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Abstract: Obstacle detection is crucial for the navigation of autonomous mobile robots: it is neces-
sary to ensure their presence as accurately as possible and find their position relative to the robot.
Autonomous mobile robots for indoor navigation purposes use several special sensors for various
tasks. One such study is localizing the robot in space. In most cases, the LiDAR sensor is employed
to solve this problem. In addition, the data from this sensor are critical, as the sensor is directly
related to the distance of objects and obstacles surrounding the robot, so LiDAR data can be used
for detection. This article is devoted to developing an obstacle detection algorithm based on 2D
LiDAR sensor data. We propose a parallelization method to speed up this algorithm while processing
big data. The result is an algorithm that finds obstacles and objects with high accuracy and speed:
it receives a set of points from the sensor and data about the robot’s movements. It outputs a set
of line segments, where each group of such line segments describes an object. The two proposed
metrics assessed accuracy, and both averages are high: 86% and 91% for the first and second metrics,
respectively. The proposed method is flexible enough to optimize it for a specific configuration of the
LiDAR sensor. Four hyperparameters are experimentally found for a given sensor configuration to
maximize the correspondence between real and found objects. The work of the proposed algorithm
has been carefully tested on simulated and actual data. The authors also investigated the relationship
between the selected hyperparameters’ values and the algorithm’s efficiency. Potential applications,
limitations, and opportunities for future research are discussed.

Keywords: 2D LiDAR sensor; 2D LiDAR image clustering; obstacle detection; robotics; navigation

1. Introduction

The development of autonomous mobile robots is increasingly attracting the attention
of large groups of researchers. As is known [1–5], an autonomous mobile robot is an auto-
matic device designed to perform industrial, transport, medical, military, space, and other
operations, usually without human intervention. To complete the required tasks [6–8], this
type of robot involves complex algorithms, such as algorithms for localization, navigation,
control of the mechanical arm, the behaviour of combat robots, and service robotics. The
input data are from sensors: cameras, humidity sensors, temperature sensors, GPS, and
LiDAR. The algorithm developed and described in this paper uses information from the
latest research (see Table 1).

LiDAR, which stands for Light Detection and Ranging, is a type of sensor that uses
laser beams to measure distances and create precise maps of the environment. The basic
principle of LiDAR is to emit laser beams and measure the time it takes for the light to
reflect back to the sensor, allowing it to calculate the distance to objects. LiDAR sensors
are typically composed of several components, including a laser source, a scanner, and
a receiver. The laser emits a beam of light that is directed by the scanner towards the
environment to be mapped. When the laser beam hits an object, some of the light is
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reflected back towards the sensor, where it is detected by the receiver. The time it takes for
the light to return to the sensor is used to calculate the distance to the object. By repeating
this process many times, a map of the environment can be created. LiDAR sensors are
commonly used in a wide range of applications, including robotics, autonomous vehicles,
surveying, and 3D mapping. They are especially useful in environments where other
sensors, such as cameras or radar, may be less effective, such as in low-light conditions or
when the environment is cluttered with obstacles.

LiDAR sensors are divided into two main types: 2D LiDAR and 3D LiDAR. The main
difference between 2D and 3D LiDAR is the level of detail that can be captured and the
types of information that can be extracted from the data.

Two-dimensional LiDAR, as the name suggests, captures data in two dimensions,
typically creating a top-down view of the environment. The laser scanner rotates or
oscillates to capture a 360-degree field of view, but the resulting data consist of a flat 2D
map of the environment. Two-dimensional LiDAR is useful for obstacle detection, mapping,
and navigation, but it cannot capture the full depth and shape of objects in the environment.

Three-dimensional LiDAR, on the other hand, captures data in three dimensions,
creating a detailed map of the environment that includes depth information. This allows
for more precise measurements of the distance between objects, as well as the shape and
size of the objects themselves. Three-dimensional LiDAR is useful for a wider range of
applications, including object recognition, tracking, and classification.

In addition to the difference in the level of detail captured, 2D and 3D LiDAR sensors
also differ in their cost and complexity. Two-dimensional LiDAR sensors are generally
simpler and less expensive than 3D LiDAR sensors, making them more suitable for some
applications where high precision 3D data are not required. Overall, the choice between
2D and 3D LiDAR will depend on the specific application and the level of detail required.
Two-dimensional LiDAR is often used in applications such as robotics and mapping, while
3D LiDAR is more commonly used in autonomous vehicles, industrial automation, and
other applications that require highly detailed 3D data.

Many works have been written about finding obstacles using data from a 3D LiDAR
sensor. Zermas et al. proposed a pipeline that aims to solve the problem of 3D point cloud
segmentation for data received from LiDAR in a fast and low-complexity manner that
targets real-world applications [9]. The two-step algorithm first extracts the ground surface
in an iterative fashion using deterministically assigned seed points, and then clusters the
remaining non-ground points taking advantage of the structure of the LiDAR point cloud.
Himmelsbach et al. proposed a method for segmentation of 3D point clouds by labeling
scanned points as either ground or non-ground [10]. The algorithm estimates the local
ground plane by applying 2D line extraction algorithms to the domain of unorganized 3D
points. This allows non-ground points to be separated from ground points, improving the
accuracy of the segmentation process. Overall, the algorithm offers a promising approach
to segmenting 3D point clouds, which has important applications in robotics, mapping, and
other fields. Despite the advantages of 3D LiDAR in terms of its ability to capture detailed
3D information about the environment, there are also some limitations to its use. One of the
main challenges with 3D LiDAR is that the data it captures are large and complex, which
can result in longer processing times and higher computational requirements.

Two-dimensional LiDAR sensors are most often installed either horizontal-looking
or downward-looking. The main difference between downward-looking 2D LiDAR and
horizontal-looking 2D LiDAR is the direction in which they capture data. Downward-
looking 2D LiDAR is mounted above the ground and captures data in a vertical direction,
providing information about the height and profile of the ground surface, as well as any
obstacles on it. In contrast, horizontal-looking 2D LiDAR is mounted on the side of a
vehicle or robot and captures data in a horizontal direction, providing information about
obstacles and features in the environment at the same level as the sensor.

Pang et al. proposed a method for downward-looking 2D LiDAR sensor [11]. The
method begins by extracting line segments from the raw sensor data, and then estimates
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the height and the vector of the scanned road surface at each moment. Subsequently, the
segments are divided into either road ground or obstacles based on the average height of
each line segment and the deviation between the line segment and the road vector estimated
from the previous measurements. Liu et al. [12] developed an algorithm for creating a local
digital elevation map using downward-looking LiDAR sensors. The algorithm calculated
the average height of points in voxels and extracted candidate road curbs based on the
height variance and slope of adjacent voxels. While the algorithm demonstrated good
experimental results, it was found to be less effective in dealing with complex curved slopes
and changing road conditions, such as sloping roads with sharp turns.

The algorithm described in this work was developed for use by an autonomous mobile
robot of a small size that operates indoors. A horizontal-looking 2D LiDAR sensor is best
suited for such a setup. For example, Baek et al. use similar maintenance for robotic vacuum
cleaners [13], which are very popular today. The advantages of a horizontal-looking 2D
LiDAR sensor compared to a downward-looking 2D LiDAR sensor include:

1. Coverage: Horizontal-looking 2D LiDAR sensors provide a 360-degree field of view,
which makes them better suited for applications where a full view of the environment
is required. Downward-looking 2D LiDAR sensors, on the other hand, have a more
limited view and can miss obstacles outside of their field of view.

2. Obstacle detection: Horizontal-looking 2D LiDAR sensors are better suited for de-
tecting obstacles on the ground or at low heights, such as curbs, speed bumps, or
potholes. Downward-looking 2D LiDAR sensors are better suited for detecting objects
directly below the sensor, such as the ground or a floor.

An instance of how a 2D LiDAR sensor can be used is an algorithm designed to deter-
mine the sensor’s current position [14] accurately. The algorithm uses OpenMP parallel
computing technology to increase its processing speed and achieve real-time results.

Objective research proposed by Leigh et al. [15] promotes the development of robust,
repeatable, and transferable software for robots that can automatically detect, track, and
follow people in their environment. They propose a new algorithm for robust detection,
tracking, and following from 2D LiDAR data. We show that the approach is effective in
various environments, both indoor and outdoor, and on different robot platforms (the
intelligent power wheelchair and a Clearpath Husky). The method has been implemented
in the Robot Operating System (ROS) framework and will be publicly released as a ROS
package. The autonomous person detection is achieved using clustering. The autonomous
tracking is achieved using a combination of Kalman filter and a GNN method.

Catapang et al. developed a low-cost 2D LiDAR system for detecting obstacles in
autonomous vehicles. The system is designed to acquire data in a single plane, resulting in
fast computational processing. The LiDAR system provides a wide field of view of up to
360 degrees. The acquired data were pre-processed by merging and segmenting data points
and then median-filtered. Obstacle detection was performed using clustering algorithms.
The results demonstrated that the developed LiDAR system can detect obstacles with a
width of 1 m at a distance of 10 m. Chung et al. proposed an algorithm for detecting human
legs and tracking them with a single laser range finder. The human legs were detected by
the application of a support vector data description scheme, and it tracked the leg positions
according to an analysis of human walking motion [16].

This study aims to develop a precise obstacle detection algorithm utilizing data from
a horizontal-looking 2D LiDAR sensor. The algorithm is designed to run on low-powered
computers and is specifically tailored for use in an indoor setting, such as an autonomous
mobile robot.



Big Data Cogn. Comput. 2023, 7, 43 4 of 16

Table 1. An overview of related works.

Reference Sensor Method Advantages Disadvantages

Zermas et al.
[9] 3D LiDAR

Iterative fashion using
deterministically assigned
seed points Lots of useful information about

the environment
Expansive and height
processing time

Himmelsbach et al.
[10] 3D LiDAR Labeling scanned points as either

ground or non-ground

Pang et al.
[11]

Downward-looking
2D LiDAR

Divide into either road ground or
obstacles based on the average
height of each line segment

A method to effectively deal with
obstacles of different heights on
city roads

Some limitations in
distinguishing dynamic
obstacles such as pedestrians

Liu et al.
[12]

Downward-looking
2D LiDAR

Quantized digital elevation map
and grayscale reconstruction

Data processing by using existing
image processing techniques

Not discuss the conversion
between different scenes

Leigh et al.
[15]

Horizontal-looking
2D LiDAR

Clustering to detect object and
combination of Kalman filter and
a GNN to track object

Implementation of the algorithm
for ROS

Designed only for detection
of a certain type of obstacles

Catapang et al.
[17]

Horizontal-looking
2D LiDAR

Median filter for pre-processing
and clustering for
obstacles detecting

The algorithm works well on objects
that are far from the sensor

It is not enough visualization
of the result of the algorithm
on data from real sensor

Chung et al.
[16]

Horizontal-looking
2D LiDAR Support vector data description No geometric assumption and the

robust tracking of dynamic object
Designed only for detection
of a certain type of obstacles

Two primary metrics will be used to assess accuracy. The first metric is Cluster
Homogeneity [18]. The second metric is Cluster Completeness [19].

Cluster Homogeneity and Cluster Completeness are two metrics used to evaluate the
quality of a clustering algorithm’s performance.

Cluster Homogeneity measures the extent to which all data points within a cluster
belong to the same class or category. If all points in a cluster belong to the same class, then
the cluster is said to be homogeneous. A score of 1.0 indicates perfect homogeneity, while a
score closer to 0.0 indicates lower homogeneity.

Cluster Completeness, on the other hand, measures the extent to which all data
points belonging to the same class are assigned to the same cluster. If all data points
belonging to a given class are assigned to the same cluster, then the clustering is said to be
complete. A score of 1.0 indicates perfect completeness, while a score closer to 0.0 indicates
lower completeness.

Both Cluster Homogeneity and Cluster Completeness are evaluated on a scale from
0.0 to 1.0, with higher scores indicating better performance. These metrics are commonly
used in unsupervised machine learning tasks, such as clustering and topic modeling, to
evaluate the accuracy of the algorithm’s predictions.

Although the Cluster Homogeneity and Cluster Completeness metrics are useful for
evaluating the accuracy of the algorithm’s output compared to the real environment, they
should not be the only consideration when using the algorithm in production. Instead, the
visualization of the algorithm’s output and the specific requirements of the task should
guide the selection of hyperparameters. For instance, certain hyperparameter configura-
tions may be more appropriate for real-time navigation while others may be better suited
for calculating the robot’s movement vector during the LiDAR sensor’s scanning period.

The main contributions of this article can be summarized as follows:

1. A linear-complexity algorithm for obstacle detection was developed using data from
a 2D LiDAR sensor, which is capable of working with high-frequency sensors;

2. A parallelization method is proposed for the developed algorithm, which makes it
possible to reduce the time of operation of one iteration of the algorithm in proportion
to the number of cores used;

3. A simulator was developed for testing the algorithm, which helps to test hypotheses
and quickly select hyperparameters for the given task;

4. Clustering quality metrics were used to assess the accuracy of the result of solving
obstacles in the task search.
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The rest of this article is organized as follows: Section 2 presents the proposed algo-
rithm. Section 3 describes the test data. Section 4 describes the results in detail. Conclusions
and prospects for further research are shown in the last section.

2. Materials and Methods
2.1. Statement of the Research

As mentioned above, LiDAR is a technology for obtaining and processing informa-
tion about remote objects. Data from the LiDAR sensor are usually represented as a
vector of angles and a vector of distance at the appropriate angle, that is, in the polar
coordinate system:

θ = (θ1, θ2, . . . , θn),
d = (d1, d2, . . . , dn).

where n—is the number of measured distances when scanning the room, θ—is the vector
of angles, and d—is the vector of distances. This data can be converted into points (xi, yi)
in the Cartesian coordinate system, where

xi = di cos θi
yi = di sin θi

}
i ∈ [1, n] (1)

Thus, the points (xi, yi) at the end of the beams relative to the position of the robot
during scanning are obtained. Also, the necessary data for the developed algorithm are the
robot displacement vector S = (Sx, Sy, Sϕ) from the previous scan by the LiDAR sensor to
the current one. The value of this displacement vector may have an error [20] (as a rule, it
is impossible to calculate the distance travelled by the robot accurately).

We will call the history at the time of the current scan at number m the present, and all
previous scans and moves:

Hm =
〈

θ(1), d(1), . . . , S(m), θ(m), d(m)
〉

. (2)

The superscript will specify the scan number in parentheses.
Based on the previous definitions, the purpose of this work can be formulated: using

the history of all robot movements and data from the LiDAR sensor, find the set O, where
each element of the group is a set of segments that corresponds to the obstacle description.
Obstacles found by the algorithm should be as accurate as possible.

Solving this problem consists of three main steps:

1. Elimination of obsolete points from the LiDAR sensor;
2. Clustering of sifted points;
3. Finding the contours of each cluster.

2.2. Elimination of Obsolete Points from the LIDAR Sensor

First of all, it is necessary to find the positions of the issues from the previous scans
relative to the work at the moment of the scanning m. To do this does not to take into account
all movements between the previous

(
x(j)

i , y(j)
i

)
and the last

(
x̂(j)

i , ŷ(j)
i

)
scan, where

x̂(j)
i = x(j)

i + ∑m
k=j+1 S(k)

x

ŷ(j)
i = y(j)

i + ∑m
k=j+1 S(k)

y

i ∈
[
1, n(j)

]
. (3)

Since the next part of the algorithm requires points in the polar coordinate system, the
result Equation (3) must be transformed into it:
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θ̂
(j)
i = tan−1 ŷ(j)

i

x̂(j)
i

d̂(j)
i =

√(
x̂(j)

i

)2
+
(

ŷ(j)
i

)2

 i ∈
[
1, n(j)

]
. (4)

As mentioned earlier, the displacement vector has a measurement error, which is the
reason for the elimination of points. Those points scanned earlier should be less likely to
get to the next stage of the algorithm. This can be realized by defining a hyperparameter
γ ∈ [0, 1]. Then, the probability of the i-th point from the j-th getting into the set A can be
determined as follows:

p(j)
i = γm−j.

Consequently, the set A is less likely to contain points that were scanned earlier.

2.3. Clustering of Sifted Points

In the obstacle detection algorithm, clustering is a crucial step that determines which
points belong to an obstacle. This process must be efficient enough to be executed between
LiDAR sensor scans, and it should also have adjustable hyperparameters that can be
modified according to the sensor configuration. In this section, a clustering algorithm
based on the components of the connectivity search method is proposed. The following
section will compare this approach to other clustering methods such as DBSCAN [21] and
K-Means [22], which can also be utilized in the final algorithm.

First, the clustering algorithm requires normalized data since the elements of the set A
are vectors in the polar coordinate system. The components of such a vector have different
units (radians and units of distance). Therefore, a group with normalized vectors is defined
as follows:

Ã =

{
(θ, d) ∈ A

∣∣∣∣∣
(

θ,
d− d

σd

)}
,

where d, σd—the average distance and the variance of the length overall vectors of the set
A. Also, to perform clustering, you need to set the distance function between two vectors
of the group Ã. The following distance function was proposed:

f ((θ1, d1), (θ2, d2)) =

√
ρ(cos−1(cos(θ1 − θ2)))

2
+ (1− ρ)(d1 − d2)

2, (5)

where ρ ∈ [0, 1]—hyperparameter that determines the balance between two quantities.
Now, the graph G =

(
Ã, E

)
can be evaluated, where Ã is a set of vertices (vertices will be

considered points in the polar coordinate system), and E is a set of edges. Between two
vertices a1, a2 there is an edge if and only if the distance Equation (5) between them is less
than ξ:

E =
{
(a1, a2)|a1 ∈ Ã and a2 ∈ Ã and f (a1, a2) < ξ

}
.

In the final part of this stage, the basic algorithm on the graphs that finds the compo-
nents of connectivity—DFS [23] needs to be used. The algorithm used in this implemen-
tation was chosen based on the task’s requirements and the characteristics of the LiDAR
sensor. The DFS-based connectivity component search algorithm was found to be the
most suitable due to the low error of the LiDAR sensor, as points belonging to one object
generally fall into one cluster. However, if the distance error of the LiDAR sensor is large,
DBSCAN may be more optimal. It can also identify some points as outliers.

The output of the algorithm is a set of clusters. Each cluster is a set of points that are
part of it:

B = {B1, B2, . . . , Bc}

where c—the number of clusters that the algorithm will find.
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2.4. Finding the Contours of Each Cluster

The result of the previous stage of the algorithm is a set of clusters B. The next and
final step of the proposed algorithm is to obtain a set of line segments, where each group is
responsible for describing the obstacle.

Consider a cluster Bi. The vectors are sorted by increasing angle: θ1 ≤ θ2 ≤ . . . ≤ θl , l = |Bi|.
The kernel of length α ∈ N by the number k is the set B(k)

i = {(θk, dk), . . . , (θk+α−1, dk+α−1)}.

Denote the mean angle of the kernel θ
(k)

:= 1
α

k+α−1
∑

j=k
θj. Denote by the maximum and min-

imum distance of the kernel d(k)max := max(dk, . . . , dk+α−1), d(k)min := min(dk, . . . , dk+α−1),
respectively. The final location Oi of the segments responsible for the expected obstacle can
be specified as a union of three sets:

Oi = O(min)
i ∪O(max)

i ∪O(merge)
i ; O(min)

i ={[(
θ
(1)

, d(1)min

)
,
(

θ
(2)

, d(2)min

)]
,
[(

θ
(2)

, d(2)min

)
,
(

θ
(3)

, d(3)min

)]
,

. . . ,
[(

θ
(c−α−1)

, d(c−α−1)
min

)
,
(

θ
(c−α)

, d(c−α)
min

) ]}
;O(max)

i ={[(
θ
(1)

, d(1)max

)
,
(

θ
(2)

, d(2)max

)]
,
[(

θ
(2)

, d(2)max

)
,
(

θ
(3)

, d(3)max

)]
,

. . . ,
[(

θ
(c−α−1)

, d(c−α−1)
max

)
,
(

θ
(c−α)

, d(c−α)
max

) ]}
;O(merge)

i ={[(
θ
(1)

, d(1)min

)
,
(

θ
(1)

, d(1)max

)]
,
[(

θ
(c−α)

, d(c−α)
min

)
,
(

θ
(c−α)

, d(c−α)
max

)]}
.

The set O(min)
i is responsible for the part of the obstacle that is closer to the LiDAR

sensor. “Closer” means that a line segment can be drawn between the position of the sensor
and any point belonging to any element Oi that will not intersect with any other object Oi.

The set O(max)
i is responsible for the interference part that is farther from the LiDAR sensor.

“Farther” means that there are an infinite number of points belonging to the polynomials
O(max)

i and the segment between any of them, and the position of the leader intersects with

one object from O(min)
i The set O(merge)

i is responsible for merging the two previous sets
to obtain a polygon in the union. It is useful to obtain a polygon in order to estimate the
discrete obstacle probability distribution function then. For example, all points that are in
this polygon will have a high probability of obstacles (see Algorithm 1).

Algorithm 1: Cluster Contouring
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k

k

nE A nγ
γ

∞

=

  = =  − . 

The next stage of the algorithm will work with E A    number of points. The paper 
describes the algorithm for searching for connectivity components based on the 
depth-first search algorithm. The complexity of this algorithm is ( )O A E+ , where A  

is the set of vertices, and E  is the set of edges. Since only adjacent vertices will be con-

nected, then E A≤  . Then, the complexity at this stage ( ) ( ) 1
nO A E O A O

γ
 + = =  − 

  . 

The last step of the algorithm will occur in each cluster α  times, and therefore the final 

complexity of the algorithm will be 
1

1 1 1
n nO O nαα

γ γ γ
   ++ =   − − −   

. 

Therefore, the complexity of the algorithm is linear concerning n . At the same time, 
it should be noted that no field discretization will be performed, which was completed in 
the works above, which is the reason for the prolonged execution of the algorithm. In the 
described method, all actions are performed on the initial data, which indicates high ef-
ficiency. In other words, to increase accuracy, the considered works sacrifice a lot of 
speed and memory because they need to iterate over the tabulated space, which the 
proposed algorithm does not do. Also, all these steps can be easily parallelized relative to 
the number of points, further increasing the iteration speed. 

Therefore, a method of finding obstacles was proposed in this section. It is very 
flexible as it has enough hyperparameters to optimize it for the specific configuration of 
the LiDAR sensor. Namely, the algorithm has the following hyperparameters: γ—to set 
the degree of elimination of obsolete points, ρ —to set the balance between angle and 
distance for correct clustering, ξ —to set the threshold for creating an edge in the graph 
for the algorithm for finding connectivity components, α—to set the length of the kernel 
to determine the segments responsible for the obstacle. 
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2.5. Estimation of Algorithm Complexity

Assessing the complexity does not consider the first stage of the algorithm (the elim-
ination of obsolete points). Without loss of generality, it is assumed that now is the j-th
step, and an infinite number of measures have been performed before that. Suppose n new
points are obtained at each iteration. Then, the mathematical expectation of the power of
the set A will be calculated as follows:

E[|A|] =
∞

∑
k=0

γkn =
n

1− γ

The next stage of the algorithm will work with E[|A|] number of points. The paper
describes the algorithm for searching for connectivity components based on the depth-first
search algorithm. The complexity of this algorithm is O

(∣∣∣Ã∣∣∣+ |E|), where Ã is the set
of vertices, and E is the set of edges. Since only adjacent vertices will be connected, then

|E| ≤
∣∣∣Ã∣∣∣. Then, the complexity at this stage O

(∣∣∣Ã∣∣∣+ |E|) = O
(∣∣∣Ã∣∣∣) = O

(
n

1−γ

)
. The last

step of the algorithm will occur in each cluster α times, and therefore the final complexity
of the algorithm will be O

(
n

1−γ + α n
1−γ

)
= O

(
1+α
1−γ n

)
.

Therefore, the complexity of the algorithm is linear concerning n. At the same time,
it should be noted that no field discretization will be performed, which was completed
in the works above, which is the reason for the prolonged execution of the algorithm. In
the described method, all actions are performed on the initial data, which indicates high
efficiency. In other words, to increase accuracy, the considered works sacrifice a lot of speed
and memory because they need to iterate over the tabulated space, which the proposed
algorithm does not do. Also, all these steps can be easily parallelized relative to the number
of points, further increasing the iteration speed.

Therefore, a method of finding obstacles was proposed in this section. It is very flexible
as it has enough hyperparameters to optimize it for the specific configuration of the LiDAR
sensor. Namely, the algorithm has the following hyperparameters: γ—to set the degree
of elimination of obsolete points, ρ—to set the balance between angle and distance for
correct clustering, ξ—to set the threshold for creating an edge in the graph for the algorithm
for finding connectivity components, α—to set the length of the kernel to determine the
segments responsible for the obstacle.

2.6. Parallelization

It should be noted that each of the stages of the algorithm is very easy to divide into
CPU cores and, at the same time, obtain extra acceleration. The first step is to search all list
elements and delete them, provided that the Bernoulli experiment at a given probability
will give 1. It is easy to parallelize using thread-safe collections (in this case, a double-linked
list) [24].

To parallelize the second stage, an efficient multi-threaded DBSCAN algorithm [25]
will be used. The idea is to divide the two-dimensional space into sectors, process each
of the sectors in a separate thread, and finally use an algorithm for merging all sectors,
which works for a time proportional to the number of sectors. Since the number of sectors
is usually not large (equal to the number of cores), the merging time can sometimes
be neglected.

The third stage is relatively easy to divide into cores if they are less than the number
of clusters. For example, the first thread for the i-th cluster will handle the set O(min)

i ,

the second thread will take the O(max)
i , and the third and fourth will already work with

the i + 1 cluster. In this way, the process is evenly distributed between the cores. If you
store sets in a double-linked list, you can then combine them in a constant time. Also, pay

attention to the group O(merge)
i . It always contains two elements, so the processing time can
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be considered consistent. Thus, the final complexity is O
(

1+α
T(1−γ)

n
)

. In the denominator,
T—threads number appears.

2.7. Accuracy Metrics

Two primary metrics will be used to assess accuracy. The first metric is Cluster
Homogeneity [18]. The second metric is Cluster Completeness [19]. Both metrics will give
the ability to numerically see how many obstacles found by the algorithm are actual.

3. Data for Testing

This section describes data for testing. Two types of data were used: simulated and
actual. Simulations were used to quickly verify the algorithm’s accuracy and empirical
assessment of complexity and precision for quality estimation. Consider both types of data.

3.1. LIDAR Sensor Simulation for Testing

To simulate the LiDAR sensor, a set of segments was used to represent obstacles. The
simulation algorithm is straightforward and does not require much computational power.
It takes as input a set of obstacle segments, the robot’s position, and the number of LiDAR
sensor rays. The output is a set of points that simulate the sensor, with their position
matching the robot’s position.

3.2. Physical LIDAR Sensor for Testing

In this study, data were collected using a physical LiDAR sensor, specifically the
SLAMTEC RPLIDAR A2, which had an operating frequency of 10 Hz. Typically, the device
generated an output of approximately 300 points. The simulation was designed to mimic
this behaviour and generated a similar number of points.

Red indicates the robot’s trajectory, and black shows the data from the leader (see
Figure 1).
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used to indicate the region that was detected by the LiDAR sensor, while the gray color represents
the area that was not covered by the sensor’s field of view.



Big Data Cogn. Comput. 2023, 7, 43 10 of 16

4. Results

This section is devoted to the results of testing the algorithm. It consists of two
sections. The first section describes the results of testing on simulated data with visual
visualization of the influence of the number of points from the LiDAR sensor on the
algorithm’s complexity and visualization of specific cases without reducing the generality.
The second section shows how the algorithm handles actual data.

4.1. Results on the Simulated Data

The first comparison was based on the following criterion: the result of the algorithm
depends on the position of the LiDAR sensor relative to the obstacle. Input data were
distances in centimetres and angles in radians. The following algorithm configuration was
used: γ = 0.5, ρ = 0.64, ξ = 0.28, α = 10.

Figure 2 shows how the sensor’s position affects the algorithm’s result. The closer the
sensor is to the obstacle, the better the polygon describes it. This is done to ensure that the
sensors have a significant distance error [26–28]. If the sensor is placed as close as possible
to the obstacle, the effect of angular error and distance error will be reduced, which gives
the ability to determine the obstacle more accurately, as in case (a), where the resulting set
of segments perfectly describes the points of the sensor. In case (d), where the obstacle is
at a distance of 400 centimetres from the sensor, regarding the area of the two polygons,
the algorithm considers the obstacles to be greater than in the previous cases. This means
that the variance of the distance of the sensor, in this case, is quite large, and it is more
advantageous to assume that the obstacle is more significant than it is. This will help the
navigation algorithm to make plans that may not be rebuilt in the future [29].
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Figure 2. In each figure, the position of the LiDAR sensor, which coincides with the initial coordinate
system, is shown in orange. The red colour indicates the predicted obstacles. The blue colour indicates
the sensor image. (a) The block is at a distance of 100 cm from the sensor. (b) The obstacle is at a
distance of 200 cm from the sensor. (c) The obstacle is at a distance of 300 cm from the sensor. (d) The
obstacle is at a distance of 400 cm from the sensor.

One of the essential steps to starting to use this method is the selection of hyper-
parameters. Next, how different combinations of hyperparameters affect the result of
the algorithm will be shown. First, set γ = 0.5 and α = 10. Let us take over all pairs
ρ ∈ {0.1, 0.325, . . . , 1.0}, ξ ∈ {0.1, 0.2, . . . , 0.5}. For each pair, predictions on specific
data from the sensor will be found.

Figure 3 shows the result of the algorithm with a specific configuration ρ and ξ. One
of the best results was given by a set of hyperparameters of the algorithm γ = 0.5, α = 10,
ρ = 0.775, ξ = 0.2. As mentioned above, ρ sets the balance between angle and distance
when clustering. When ρ = 1, only the angles will be taken into account, so if the sensor
is correct and the angular distances between adjacent points are equal to and less than a
given threshold, the algorithm will return a single set of segments that describes the data
from the sensor. This can be seen in the last five pictures. The ξ parameter specifies the
edge creation threshold in the graph for the connectivity component search algorithm. If
it is too small, only very clustered groups of points will be considered as clusters. Some
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individual points may be regarded as separate clusters. Due to the further specificity of the
algorithm related to the search for contours, they will not be defined as obstacles at all. In
the figure, this can be seen in the first column. The first four configurations do not consider
some points. This may be necessary when there is a need to identify an obstacle that is
close to the sensor.
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Figure 3. Each of the figures in orange shows the position of the LiDAR sensor, which coincides with
the beginning of the coordinate system. The obstacle prediction is shown in red. The sensor points
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If hyperparameters are set γ = 0.5, ρ = 0.775, ξ = 0.2, visualization of the dependence
between the result and the α hyperparameter will look like Figure 4.
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Figure 4. Each of the figures in orange shows the position of the LiDAR sensor, which coincides with
the beginning of the coordinate system. The obstacle prediction is shown in red. The sensor points
are shown in blue. Each figure shows the algorithm’s result in red polygons (cluster contours) at a
particular configuration α.

Figure 4 clearly shows how the hyperparameter α affects the result of the work.
Increasing it will favour large clusters. Also, with its significant increase, the area of
the polygon increases significantly, which indicates the uncertainty of the position of the
obstacle. It is also important to note that the length of the kernel should be set relative to
the number of points returned by the LiDAR sensor. The greater the number of points, the
greater the size of the cores must be set. Figure 4 shows 180 points from the LiDARs. For
such a value, it is optimal to set α = 5. If the frequency of the sensor decreases, which will
cause the number of points to increase, then α = 12 will be more optimal. Of course, it is
better to select these values separately for each task.

Figure 5 shows that the dependence is linear concerning the number of points, which
confirms the proof in Section 2.5. During the complexity assessment, the hyperparameters
were recorded and set γ = 0.5, α = 10, ρ = 0.775, ξ = 0.2. It is also clear that parallelization
reduces the running time of the algorithm, and the more cores, the less time.
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4.2. Results on Actual Data

The results on actual data are pretty similar to the results of the simulation. This is
primarily because a device such as a LiDAR sensor has a simple principle of operation that
allows a quality simulation to be made [30].

Figure 6 shows the result of the algorithm with hyperparameters γ = 0.5, α = 5,
ρ = 0.640, and ξ = 0.280. Obviously, an algorithm with this configuration does not cope
well with points far from the sensor. It is generally due to the sensor’s accuracy, as it
drops sharply at a distance of more than nine metres. It would be appropriate to look at
the dependence of the complexity of the algorithm on time. Section 2.5 mentions that the
complexity depends on the parameter γ. The difficulty should increase gradually as some
of the points from previous iterations are retained.
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Figure 7 shows that the algorithm does its job longer but with a certain asymptote
over time. After the second, the complexity stopped growing and was about 0.04 s for
a single-core processor. The graphs also show that the number of cores directly affects
the speed.
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5. Conclusions

The article introduces an algorithm for object and obstacle detection using 2D LiDAR
sensor data. The algorithm has a relatively low computational complexity, making it
suitable for use in projects where autonomous mobile robots have limited computing power.
Moreover, the algorithm is easily parallelized, which can further reduce the execution time
on multi-core processors.

The results of this research have significant implications for real-time solutions when
analyzing big data, as the algorithm is capable of providing accurate and timely results.
Overall, the use of 2D LiDAR sensors in combination with this algorithm offers a promising
approach to object and obstacle detection, which has important applications in robotics,
automation, and other related fields.

If the number of sensor points n = 1000 and the hyperparameters are set as follows:
γ = 0.5, α = 10, ρ = 0.775, ξ = 0.2, the execution time using one core on average equals
50 ms, using two cores—25 ms, and four—13 ms. It can also reduce the cost of making a
robot for a specific task.

Nevertheless, the complexity of the algorithm was investigated statistically. An essen-
tial aspect of the algorithm’s development was to make it as versatile as possible to be used
for robots with different sensor configurations and conditions. The method is universal
due to the hyperparameters described in detail in the paper—a thorough analysis presents
how these parameters’ values affect the algorithm’s final result. The article presents how
to investigate the optimal values of hyperparameters to solve the desired problem. An
environment has been developed that allows the simulation of a LiDAR sensor to test the
algorithm quickly. The algorithm is tested in the simulation, and the paper presents some
specific experiments for visualization to know how algorithm output depends on hyper-
parameters. Finally, the algorithm was tested on data from an actual sensor and showed
a similar result as when tested on simulated data. Estimates of accuracy, on average, are
pretty high. Namely, Cluster Homogeneity = 86% and Cluster Completeness = 91%. The
algorithms presented in Section 2 have similar estimates but work an order of magnitude
longer. The results show that the algorithm is reliable and fast, so it can be widely used
in robotics.

This algorithm was designed primarily to stop an autonomous mobile robot when an
obstacle appears close to it. In addition, it can be used to plan a driving path using obstacle
avoidance. Also, one of the possible options is the localization and calculation of the robot’s
movement during the period of operation of the LiDAR sensor.

Further research: this study can be optimized using GPU parallelization and technol-
ogy such as CUDA [31].
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