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Abstract: Leveraged by a large-scale diffusion of sensing networks and scanning devices in modern
cities, huge volumes of geo-referenced urban data are collected every day. Such an amount of infor-
mation is analyzed to discover data-driven models, which can be exploited to tackle the major issues
that cities face, including air pollution, virus diffusion, human mobility, crime forecasting, traffic
flows, etc. In particular, the detection of city hotspots is de facto a valuable organization technique
for framing detailed knowledge of a metropolitan area, providing high-level summaries for spatial
datasets, which are a valuable support for planners, scientists, and policymakers. However, while
classic density-based clustering algorithms show to be suitable for discovering hotspots characterized
by homogeneous density, their application on multi-density data can produce inaccurate results. In
fact, a proper threshold setting is very difficult when clusters in different regions have considerably
different densities, or clusters with different density levels are nested. For such a reason, since
metropolitan cities are heavily characterized by variable densities, multi-density clustering seems
to be more appropriate for discovering city hotspots. Indeed, such algorithms rely on multiple
minimum threshold values and are able to detect multiple pattern distributions of different densities,
aiming at distinguishing between several density regions, which may or may not be nested and
are generally of a non-convex shape. This paper discusses the research issues and challenges for
analyzing urban data, aimed at discovering multi-density hotspots in urban areas. In particular, the
study compares the four approaches (DBSCAN, OPTICS-xi, HDBSCAN, and CHD) proposed in
the literature for clustering urban data and analyzes their performance on both state-of-the-art and
real-world datasets. Experimental results show that multi-density clustering algorithms generally
achieve better results on urban data than classic density-based algorithms.

Keywords: smart city; density-based clustering; multi-density city hotspots detection; urban data
analysis

1. Introduction

Reference Context. Cities worldwide are experiencing significant evolution due to
numerous factors, e.g., new forms of communication, new ways of transportation, and fast
urbanization. The pervasive and large-scale diffusion of sensing networks, image-scanning
devices, and GPS devices is enabling the collection of huge volumes of geo-referenced
urban data every day. As more and more data become available, data scientists can analyze
such an abundance of urban spatial data to discover predictive and descriptive data-driven
models, which can assist city managers in dealing with the major problems that cities face,
e.g., human mobility, traffic flows, air pollution, crime forecasts, and virus diffusion [1–9].
In particular, detecting city hotspots is emerging as a frequent task when analyzing urban
data. In fact, given the availability of geo-referenced data, it is useful to detect areas

Big Data Cogn. Comput. 2023, 7, 29. https://doi.org/10.3390/bdcc7010029 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc7010029
https://doi.org/10.3390/bdcc7010029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-4987-0459
https://orcid.org/0000-0002-7550-1331
https://orcid.org/0000-0002-1011-1885
https://doi.org/10.3390/bdcc7010029
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc7010029?type=check_update&version=1


Big Data Cogn. Comput. 2023, 7, 29 2 of 18

where urban events (e.g., crimes, traffic spikes, viral infections, and pollution peaks) occur
with a higher density than in other regions of the dataset. Additionally, hotspot detection
can serve as a useful organizational technique for elaborating thorough knowledge of
an urban area, and their borders and shapes can enable high-level spatial knowledge
summaries, which are valuable for policymakers, scientists, and planners [5,10,11]. As
an instance, environmental scientists are interested in partitioning a city into uniform
regions based on environmental characteristics and pollution density [3,12]. Similarly,
during viral emergencies, as recently happened with the COVID-19 pandemic, virologists
and epidemiologists are steadily interested in detecting city hotspots in which viruses are
spreading with higher densities than other areas of the same city [6,7,13]. Moreover, city
administrators can be interested in determining uniform regions of a city with respect to
the functions they serve for citizens or visiting people. Additionally, police authorities are
interested in detecting crime hotspots (i.e., areas with a high crime density) to ensure public
safety in the city territory better [4,5]. Regarding data analysis, the search for intra-hotspot
and inter-hotspot models is a hot topic for scientists. For instance, intra-hotspot models
can reveal the changes in density within a hotspot over time, and inter-hotspot models can
study how the appearance of a given hotspot can affect the generation of other hotspots in
a different area [14].

Motivations. In metropolitan cities, the density of events, traffic, or population
can differ widely between different areas, making urban regions highly dissimilar re-
garding density. This issue is made evident in Figure 1, which shows how inter-city
and intra-city population densities strongly differ in different metropolitan city areas.
Specifically, Figure 1a plots the population density of the 200 densest square kilometer
grid cells in six representative cities [15], while the coefficient of variation of the pop-
ulation density of several countries is shown in Figure 1b. Focusing on the first chart
(https://garrettdashnelson.github.io/square-density/, accessed on 18 December 2022), we
can observe that densities largely vary within the same city, and between several cities.
As an instance, New York City represents a classic case of multi-density regions: there
are several high-density areas (Manhattan), and many other low-density areas (Queens).
Chicago shows similarly top-heavy density pyramids, where the high-density areas (Loop
and Near North Side) stand out from the rest of the region [15]. Other cities, such as Boston,
San Francisco, and Los Angeles, show similarly multi-density distributions, with a high
variation of densities among different city regions. As a second observation, it is worth
noting that densities largely vary between several cities. For example, it is worth noting
that the lowest-density areas of New York City are even denser than the densest parts
of Dallas or Boston, and that even Chicago and Los Angeles’ densest areas barely crack
into the bottom half of New York City’s top 200. On the other side, Figure 1b shows the
average, minimum, and maximum values (and the names of the corresponding cities) of
the coefficient of variation of the population density for several countries [16]. The co-
efficient of variation displayed in Figure 1b is defined as the relative standard deviation
of urban population density, i.e., CV = SD/PD, where given a city, SD is the standard
deviation of population density within the city, and PD is the average population density
of the same area. Thus, the coefficient of variation is a unit-free measure of the density
variation of the population within a city. The higher the coefficient of density variation of
a city, the higher the dispersion in the population density of a city. The chart confirms a
very high variability of densities within the same country, and between several countries.
For example, in Mexico, the coefficient of variation ranges from 1.05 in Mexico City to
14.03 in Navajoa, showing an extremely high dispersion in population density. A similar
observation can be made for Korea, the U.S., Canada, and the other listed countries. This
aspect must be taken in consideration to properly infer the real hotspots when analyzing
urban data. The density of traffic, events, population, etc., in metropolitan cities can largely
differ between different areas, making urban regions extremely dissimilar in terms of
density. It is worth noting that, in our experience, given an urban area and a set of events
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(related to, for example, crimes, COVID infections, and mobility), high-density variations
can be observed in the collected data.
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Figure 1. Intra-city and inter-city population densities in metropolitan urban areas. (a) Population
densities of the densest 200 cells for a given set of cities. Each cell has a 1 km2 area [17]. (b) Coefficient
of variation of population density across urban areas and countries (2014) [16]. For each country,
the gray dot is the average computed on the coefficient of variation of each city of the country.
The figure also displays, for each country, the minimum and the maximum coefficients of variation,
and the cities where they occur.

Clustering is the most appropriate technique to discover urban hotspots. However, we
can split such algorithms into two groups. The first group includes algorithms that, due to
the adoption of global parameters, define a single minimum threshold value to distinguish
between dense and not-dense areas. Often, a proper threshold setting becomes all the more
difficult when clusters in different regions of the feature space have considerably different
densities, or clusters with different density levels are nested. In such cases, the partitioning
might not be proper with one single-density threshold. In fact, if the chosen threshold is too
high, they can discover several small non-significant clusters that actually do not represent
dense regions; otherwise, if the chosen threshold is too low, they can discover a few large
regions that actually are no longer dense as well. As a matter of fact, the application of
such algorithms to a multi-density dataset, such as urban data, could not achieve good
results. The second group includes algorithms that rely on multiple minimum threshold
values. Such algorithms generally detect multiple pattern distributions of different densities,
aiming at distinguishing between several density regions, which may or may not be nested
and are generally of a non-convex shape. Then, they automatically estimate the number
of threshold values to optimally identify the different density regions, without any prior
knowledge about the data. Such algorithms usually detect better data partitioning than
single-density threshold algorithms, but their drawback is a very high computational cost.

Contributions and plan of the paper. Given the presented context, this paper presents
a study on hotspots detection in urban environments. As the main contribution, the study
compares the most important approaches proposed in the literature for clustering urban
data and analyzes their results on two synthetic datasets and a real-world one, having
in mind two different goals. The experimental evaluation on synthetic state-of-the-art
multi-density datasets is performed to evaluate the clustering quality and the ability of
the algorithms to retrieve proper hotspots. To do that, we exploit two synthetic datasets,
where each point owns a target cluster label, and thus the algorithms could be evaluated
qualitatively and quantitatively by taking advantage of such ground truth information.
The experimental evaluation on real-world data is performed on crime data from the
Chicago Police Department, inherently characterized by points distributed with very
different densities in the city area. Such a concrete scenario is exploited to show the
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practical usefulness of density-based clustering algorithms in discovering multi-density
urban hotspots in real urban cases.

The remainder of the paper is structured as follows. Section 2 briefly describes
the most important density-based approaches in spatial clustering literature, and the
most representative projects in that field of research. Section 3 presents a selection of
the main density-based clustering algorithms exploited in the literature to analyze urban
data, by summarizing how they work. Section 4 provides the comparative experimental
evaluation of the different approaches on state-of-the-art datasets. Section 5 shows the
algorithm results on a real-world scenario. Finally, Section 6 concludes the paper and plans
future research works.

2. Related Works

The analysis of urban data and the detection of urban hotspots from geo-referenced
data are very challenging tasks. For this purpose, several approaches have been proposed
in the literature, tackling the problem by adopting clustering approaches. In some cases,
the discovery of urban hotspots represents one step of a more complex workflow, based on
a common inspiring idea of several approaches that first detect geographic hotspots and
then extract predictive models of intra-hotspots and/or inter-hotspots. In this section, we
briefly review the most representative research work in the area.

The DSPM (density-based sequential pattern mining) approach, aimed at the discovery
of mobility patterns from GPS data, is proposed in [2]. The method consists of (i) discover-
ing urban dense regions of interest (more densely passed through ones) and (ii) extracting
mobility patterns among those regions. As a case study, the approach is applied to a real-
life GPS dataset tracing the movement of taxis in the urban area of Beijing. Additionally,
the authors describe a comprehensive validation methodology for assessing the accuracy
and quality of detected dense regions and trajectory patterns. The approach relies on the
DBSCAN algorithm for detecting dense regions and could be improved by considering
multi-density clustering analysis, detecting also lower-dense but homogeneous regions.

An approach to predict ozone concentrations at given target observation stations,
based on spatial clustering and multilayer perceptron models, is proposed [18]. In particular,
the approach exploits k-means clustering to detect similar stations and then train them
together to get a base model for spatial transfer learning. The final models are used to
predict the ozone concentration for three-day-ahead prediction horizons. The experimental
evaluation, performed using historical data of stations in Germany, has shown higher
forecasting accuracy of ozone exceedances with respect to traditional chemical transport
models and popular machine learning approaches. Since the work groups sensor stations
which are localized on a large area, it could benefit from exploiting multi-density clustering
algorithms instead of k-means. Additionally, in a recent paper [19], the application of
artificial intelligence (AI) and machine learning (ML) to build air pollution models, aimed
at forecasting pollutant concentrations and health risks, is analyzed. The paper depicts
how air pollution data can be uploaded into AI-ML models to discover the correlation
between exposure to pollution and public health risks, giving a survey of applications and
challenges of such a research field. In particular, it is pointed out that explainability is one
of the paramount requirements in choosing AI-ML models for analyzing pollution data.

In [20], an approach is proposed to predict high-resolution electric consumption trends
at finely resolved spatial and temporal scales. The approach is composed of two steps. First,
apartment-level historical electric consumptions data are collected and clustered. Second,
the clusters are aggregated based on the consumption profiles of consumers. The clustering
analysis is performed by the k-means algorithm, while forecasting models are discovered
by two deep learning techniques: long short-term memory unit (LSTM) and gated recurrent
unit (GRU). The experimental evaluation was performed on electricity consumption data
collected from residential buildings situated in an urban area of South Korea. In particular,
a comparative analysis with state-of-the-art machine learning models and deep learning
variants showed good performance in terms of building- and floor-level prediction accuracy.
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The clustering of the consumption profiles of the consumers does not take into account
features related to the location of apartments, buildings and floors. A multi-density hotspot
detection can benefit the analysis, as it could group together building in the same city area,
maybe constructed in the same years and having similar characteristics.

In [21], the authors designed a workflow composed of five steps, i.e., data pre-
processing, feature extraction, machine learning training, performance evaluation, and ex-
plainable artificial intelligence, to analyze the effects of changes in land cover, such as
deforestation or urbanization, on the local climate. In particular, machine learning mod-
els have been trained to learn the relation between land cover changes and temperature
changes. Then, explainable artificial intelligence has been further exploited to interpret and
analyze the impact of different land cover changes on temperature. Additionally, the ex-
perimental results have shown that random forest outperformed other machine learning
methods (e.g., linear regression) proposed in the literature for discovering the relation of
land cover–temperature changes.

A methodology for discovering behavior rules, correlations, and mobility patterns of
visitors attending large-scale public events by analyzing social media posts is proposed
in [22]. In particular, the authors describe a multi-step approach based on the detection
of hotspots of interest (bounded areas) where the public events are held, collection of the
geo-tagged items related to the events, gathering of trajectories of users publishing posts
concerning such events, and discovery of touristic mobility patterns. The methodology
is tested through two case studies: a mobility pattern analysis on Instagram users who
visited EXPO 2015, and behavior modeling of geo-tagged tweets posted by users attending
the 2014 FIFA World Cup, showing reasonable predictive accuracy.

A system for geo-localized crime data analysis, named CrimeTracer, is proposed in [23].
The approach is based on a probabilistic framework to discover spatial clusters in urban
areas, and it is applied for crime event forecasting. In particular, the algorithm partitions the
area of interest in activity spaces, which represent hotspots frequented by known offenders
to make their criminal activities. On the bases of such knowledge, spatial crime predictions
are performed on each activity space. Another approach for spatial data clustering is
proposed in [24], which classifies locations as crime hotposts or no crime hotspots by
exploiting one-class support vector machines (SVM). Similarly, in [25] an approach based
on recurrent neural network models is designed to analyze spatial information and classify
grid-cells as hotspot or not-hotspot.

An approach aiming at detecting crime hotspots in cities and forecasting crime trends
in each hotspot is described in [5]. The approach leverages auto-regressive forecasting
models and spatial cluster analysis to build a specific crime predictor for each hotspot
detected during the spatial clustering analysis. The predictors can estimate crime trends
in terms of the number of expected future crime events. The approach is assessed on
real-world data, consisting of crime events collected in New York City and Chicago, and is
demonstrated effective in terms of forecasting accuracy considering different time horizons.
The above reviewed works in crimes analysis [5,23–25] are not capable of considering
automatically detected hotspots characterized by different densities.

A predictive approach based on spatial analysis and regressive models is proposed
in [13], aiming at discovering spatio-temporal predictive epidemic patterns from infection
and mobility data. The algorithm is composed of several steps, starting from the detection
of epidemic hotspots (urban areas where infection events occur more densely with respect
to others) and mobility hotspots (urban regions more densely visited by mobility traces),
to the discovery of epidemic patterns among epidemic hotspots. The approach finally
processes each epidemic hotspot and analyzes the infection data of the epidemic hotspots
involved in mobility patterns, then it extracts hotspot-specific epidemic forecasting models.
The approach has been validated on real-world data regarding mobility and COVID-19
infections in Chicago. The paper focuses only on high-density hotspots in the given analysis
and exploits the DBSCAN algorithm for detecting epidemic hotspots. This work can also
benefit from the exploitation of other multi-density-based clustering algorithms.
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3. Algorithms to Detect Urban Hotspots

This section shortly describes four density-based clustering methods—CHD, DBSCAN,
HDBSCAN and OPTICS-Xi—that we selected from the literature as the most used and
interesting approaches to analyze urban data.

3.1. DBSCAN

The DBSCAN (density-based spatial clustering of applications with noise) [26] al-
gorithm is the precursor of all density-based clustering algorithms. It was developed to
process large datasets with the inherent presence of noise. DBSCAN is capable of discrimi-
nating the noise points of a dataset and can detect clusters of any shape with no previous
information about the number of expected clusters. Shortly, DBSCAN leverages the con-
cepts of core points, density-reachability, and density-connectivity. Given two parameters ε and
minPts, a point is a core point if there are at least minPts points in its neighborhood of radius
ε (ε-neighborhood). A point p is directly density-reachable from a point q if q is a core point
and p is in q’s ε-neighborhood. Two points p and q are density-reachable if there exists a
chain of directly density-reachable points that connect q and p. Finally, two points p and q
are density-connected if there exists a core point o such that p and q are density-reachable
from o.

DBSCAN builds a cluster of points by iteratively connecting a couple of points that
are density-connected, and all the points that are density-reachable from a point of the
cluster are in the same cluster. All points that do not belong to any cluster, and thus are
not density-connected to any other point, are considered noise points. The DBSCAN can
process a dataset of size n in O(nlogn) time if exploiting a proper indexing structure on
the data for executing the search for the ε-neighborhood. It is worth noting that, given the
definitions above, it is clear that DBSCAN can detect clusters having at least a specific pre-
determined density ( minPts

πr2 ), directly determined by the ε and minPts parameters. For such
a reason, it can fail to detect clusters characterized by different densities.

3.2. OPTICS-xi

The OPTICS-xi [27] algorithm is rooted in the concepts of reachability described for
the DBSCAN, but it exploits some derived properties to build an ordered structure for
the dataset containing information about every ε value in a given range, and it uses this
structure to generate a proper clustering. The OPTICS indexing structure is based on the
assumption that given a constant min_pts value, density-based clusters with respect to a
higher density (i.e., a lower value for ε) are completely contained in density-connected sets
with respect to a lower density (i.e., a higher value for ε). For each point, the structure stores
the core distance and the reachability distance. Given a parameter min_pts, the core distance
of a point p is the distance ε′ to its minPtsth nearest neighbor (it is undefined whether p
has less than minPts neighbors). The reachability distance of point p with respect to a point o
is, intuitively, the smallest distance such that p is directly density-reachable from o if o is
a core point. By exploiting these above-introduced concepts, the OPTICS-xi algorithm is
capable of generating an indexing structure of the dataset that keeps the cluster hierarchy
for a variable neighborhood radius. Now, if a specific value for ε is chosen, by exploiting
the structure, it is possible to perform a clustering that is very similar to the DBSCAN
one. Given the generated values of reachability distance stored in the OPTICS indexing
structure, the algorithm first generates the related reachability plot, and then it looks at the
steep slopes within the graph to find clusters. The ξ (0 < ξ < 1) parameter is exploited to
define what counts as a steep slope. The results of the xi clustering extraction method are
very sensitive to the tuning of the ξ parameter. The OPTICS-xi time complexity is O(nlogn).

3.3. HDBSCAN

The HDBSCAN algorithm [28], based on similar concepts defined for OPTICS, com-
putes a complete clustering hierarchy composed of all possible density-based clusters for a
large range of density thresholds. Then, it chooses the clustering model that maximizes
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the overall stability of the extracted clusters. To build such a hierarchy, the HDBSCAN
starts from the concepts of mutual reachability distance between two core points p and q and
given a value for a parameter min_pts. The mutual reachability distance is defined as the
minimum ε radius such that p and q are mutually density-reachable. Differently from the
above introduced reachability distance, the mutual reachability distance is symmetric.

HDBSCAN works as follows. First, it builds the clustering hierarchy by computing
a mutual reachability graph, which is a complete graph where each vertex is a data point,
and each edge is weighted with the mutual reachability distance of the linked couple
of points. Then, a minimum spanning tree is computed on that graph, integrated by
adding (for each vertex) a self-edge, weighted by the core-distance of the related data point.
The tree is processed by removing the edges in decreasing order with respect to their
weight. For each removal, the two involved edges are labeled as roots of a new pair of
clusters, or noise if the generated component has not any edge. A variation of the summa-
rized algorithm considers also a given minimum cluster size (min_cluster_size parameter),
which avoids the generation of clusters having a size lower than min_cluster_size. Given
the clustering hierarchy, a clustering is extracted which maximizes the overall stability.
The notion of stability is derived from the notion of excess of mass [29]. HDBSCAN is able to
compute the clustering hierarchy and extract the clusters in O(n2) time, which is in some
cases infeasible and represents the main drawback with respect to DBSCAN and OPTICS.

3.4. City Hotspot Detector

The city hotspot detector (CHD) algorithm [30] is a multi-density based clustering algo-
rithm that has been purposely designed for processing urban spatial data. The algorithm is
composed of several steps, as follows. First, given a fixed min_pts, the reachability distance
for each point is computed and exploited as an estimator of the density of each data point.
Then, the points are sorted with respect to their estimated density, and the density variation
between each consecutive couple of points in the ordered list is computed. The obtained
density variation list is then smoothed by applying a rolling mean operator considering
windows of size s. The points are then partitioned into several density level sets, on the basis
of the smoothed density variations. Then, a different ε value is estimated for each density
level set. Finally, each set is analyzed by the DBSCAN algorithm. Specifically, each instance
takes in input, a specific ε value computed for the analyzed density level set. The set of
clusters detected for each partition constitutes the final result of the CHD algorithm. The
CHD algorithm runs with O(nlogn) time complexity, where n is the size of the processed
dataset. A cluster analysis with the CHD algorithm requires the tuning of more parameters
(three) with respect to the previously introduced algorithms.

4. Experimental Evaluation and Results

In this section, we provide a comparative analysis of the four density-based clustering
algorithms described in Section 3, namely CHD, DBSCAN, HDBSCAN, and OPTICS-Xi,
by assessing the quality of the clusters detected by the algorithms and their ability to
process datasets characterized by areas with different densities. The comparison is made
on the results gathered by analyzing two datasets provided of the target cluster labels
that are considered ground truth during the evaluation process. The experiments were
carried out by exploiting the implementations provided by the scikit-learn Python
library for DBSCAN and OPTICS-xi, the hdbscan Python library for HDBSCAN, and the
R implementation of the CHD algorithm available at gitlab (CHD R-code: https://gitlab.
com/chd3/chd-rcode/, accessed on 18 December 2022).

4.1. Data Description

The datasets chosen for the comparative analysis are chess and compound, two cluster-
labeled datasets available in the literature [31,32], whose data instances and target clusters
are shown in Figures 2 and 3. In particular, the two datasets have different characteristics,
as reported in the following:

https://gitlab.com/chd3/chd-rcode/
https://gitlab.com/chd3/chd-rcode/
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- The chess dataset is composed of 618 instances and partitioned in nine target clusters.
Each instance is described by X and Y features (Figure 2). Clusters are very contiguous,
and they have regular block shapes, different densities and sizes. In particular, the high-
est density cluster has a density σChess

5 = 212.54 (cluster n. 5, n. of points = 196,
area = 0.92), while the lowest density one has a density σChess

7 = 31.50 (cluster n. 7, n.
of points = 25, area = 0.79).

- The compound dataset is composed of 399 instances, described by X and Y features,
and partitioned in six target clusters (Figure 3). Clusters are well separated, and they
have irregular multi-geometric shapes (different from the previous dataset), different densi-
ties and sizes. In this dataset, the highest density cluster has a density σ

Compound
6 = 6.19

(cluster n. 6, n. of points = 16, area = 2.58), while the lowest density cluster has a
density σ

Compound
1 = 0.21 (cluster n. 1, n. of points = 50, area = 236.60).
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Figure 2. The Chess dataset: (a) data instances and (b) target clusters.
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Figure 3. The Compound dataset: (a) data instances and (b) target clusters.

The multi-density distribution of instances, as well as their multi-shape partitions,
makes such datasets very appropriate for our analysis because they model different scenar-
ios to test and validate the algorithms on.

4.2. Results on State-of-the-Art Data

In order to evaluate the performance of the selected clustering algorithms over the
above-introduced datasets, we compare the results obtained by the cluster analysis, i.e., the
discovered clusters, to the ground truth labels provided by the datasets, i.e., the target clusters.
By matching the discovered clusters against the provided target clusters, we can evaluate
the effectiveness of the clustering algorithms. To do so, the following set of external
metrics, designed to be employed when ground truth labels are available, are here adopted:
Fowlkes, Adjusted Rand, Adjusted Mutual In f ormation (AMI), V-measure, Accuracy, F-
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measure, Jaccard, Γ, Rand and Homogeneity (more details about such metrics are reported
in [33]).

In general, the listed metrics consider the number of items that are incorrectly allocated,
i.e., items not assigned to a cluster of points sharing the same target cluster label. According
to an external criterion, the result of a clustering algorithm is more satisfactory when fewer
items are incorrectly allocated. All the above-listed metrics can assume values in the range
[0, 1], where a value of 1 corresponds to a perfect match between discovered and target
clusters, and lower values to the presence of a higher number of incorrectly allocated items.
Therefore, such external metrics can be exploited to compare the performance results of
clustering algorithms according to objective quantitative criteria.

It is worth noting that, for each clustering algorithm, the choice of the input parameters
directly impacts the quality of the results; therefore, in order to make a fair comparison
between the clustering algorithms, there is the need to carefully pick the input parame-
ters with respect to the analyzed dataset. Let us recall that CHD receives k, ω and s as
input parameters; DBSCAN requires the setting of ε and min_pts; HDBSCAN receives
min_cluster_size and min_pts [28] as input parameters; and OPTICS-Xi requires the setting
of ξ and min_pts.

In this paper, we adopted a parameter sweeping methodology for selecting the input
parameters. Such a methodology consists in running several instances of each algorithm
exploiting different parameter settings. For each algorithm, the parameter settings resulting
in the best average performance, computed as the average of the above-listed metrics, are
chosen. This process enables the modeler to determine a parameter’s "best" value. Table 1
shows some details about the experimental setting adopted during the parameter sweeping.
In particular, for each algorithm, the table reports the fixed parameter values, the chosen
parameter to be swept and its range of values, the obtained best parameter value, and the
corresponding best average performance.

Table 1. Experimental setting for the parameter sweeping for each algorithm.

Dataset Algorithm Fixed
Parameter Swept Parameter Begin End Best Average

Performance
Best Swept Parameter
Value

Chess

CHD k = 4, s = 1 ω 0.1 1.7 0.65 ω∗ = 1

DBSCAN min_pts = 4 ε 0.08 0.25 0.47 ε∗ = 0.14

HDBSCAN min_pts = 4 min_cluster_size 2 18 0.38 min_cluster_size∗ = 3

OPTICS-Xi min_pts = 4 ξ 0.06 0.08 0.13 ξ∗ = 0.066

Compound

CHD k = 4, s = 1 ω 2.0 2.8 0.86 ω∗ = 2.5

DBSCAN min_pts = 4 ε 1.43 1.6 0.83 ε∗ = 1.53

HDBSCAN min_pts = 4 min_cluster_size 2 18 0.84 min_cluster_size∗ = 15

OPTICS-Xi min_pts = 4 ξ 0.2 0.4 0.82 ξ∗ = 0.33

Figure 4 reports the first set of experimental results, obtained on the chess dataset.
The figure shows how quality indices vary versus swept input parameter values. Regarding
the CHD algorithm (Figure 4a), it is clear how the trend is strongly affected by the values of
the ω parameter, and the best results are obtained by considering ω∗ = 1.00. The DBSCAN
algorithm is evaluated by varying the ε parameter from 0.08 to 0.22 (minPts = 4), and the
best result is achieved for ε∗ = 0.14 (see Figure 4b). Similarly, we evaluate different
input parameters settings for HDBSCAN (Figure 4c) and OPTICS-xi (Figure 4d). Even
in these cases, little variations of the input parameters strongly affect the quality of the
results. The best results are achieved considering min_cluster_size∗ = 3 for HDBSCAN
and ξ∗ = 0.066 for OPTICS-xi.
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Figure 4. The Chess dataset: clustering quality indices vs. different input parameter values. (a) CHD.
(b) DBSCAN. (c) HDBSCAN. (d) OPTICS-Xi.

Similarly, we run several tests on the compound dataset, whose results are reported in
Figure 5. In particular, the figure shows how quality indices vary versus input parameter
values. We can observe that, even for this dataset, input parameter values strongly affect the
clustering quality and performance index values. As a result, we find that CHD achieves the
best result for ω∗ = 2.50, DBSCAN for ε∗ = 1.53, HDBSCAN for min_cluster_size∗ = 15
and OPTICS-Xi for ξ∗ = 0.33.
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Figure 5. The Compound dataset: clustering quality indices vs. different input parameter values.
(a) CHD. (b) DBSCAN. (c) HDBSCAN. (d) OPTICS-Xi.
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A quantitative performance comparison among the considered algorithms is presented
in Figure 6, where the values of the clustering indexes are shown for chess and compound
datasets, by only referring to the run with the best combination of input parameters.
In addition, Figure 7 plots the number of noise points and the number of detected clusters
for both datasets. From the presented results, we can make the following considerations:

- CHD detects higher quality clusters than DBSCAN, HDBSCAN and OPTICS-Xi. For both
datasets, in fact, Figure 6 shows that CHD achieves better performance than the other
three algorithms, for all indices. Specifically, on chess, considering the best parameter
setting case for each algorithm, CHD achieves an average clustering quality (computed
over all indices) equal to 0.65, while DBSCAN, HDBSCAN, and OPTICS-Xi achieve
0.47, 0.38 and 0.13, respectively. Similarly, on compound, CHD slightly outperforms
the other three algorithms, assessing on an average clustering quality equal to 0.86,
while DBSCAN, HDBSCAN, and OPTICS-Xi achieve 0.83, 0.84, and 0.82, respectively.
This is an interesting result since it shows that a multi-density approach, applied
over such datasets, overtakes the other algorithms in terms of accuracy, compactness,
and separability. In addition, the higher the closeness among clusters (chess dataset),
the more evident the clustering quality improvement.

- CHD and HDBSCAN detect a lower number of noise points than DBSCAN, and OPTICS-Xi.
Figure 7 shows the number of noise points and the number of clusters detected by
the two algorithms. Specifically, Figure 7a shows that CHD, on the Chess dataset, is
the algorithm detecting the lowest number of noise points (17%). On the compound
dataset, HDBSCAN detects no noise points, while CHD detects the 5.3% of the total
number of instances, which is a very low number as well. The other two algorithms
detect a higher number of noise points.

- CHD largely outperforms the other algorithms when detecting not-well-separated clusters.
Observing Figures 2 and 3, we can observe that the chess dataset shows clusters that are
very contiguous and not-well-separated, while in the compound dataset, the separation
among clusters is more evident. Generally, the low separation between clusters is a
crucial issue for density-based algorithms to detect proper clusters. Considering the
results of our tests performed on both datasets, it is worth noting that, in particular
on the chess dataset, CHD outperforms the other three algorithms, for all indices (see
Figure 6). This means that its application results in being more effective than the
other approaches when clusters are very close, which is a classic urban case scenario.
On the compound dataset (see Figure 6), characterized by well-separated clusters, all
four algorithms achieve good results, and the difference in their performance is less
evident than in the first dataset.
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Figure 6. Best clustering results for the four algorithms on the two datasets: chess (a) and compound
(b) datasets.
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Figure 7. Number of noise points (a) and number of clusters (b) detected by the four algorithms on
the two datasets.

Finally, Figures 8 and 9 show a qualitative comparison among the clustering models
detected by the four algorithms on the two datasets. In particular, by observing Figure 8
(chess dataset) we can see that CHD detects 15 clusters, separability is quite good, and the
number of noise points (in black) is very low with respect to the other algorithms. On the
other side, DBSCAN and HDBSCAN detect a lower number of clusters than CHD, but a
high number of noise points. Finally, OPTICS-Xi labels many instances as noise points,
which makes the clustering quality very low. On the other side, by observing Figure 9
(compound dataset), we can see that the CHD and DBSCAN achieve a good separability
among all clusters, while HDBSCAN and OPTICS-Xi are not able to separate the two
clusters on the upper left side (cluster 1). It is worth noting that DBSCAN, OPTICS-Xi,
and HDBSCAN could not detect the large low-density cluster on the right (cluster 1 in
Figure 3b), labeling it as noise. That cluster is detected only by CHD.
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Figure 8. The Chess dataset: detected clusters. (a) CHD. (b) DBSCAN. (c) HDBSCAN. (d) OPTICS-Xi.
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Figure 9. The Compound dataset: detected clusters. (a) CHD. (b) DBSCAN. (c) HDBSCAN. (d) OPTICS-Xi.

5. A Real-Case Study: Detecting Multi-Density Crime Hotspots in Chicago

To evaluate the performance and assess the effectiveness of the approaches described
in Section 3 to discover city hotspots in a real-world scenario, we perform a comparative
evaluation on geo-referenced crime events collected over a large area of Chicago. In par-
ticular, such tests aim at showing a concrete use case on which density-based clustering
analysis can be exploited and the practical usefulness of the selected clustering algorithms
to discover city hotspots in real urban cases.

5.1. Data Description

The experimental evaluation presented in this section is performed on the ’Crimes—2001
to present’ dataset, consisting of a collection of crime events that occurred in Chicago
from January 2001 to the present. The dataset is publicly available on the Chicago Data
Portal (https://data.cityofchicago.org/, accessed on 18 December 2022), which also collects
and provides open data about various aspects and events of Chicago, e.g., food inspec-
tion, traffic crashes, and COVID-19 vaccine diffusion. Each crime in the dataset is both
geo-localized (with latitude and longitude) and time-stamped. Furthermore, it includes
attributes describing other characteristics of each crime event, e.g., the FBI code and the
crime type.

https://data.cityofchicago.org/
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For the sake of our experimental evaluation, we consider only the latitude and longi-
tude of crime events that occurred in 2012 and localized inside the boundary box shown
in Figure 10a,b. The area has a perimeter of about 52 km and extends on approximately
135 km. The total number of crime instances is 100,219. The area includes different zones of
the city, such as residential, commercial, tourist, and cultural zones, each one characterized
by different crime densities. Given such a property, detecting urban hotspots in the area is
a good benchmark to compare the performance results of the selected algorithms.

(a) (b)

Figure 10. Selected area of Chicago and geo-localized crime events. (a) Polygon of the area; (b) geo-
localized crime events.

5.2. Results

Similarly to the experimental evaluation performed on state-of-art datasets, we first
assessed the best parameter settings for a fair comparison between CHD, DBSCAN, HDB-
SCAN, and OPTICS-Xi. We run several experimental tests to find the parameter settings
capable of detecting the highest-quality city hotspots in terms of significance, compactness,
and separability. Table 2 shows, for each algorithm, the selected input parameters and some
statistics related to the achieved results. In particular, for each algorithm, the table reports
the input parameter setting, the number of detected hotspots, the percentage of noise points,
and the achieved Silhouette index values. In particular, Silhouette is an internal criterion
to compute and evaluate clustering quality, and it is a measure of how similar an object
is to its own cluster (cohesion) compared to other clusters (separation). The silhouette
ranges from −1 to +1, where high values indicate that instances are well-matched to their
own cluster and poorly matched to neighboring clusters. Thus, the higher the Silhouette
value, the better the clustering quality (a more detailed description of this metric is reported
in [33]). The hotspots detected by the considered algorithms are depicted in Figure 11,
where they are highlighted through different colors, while noise points are black-colored.

Table 2. Overview of the results obtained by CHD, DBSCAN, HDBSCAN, and OPTICS-Xi.

Input Parameters # Hotspots # Noise Points Silhouette Index

CHD ω = −0.27, k = 64,
s = 5000 181 5.7% −0.23

DBSCAN ε = 500, minPoints = 60 78 12.6% −0.28

HDBSCAN min_cluster_size = 200,
minPoints = 60 61 34.6% −0.19

OPTICS-Xi ξ =0.05, minPoints = 60 279 71.9% −0.46
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(a) (b)

(c) (d)

Figure 11. The Crime dataset: detected clusters. (a) CHD. (b) DBSCAN. (c) HDBSCAN. (d) OPTICS-Xi.

Now, by observing the hotspots detected by the algorithms and shown in Figure 11,
and the values reported in Table 2, we can make some considerations:

- CHD detects a higher number of significant hotspots than DBSCAN, HDBSCAN and
OPTICS-Xi. After a preliminary split in several density level sets, CHD partitions
each one by exploiting specific ε values (as described in Section 3), finally detecting
181 hotspots; on the other side, DBSCAN and HDBSCAN detect a lower number of
clusters, i.e., 78 and 61 hotspots, respectively. Finally, OPTICS-Xi detects 279 (very
small) hotspots, which are not very significant.

- CHD performs higher separation among the hotspots than DBSCAN, HDBSCAN and
OPTICS-Xi. The results depicted in Figure 11 highlight that CHD is able to achieve a
more refined spatial partitioning than DBSCAN and HDBSCAN, splitting some areas
of the city. Contrariwise, OPTICS-Xi detected a large number of noise points and a lot
of very small hotspots. In particular, CHD detects several hotspots in the central area
(colored in red, orange, violet, and blue in Figure 11a, whereas DBSCAN and HDB-
SCAN labeled such points as only a single hotspot (the large green area in Figure 11b
and the large violet area in Figure 11c). Similarly, CHD detects different hotspots
in the left-middle part of the analyzed area, while DBSCAN and HDBSCAN label
those as only one hotspot (colored in blue and red). OPTICS-Xi fails in a reasonable
clustering of points, by detecting only some small hotspots sparsely distributed in the
whole area. This shows that CHD is able to perform higher separation than the other
algorithms among the city hotspots, by creating clusters having different densities.
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- CHD labels a lower number of noise points than DBSCAN, HDBSCAN, and OPTICS-Xi.
The noise points, which are those points that could not be assigned to a hotspot since
they do not satisfy the density requirements of a given algorithm, are colored in black
in Figure 11. Table 2 reports that CHD, DBSCAN, and HDBSCAN classify 5.7%, 12.6%,
and 34.6% of data instances as noise points, respectively. On the other side, OPTICS-
Xi labels almost 72% of total points as noise, showing de facto low-quality results.
Considering the first three algorithms, it seems that CHD, in several cases, is able to
better detect hotspots characterized by distinct densities, labeling a low percentage
of instances as noise points. This is clearly evident by comparing Figure 11a–c. In
particular, we can notice that large regions located in the top part and bottom part of
the analyzed area are labeled as noise by DBSCAN and HDBSCAN (black-colored
blows in Figure 11b,c), while CHD is able to detect several clusters from it (several
hotspots colored in green and blue in Figure 11a). Finally, the presence of noise points
in Figure 11d is pervasive and diffused, showing low-quality results achieved by
OPTICS-Xi.

- HDBSCAN and CHD achieve higher clustering quality than DBSCAN and OPTICS-Xi.
Table 2 shows that HDBSCAN and CHD assess on silhouette values equal to−0.19 and
−0.23, respectively. Indeed, they achieve better results than DBSCAN and OPTICS-xi,
whose clustering quality assess on −0.28 and −0.46. Such results show that multi-
density clustering (i.e., HDBASCN and CHD) is able to distinguish several density
regions and identify proper hotspots in urban environments better than DBSCAN and
OPTICS-xi.

6. Conclusions

Detecting urban hotspots in smart cities is a challenging task, due to the fact that
geo-spatial urban data, e.g., traffic, crimes, mobility, and events, are generally characterized
by multiple densities that can differ widely from one area to another. This paper discussed
research issues, challenges and approaches to discover multi-density hotspots in urban
areas. Then, it compared the performance of four approaches (i.e., DBSCAN, OPTICS-
xi, HDBSCAN, and CHD) available in the literature, and analyzed their performance
on synthetic and real-world data. The evaluation on synthetic datasets was performed
considering the best parameter setting for each algorithm, selected by a parameter sweep-
ing methodology taking into account several quantitative clustering indexes. Similarly,
a qualitative comparison of the different algorithms was performed on real urban data.
Overall, the results showed that multi-density clustering algorithms (CHD and HDBSCAN)
outperform classic density-based algorithms (DBSCAN and OPTICS-xi) when analyzing
data characterized by multiple densities. Therefore, multi-density approaches are more
appropriate for urban hotspot detection.
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