models were used to examine data from the test sets. The
accuracy for the entire set, the sensitivity (proportion of samples classified as correct
positive = T2D), and specificity (proportion of samples classified as correct negative =
healthy) were calculated. In Table 4, the accuracy for the validation and test sets of all
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prepared models described in Table 2, as well as the sensitivity and specificity for the
corresponding test sets, are represented. All values are averaged with the results of the
MCCV with three repetitions.

Table 4. Accuracy for the validation and test sets of all models at the genus level.

Model Validation Set Test Set Specificity Sensitivity

original 0.97 ± 0.00 0.96 ± 0.01 0.98 ± 0.01 0.94 ± 0.03
90◦ 0.95 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.91 ± 0.04

180◦ 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.02 0.91 ± 0.02
270◦ 0.96 ± 0.01 0.96 ± 0.00 0.98 ± 0.01 0.91 ± 0.02

vertical 0.96 ± 0.00 0.97 ± 0.01 0.98 ± 0.01 0.93 ± 0.05
horizontal 0.96 ± 0.01 0.96 ± 0.01 0.99 ± 0.01 0.92 ± 0.03
shuffled_a 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.02 0.91 ± 0.03
shuffled_b 0.95 ± 0.01 0.95 ± 0.01 0.97 ± 0.01 0.89 ± 0.03

Ø 0.96 ± 0.01 0.96 ± 0.01 0.97± 0.01 0.92 ± 0.02

All accuracy values are very homogeneous between the different models and the
standard deviations show only small fluctuations. Averaging all scores shows very good
classification results for the validation and test sets of 0.96, as well as an outstanding
specificity for the detection of the healthy class of 0.97 and a good result for the T2D class of
0.92 sensitivity for the test sets. To compare the results for all models, the following diagram
(Figure 4) shows accuracy, specificity, and sensitivity values noted down in Table 4.
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Figure 4. Bar chart of accuracy, specificity, and sensitivity values for the validation and test set. Results
are presented for genus level data. For all datasets (original, 90◦, 180◦, 270◦, vertical, horizontal,
shuffled_a, and shuffled_b; details in Table 2) the accuracy for the validation and test set, and for the
latter the associated ‘healthy’ and ‘T2D’ classes, are shown.

The average accuracy for the validation sets ranges between 0.94 and 0.97. For the
test sets, the accuracy is slightly lower for most models because the neural networks
were optimized using the validation sets. The specificity is described by values from
0.95 and 0.99 for all models. The sensitivity is somewhat lower at values between 0.89
and 0.94. The underlying reason for this is the smaller dataset for T2D (just under 30%)
and possible other influencing factors, such as other previous diseases and severity of
pathology. However, it is striking that the results are very homogeneous for all forms of
visualization and arrangements of the genera. The MCCV with three repetitions also shows
only minor fluctuations of a maximum of 0.05 in terms of standard deviation, so that a
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high robustness of the visualization and the models could be demonstrated. In Figure 5,
an example confusion matrix underlines the performance on the test set from the original
dataset. It is also recognizable that the small values for FP (0.02) and FN (0.06) demonstrate
the classification accuracy.
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The results for the mislabeled dataset do not show any significant classification results.
Either all samples are classified as healthy or as T2D, resulting in an accuracy of 0.71 or 0.29,
which represents the proportion of the whole dataset. This approach ensured that there
were no other non-obvious factors influencing classification performance. The hypothesis
that a random arrangement of intensities is responsible for the classification, and not the
intensities themselves, could therefore be refuted.

The conventional ML model RF achieved an accuracy of 0.94, a specificity of 0.99,
and a sensitivity of 0.76 for the disease detection. The SVM reached an accuracy of 0.86,
a specificity of 0.89, and a sensitivity of 0.78. The image-classification-based models
performed better in terms of overall accuracy and were superior in terms of sensitivity.
Only in specificity did RF perform slightly better, but under the impression of a weak
classification performance for the T2D group.

4. Discussion and Conclusions

The approach of visualizing microbiome sequencing data as radial heatmaps and
analyzing them with the powerful DL-based ResNet-50 image classifier was proven to be
beneficial for the utilized healthy/T2D dataset. This involved adapting the hyperparame-
ters and training from scratch, as the network was optimized for lower resolution images
and larger batch sizes [32–34].

Different visualizations at the genus level were used for training and classification
to check robustness and generalization potential. The applied cross-validation and the
comparison between validation and test set revealed no particularly advantageous visual-
ization. The number of features seems to be of crucial importance in image classification.
At the genus level (362 features), excellent results were achieved, in contrast to the outcome
for the phylum (62 attributes) and class (115 attributes) levels, where the number of features
seemed insufficient. The aggregation of different genera to higher taxonomic levels seems
to result in a loss of important information for the classification, and individual genera in
particular might be causative. The research work of Thambawita et al. [50] proved that
an increased image resolution (which could be compared with an increased number of
features) improves classification accuracy of DL models. Consequently, the orientation of
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the visualization and the order of the genera are irrelevant; only a sufficiently large number
of the intensities must be represented as features.

Other scientific studies using CNNs for the classification of T2D achieved an accuracy
of 0.68 [28] or maximum AUC values of 0.81 [27], 0.67 [29], and 0.75 [17]. Direct compara-
bility is therefore not possible, but it can be assumed that for an AUC of 0.81, maximum
sensitivity and specificity of 0.9 was reached. Thus, our approach achieved better results
for the classification of T2D with a specificity of 0.97, a sensitivity of 0.92, and an accuracy
of 0.96. Such a performance has not been achieved using ML methods such as RF and SVM,
or with techniques from other research studies. Thus, the presented approach provides a
simple and accurate classification. Problems with custom CNNs [25–29] include shallow
depth architectures with few layers or classifier overfitting. ResNets did not achieve success
because ImageNet [32] pretrained weights were used [27], or the data visualization as a bar
chart of microbiome abundances [41] was simply not suitable for the network.

To evaluate our approach for microbiome image classification in more detail, datasets
with other phenotypes (sampling site) and diseases (LC, CRC, obesity) should be inves-
tigated to assess the generalization potential to detect changes in microbial composition.
Multi-class detection and the prediction of diseases are also conceivable. To reveal the
causative genera for disease detection or their responsibility for being healthy, explainable
artificial intelligence (XAI) approaches can be used. Methods such as class activation map-
ping (CAM) [51], local interpretable model-agnostic explanations (LIME) [52], or Shapley
additive explanations (SHAP) [53] could clarify which features are responsible and help
to obtain detailed insights into the pathogenesis. This could lead to the development
of diagnostic tests for the detection and prediction of diseases, as well as instructions to
prevent or retard their progression through directed adaptation of the microbiome.
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