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Abstract: The majority of current approaches for bias and fairness identification or mitigation in
machine learning models are applications for a particular issue that fails to account for the connection
between the application context and its associated sensitive attributes, which contributes to the
recognition of consistent patterns in the application of bias and fairness metrics. This can be used to
drive the development of future models, with the sensitive attribute acting as a connecting element
to these metrics. Hence, this study aims to analyze patterns in several metrics for identifying
bias and fairness, applying the gender-sensitive attribute as a case study, for three different areas
of applications in machine learning models: computer vision, natural language processing, and
recommendation systems. The gender attribute case study has been used in computer vision,
natural language processing, and recommendation systems. The method entailed creating use cases
for facial recognition in the FairFace dataset, message toxicity in the Jigsaw dataset, and movie
recommendations in the MovieLens100K dataset, then developing models based on the VGG19,
BERT, and Wide Deep architectures and evaluating them using the accuracy, precision, recall, and
F1-score classification metrics, as well as assessing their outcomes using fourteen fairness metrics.
Certain metrics disclosed bias and fairness, while others did not, revealing a consistent pattern for
the same sensitive attribute across different application domains, and similarities for the statistical
parity, PPR disparity, and error disparity metrics across domains, indicating fairness related to the
studied sensitive attribute. Some attributes, on the other hand, did not follow this pattern. As a result,
we conclude that the sensitive attribute may play a crucial role in defining the fairness metrics for a
specific context.

Keywords: bias; fairness; sensitive attribute; machine learning; artificial intelligence

1. Introduction

Prediction-based decision algorithms are widely used in industry and are rapidly
gaining traction with governments and organizations. These techniques are already widely
used in lending, contracting, and online advertising, and they are becoming more common
in fields such as public health, immigration detention, and criminal pre-trial systems [1]. As
machine learning (ML) becomes more common in decision-making applications, systems
that affect people’s lives must address ethical concerns to ensure that decisions are made
fairly and objectively [2].
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Numerous studies on bias and fairness have been conducted, taking into account
the constraints imposed by legal restrictions, corporate procedures, societal conventions,
and ethical standards [2]. Fairness can be defined as a social idea of value judgment and,
therefore, a subjective concept that varies across cultures, nations and institutions. Bias, on
the other hand, is a systematic error that modifies human behaviors or judgments about
others due to their belonging to a group defined by distinguishing features, such as gender
or age [3].

Identifying and improving bias and fairness is a difficult task since they are perceived
differently in different societies. As a result, their criteria take into account the individual’s
history, as well as cultural, social, historical, political, legal, and ethical concerns [4]. New
data science, artificial intelligence, and machine learning approaches are required to analyze
model performance for sensitive social variables such as race, gender, and age [1].

Furthermore, the predicament is exacerbated if the primary technological applications
lack machine learning models concerned with the explainability of decisions made, or if
these models can only be analyzed by the team that created them, limiting the information
that can be inferred from these models [5]. One method is to comprehend the decisions
without having to comprehend every step taken by the algorithm [6].

Data from the scenario in which the model will be used, and data about the model
itself are used to describe the situation and provide context, that is, any information that
can be used to describe the status of an entity [7]. Individuality, action, location, time,
and relationships are the five categories into which the context information elements fall.
Whereas location and time are primarily responsible for establishing interactions between
entities and allowing context information to flow between entities, activity is primarily
responsible for determining the relevance of context components in specific situations.
The model, data, and fairness criteria are entities, and their interactions are the subject of
this study.

Because they are context-dependent, determining the best metric for a problem is
still an open question in the research. Different contexts require different approaches, and
understanding the metric is critical for effective results. For instance, Anahideh et al. [8]
attempted to identify a set of ideal metrics for the context based on the sensitive attributes.

Many current approaches to bias and fairness are applications for a specific problem [9–12].
There are several approaches for identifying bias and fairness, known as fairness met-
rics, and the diversity makes determining the best evaluation criteria for a problem diffi-
cult [13]. Some solutions provide tools to help developers identify bias and fairness, such
as AIF360 [14], FairLearn [15], Tensorflow Responsible AI [4,16,17] and the Aequitas [18].
However, many of these approaches fail to account for the relationship between the appli-
cation context and the sensitive attributes associated with it, allowing ineffective fairness
metrics to be implemented [8].

In the domain of computer vision (CV), for example, it is difficult to identify and
separate the vast amount of visual information in the environment. Machines can categorize
things, animals, and humans using algorithms, optical and acoustic sensors, and other
tools [19]. However, due to the numerous sources of bias that may arise during model
training and evaluation, these machines may struggle to distinguish between faces, skin
tones, and races [20]. This usually happens when the context is ignored during model
development, such as when underrepresented user demographics are not taken into account
in the training data [21].

Similarly, natural language processing (NLP) applications, such as language transla-
tion [22] and the automatic removal of offensive comments [23], are critical for systems
that interact with people. Transformer architectures have been employed to extract implicit
meanings from vast amounts of text [24]; nevertheless, a major concern with such models
is the negative generalization of terms that should not have a negative connotation in a
broad context, such as gay or woman [25,26].

Recommendation systems (RS) are widely used in everyday life, such as catalog
streaming systems and online retailer user perception of product orders. These programs
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are classified as rankers because their function is to determine the current preferences in
the input and output lists of suggestions [27]. To evaluate a specific product or service,
their learning approach requires qualitative interactions between users and products, such
as the likes and dislikes system. Amazon’s catalog recommendation systems generate
consumer profiles and offer related products based on their preferences [28]. Another
recommendation system’s feature is the ability to connect similar profiles, recognizing
that if one user has rated a product positively, another similar user is likely to do the
same. Such systems, however, rely on massive amounts of historical data, which may
contain unrealistic training samples or reflect historical inequalities [29]. Furthermore,
biased systems that favor specific groups may create vicious cycles for recommendations,
reinforcing negative biases.

Hence, due to the difficulties in analyzing and determining which metrics of bias and
fairness for machine learning models are more suitable than others for different application
domains for a specific sensitive attribute, this study aims to methodologically analyze
patterns in several metrics for identifying bias and fairness, applying the gender-sensitive
attribute as a case study for three different areas of applications in machine learning models:
computer vision, natural language processing, and recommendation systems.

The contributions of this work include:

• Identification of the fairness metrics that have similar behavior in different models for
the same sensitive attribute;

• Determination of the sensitive attribute and the fairness metric as an element for
context definition;

• Verification whether different use cases with the same sensitive attribute have
similar contexts.

This work is organized as follows: Section 2 describes the research method and
presents the domains and models that were employed, Section 3 presents the results of the
models’ bias and fairness analyses for the three problems, and Section 4 provides the final
considerations and suggestions for future research.

2. Materials and Methods

We divided the method into four steps, as shown in Figure 1. Step (1) is to specify
and analyze datasets in tasks for computer vision, natural language processing, and rec-
ommendation systems as well as identifying key components for model development.
Step (2) involves the development of models using traditional machine learning architec-
tures, which leads to the acquisition of research objects for fairness analysis. Step (3) entails
calculating the models’ fairness metrics for the gender attribute using the materials and
methods developed. Finally, Step (4) is to evaluate and analyze the obtained results in order
to discover relevant links between the model and the fairness results, thereby contributing
to the context definition.

Figure 1. Research methodology flow chart showing the steps to recognize the patterns for bias and
fairness through a sensitive attribute.

The generated models were evaluated using the classification metrics accuracy, preci-
sion, recall, F1-score and AUPRC. Each of these classification metrics is defined below:

• Accuracy: a metric that computes the percentage of correct predictions made by
the model in relation to the total number of predictions. This metric should be



Big Data Cogn. Comput. 2023, 7, 27 4 of 18

used when the dataset’s class distribution is even and avoided when the dataset is
imbalanced [30].

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

• Precision: a metric that quantifies the positive predictions made by the model were
actually positive, by dividing the total true positives by the sum of true positives and
false positives [31].

Precision =
TP

TP + FP
(2)

• Recall: a metric that calculates how many true positives from the dataset were correctly
identified by the model by dividing the total number of true positives by the sum of
true positives and false negatives [31].

Recall =
TP

TP + FN
(3)

• F1-score: a metric defined as the harmonic mean of precision and recall, so that both
have the same weight for model evaluation. This indicates that the higher the value of
the F1-score, the higher the score of the other two metrics. This metric can be used for
imbalanced datasets and is more reliable for indicating model quality [31].

F1-score =
2 ∗ (Recall ∗ Precision)
(Recall + Precision)

(4)

• AUPRC: the area under the precision-recall curve (AUPRC) metric is used to evaluate
models for imbalanced datasets and are defined as the fraction of positive [32], where
this fraction is determined by the ratio of positive (P) and negative (N) according to
Equation (5) [33].

AUPRC =
P

P + N
(5)

For each classification class (0 or 1), we calculated the precision, recall, and F1-score
and present their macro average (macro avg) and weighted average (weighted avg). Macro
avg computes the unweighted average metrics for the labels without taking into account
label imbalance. Weighted avg, on the other hand, computes the weighted average based
on the number of true instances for each label.

2.1. Datasets

We utilized Face Recognition–FairFace Challenge (FIFC), Jigsaw Unintended Bias
in Toxicity Classification (JUBTC) and MovieLens100K datasets for the CV, NLP and RS
problems, respectively [21].

The FIFC is a challenge organized by ChaLearn that aims to encourage research on fair
face recognition and provide a new dataset with accurate annotations, with competition
participants required to deliver solutions that improve bias and fairness regarding sensitive
dataset attributes [34].

The IARPA Janus Benchmark-C (IJB-C) dataset was used for the FIFC, and it contains
31,334 still images (21,294 with faces and 10,040 without faces) and 117,542 frames from
11,779 full-motion videos, with an average of 33 frames per person. The IJB-C dataset’s
contributions are linked to facial recognition and biometric features that include human
faces in various positions, as well as using people with distinct professions to avoid the
problem of using celebrities. People whose physical appearance is directly related to
their professions, such as actors and models, may not be representative of the global
population [35]. The IJB-C received an addition of 12,549 public domain images, as well as
a re-annotation, to achieve the contest’s goal. However, it still remains imbalanced, with
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more data belonging to bright skin and male gender than dark skin and female gender,
which may produce a bias related to both skin color and gender attributes.

About JUBTC, in 2017, during the first toxicity classification challenge, it was dis-
covered that the models incorrectly associated gender identities with toxicity, as these are
frequently used with toxic connotations in the various bases that comprised the dataset of
the challenge. Training a model with these data causes the network’s learning to reproduce
these actual biases [25]. The JUBTC contest was established in 2019 to address this issue,
created by the Conversation AI team and hosted on the Kaggle platform, with the goal of
encouraging the development of models that recognize toxicity and reduce this type of
unintended bias using the Civil Comments Dataset (CCD) [36]. The CCD is a collection of
data extracted from the Civil social network [25].

The dataset in question has 45 columns and 1.9 million examples. Its main columns
are target, identity-attack, insult, obscene, sexually explicit, and threat. They determine
the overall toxicity as well as the intensity of that toxicity for each comment. The dataset
also includes attributes for gender identities, ethnicity and race, religion, and physical or
psychological disabilities.

Except for comment-text, which is a string of text, and columns that refer to the date,
ID, or the feelings they triggered in the annotation team, the attributes are mostly of the
decimal type, ranging between 0 and 1.

While detecting toxicity is difficult, the most difficult challenge in JUBTC is detecting
it without introducing bias or removing fairness from the model. This bias and fairness
manifest themselves in the model’s association between a frequently attacked identity and
the labeling of a comment as toxic. This is due to the negative treatment of certain identities,
such as the phrase I am a gay woman, which is considered toxic by several models due to the
presence of the word gay, which is frequently used in prejudiced comments.

The MovieLens dataset was collected by GroupLens [37], a research group from the
University of Minnesota, and includes a collection of movie ratings from the MovieLens
website, which is a movie recommendation service. There are five versions included, with
different sizes and attributes in each one of them. The dataset version used is “100k”,
which collected 100,000 reviews from 1000 users between 1997 and 1998 for 1700 films.
In addition to information about the films and ratings, the reviews include gender, age,
occupation, and postcode information. Users with fewer than 20 ratings or who did not
provide complete demographic information had their data erased. It is noted that user
attributes may cause or reproduce a bias since the data classes are not balanced, such as
in gender and age. Additionally, some users may have more film recommendations than
others with similar behavior but different classes.

2.2. Models

We utilized Visual Geometry Group (VGG19), Bidirectional Encoder Representa-
tions from Transformers (BERT) and Wide and Deep models for FIFC, JUBTC and Movie-
Lens100K datasets, respectively.

We used the VGG19 architecture to build a model using the FIFC. The identification
of bias and fairness in models is independent of their performance in classification and
regression metrics, such as accuracy, error, and so on. For example, there could be a model
with a high hit rate and low error that produces unfair results.

The VGG19 architecture, designed for large-scale image classification, went through
a transfer learning process with ImageNet dataset weights, adding the following layers
in the following order: Flatten, Dense (64 neurons), Batch Normalization, Dropout, Dense
(10 neurons), Batch Normalization, Dense (6 neurons), and Dense (1 neuron). The ReLU ac-
tivation function was present in all dense layers. The target was the head position attribute
(HEAD_POSE), and the input was 240 by 240 pixels in BGR format, with the activation
function Sigmoid, the optimizer Adam, and the loss function Binary Cross-Entropy.
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The BERT base uncased is used in the model developed for JUBTC. Token generation
with its own tokenizer of size 200. It was set up for binary classification, predicting the
toxicity intensity in comments ranging from 0 to 1.

The Wide and Deep is divided into two parts, the Wide and the Deep part. The Wide
part is used to represent the co-occurrence of features in the learning sample and contains
fundamental and traversal characteristics as input attributes, such as a direct link between
the user and the movie, with the user acting as the outcome [38].

The Deep part employs a feedforward neural network to classify the input, which is
frequently a string such as a user identity. First, from these high-dimensional classifica-
tion characteristics, a low-dimensional float vector with a randomly initialized value is
created [38].

2.3. Fairness Metrics

Step (3) defines the identification of bias and fairness in the developed models.
There are some metrics defined in the literature to identify fairness in machine learn-

ing, such as statistical parity value (SPV), equalized odds (EO), predictive equality (PE),
predictive parity (PPV), average odd difference (AOD), equal of opportunity (EOO), fnr
difference (FNRDif), false negative rate disparity (FNRD), predicted positive ratio dispar-
ity (PPRD), false positive rate disparity (FPRD), error disparity (ED), true positive rate
disparity (TPRD), and AUPRC, among others [21].

Before discussing the goals of each fairness indicator, it is critical to understand the
values of true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
Positive values are those obtained by the model that are consistent with its objectives. For
instance, a model’s prediction that a message is poisonous will be regarded as positive if
the message proves to be harmful. If the message is not harmful, the opposite is perceived
negatively. As a result, the amount of TP denotes positive values correctly predicted by
the model, whereas the amount of FP denotes positive values incorrectly predicted by the
model. TN denotes the negative values that the model correctly predicted, whereas FN
denotes the negative values that the model incorrectly predicted.

Because most users have not interacted with the movies in the catalog, establishing
ground-truth values is difficult; therefore, the values of TP, FP, TN, and FN are acquired
differently for RS. Only movie suggestions that the user had previously interacted with
were considered for model evaluation in order to create a confusion matrix of the model
recommendations. We used a technique as a foundation, where TP values denote a film
that has been endorsed by both the user and the system. TN values, on the other hand,
denote movies that are not user-approved and are not highly recommended [39].

The TP, FP, TN, and FN values were used to calculate the following fairness metrics,
which are categorized as follows:

(a) Disparity and parity metrics: calculated based on the ratio of one measure for a
benefited group to a non-benefited. If the ratio is 1, the groups are equal.

• FNR disparity: disparities calculated based on FNR.
• PPR disparity: disparities calculated based on predicted positive ratio PPR =

PP
PP+PN .

• FPR disparity: disparities calculated based on false positive rate FPR = FP
FP+TN .

FPR is the proportion of cases with incorrectly detected negative conditions
as positive. In the example, it is the rate of non-toxic messages mistakenly
predicted as toxic.

• Error disparity: disparities calculated based on each group’s error, defined by
Error = FP+FN

Total .
• TPR disparity: disparities calculated based on true positive rate TPR = TP

TP+FN .
TPR is the proportion of positive cases correctly detected. In the example, it is
the rate of toxic messages correctly predicted as toxic.
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• Predictive parity: this metric is satisfied by a classifier if the PPV = TP
TP+FP of

both the protected and unprotected groups is equal to the probability that a
subject with positive predictive value truly belongs to the positive class. In the
example, it implies that the toxicity classification of skin-color-related messages
has the same probability for distinct classes to be classified as toxic.

• Statistical parity: both toxic and non-toxic messages should have equal chances
to occur. Both methods should have the same chance of making a positive
prediction (TP + FP).

(b) Difference metrics: Calculated based on the difference between the benefited group
to a non-benefited. If the result is 0, the groups have the same value.

• FOR difference (FORD): the difference between the false omission rate FOR =
FN

TN+FN of the benefited group and the other groups. The FOR is the fraction
of incorrectly predicted positive cases out of all predicted negative cases. In
the example, it corresponds to the rate of messages incorrectly classified as
non-toxic for a total of non-toxic messages.

• FNR difference: the difference between the false negative rate FNR = FN
TP+FN

of the benefited group and the other groups. The FNR is the probability of a
positive case not being detected. In this example, it is the proportion of toxic
messages misclassified as non-toxic.

• Average odds difference (AOD): this metric is defined by Equation AOD = 1
2 ∗

( FP0
FP0+TN0

− FP1
FP1+TN1

+ TP0
TP0+FN0

− TP1
TP1+FN1

), indicating the difference between
the values correctly classified as positive and negative, of benefited versus the
other group (0 and 1).

(c) Other Fairness metrics.

• AUPRC: summarizes the precision–recall curve as the weighted average pre-
cision of each threshold, with an increasing recall of the previous threshold
used as weight, following the equation: AUPRC = ∑n(Rn − Rn−1)Pn, where
Pn and Rn are, respectively, the precision and recall at threshold ‘n’.

• Equalized odds: toxic and non-toxic messages should have the same false
alarm rate, i.e., toxic messages should be predicted as non-toxic and vice versa.
As a result, the false positive FPR = FP

TN+FP and false negative FNR = FN
TP+FN

rates for toxic and non-toxic messages should be the same. Toxic messages
should be equally likely to occur.

• Predictive equality: this metric is satisfied by a classifier if both the benefited
and non-benefited groups have equal FPR = FP

TN+FP , i.e., the probability of a
subject in the negative class having a positive predictive value. In our example,
this means that the probability of a true toxic message being misclassified as
non-toxic must be equal for all classes of a given sensitive attribute.

• Equal of opportunity: this metric is satisfied by a classifier if both the pro-
tected and unprotected groups have equal TPR = TP

TP+FN , requiring non-
discrimination only in the favoured outcome group. The example implies that,
regardless of classification, only toxic messages (TP + FN) are considered for
the toxicity classification of messages referencing skin color.

Bias and fairness can be detected by assessing the models’ fairness metrics. To cal-
culate the fairness metrics, it is necessary to first define a benefited group. In addition,
the two most representative groups are chosen based on the proportion of total group
occurrences to the total records in the dataset. After selecting the two most representative
groups in quantitative terms in the dataset, the proportion of both is calculated accord-
ing to Equation (6), and the one with the higher value is considered the benefited class.
Equation (6) is used before the fairness metrics calculation to define the benefited group.
Once the group is defined, we calculate the fairness metrics:
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Representativenessclass =
FNR
FPR

(6)

The fairness metrics should be within 20% of the benefiting class [18].
The fairness metrics obtained from each of the models VGG19, BERT, and Wide and

Deep were used to analyze the similarities in the results. If all classes of their sensitive
attributes are within the threshold for a given metric, the model is considered fair; otherwise,
it is considered unfair. We compare the models for each metric, determining whether the
same metric produces the same fairness result (fair or unfair) across models. If the results
are the same, the metric is considered representative in assessing bias and fairness for the
sensitive attribute. To assist in model comparison, we categorize each metric as similar if
the metric produces the same results across models, and different otherwise.

Figure 2 illustrates a diagram of the method for analyzing the three models’ fairness metrics.

Figure 2. Method for comparing fairness metric similarities.

3. Results
3.1. Analysis of the Developed Model for the FIFC Problem

In Step (1), we analyzed that the FIFC dataset contained the following sensitive
attributes: gender (male and female), skin color (light corresponding to Fitzpatrick scale I–
III, dark corresponding to Fitzpatrick scale IV–VI), and five legitimate attributes, including
age (0–34, 35–64, 65+), head position (front, other), image category (still or video image),
use or lack of glasses, and face cutout size. However, some characteristics, such as gender
and race or ethnicity, are imbalanced.

We also changed the structure of the challenge to resemble a classification problem to
identify the head position (HEAD_POSE), so that the value 0 represents the frontal position
and the value 1 represents another position of the individual. Figure 3 depicts that the
HEAD_POSE attribute distribution is imbalanced. Table 1 displays values for the sensitive
attribute gender.

Table 1. Gender categories for FIFC.

Gender Label

Male 0

Female 1



Big Data Cogn. Comput. 2023, 7, 27 9 of 18

Figure 3. HEAD_POSE distribution of the Fairface dataset.

In Step (2), this model achieved an accuracy of 89% during training. Table 2 shows the
model performance, and Figures 3 and 4 highlight the AUPRC and specificity metrics, both
of which have values of 0.89 and are relevant because the dataset is imbalanced.

Figure 4. AUPRC for VGG19.

Table 2. Classification Report VGG19.

Precision Recall F1-Score

0—frontal position 0.85 0.89 0.87
1—another position 0.92 0.89 0.91
macro avg 0.89 0.89 0.89
weighted avg 0.89 0.89 0.89

3.2. Analysis of the Developed Model for the JUBTC Problem

In Step (1), the toxicity value of the comments was categorized as a target, with 0 being
non-toxic and 1 being toxic. Furthermore, Table 3 depicts the discretized data regarding
gender in order to facilitate analysis of bias and fairness. Genders are represented by values
ranging from 0 to 3, while the absence of this attribute is represented by a value of −1.
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Table 3. Gender categories for Jigsaw.

Gender Label

Male 0

Female 1

Transgender 2

Other 3

Figure 5 illustrates the imbalance of the dataset in terms of the toxicity of the mes-
sages and their corresponding gender. The other gender class has few samples that are
indistinguishable in the graph.

Figure 5. Dataset distribution for JUBTC.

In Step (2), the BERT model was evaluated using the accuracy, recall, F1-score, and
precision, and the accuracy was 98%, as shown in Table 4. Because the dataset is imbalanced,
as shown in Figure 5, the AUPRC seen in Figure 6 is 0.76 and the specificity metric is 0.98.

Table 4. Classification Report BERT TensorFlow.

Precision Recall F1-Score

0—non-toxic 0.99 0.99 0.99
1—toxic 0.85 0.89 0.87
macro avg 0.92 0.94 0.93
weighted avg 0.98 0.98 0.98

Figure 6. AUPRC metric BERT.
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3.3. Analysis of the Developed Model for the MovieLens Problem

In Step (1), Figure 7 shows how the dataset’s gender attribute is imbalanced, with the
prevalence of the male class (blue bar) over the female class (orange bar). The x-axis shows
user-rated movie stars from 1 to 5, with 4 being the most common.

Figure 7. MovieLens dataset distribution.

Wide and Deep

In Step (2), the Wide and Deep model developed obtained for the evaluation metrics
AUPRC with a value of 0.99 (Figure 8) and accuracy with a value of 0.89 seen in Table 5, as
well as specificity with 0.96.

Table 5. Classification Report Wide and Deep.

Precision Recall F1-Score

0—not-recommended 0.44 0.96 0.61
1—recommended 1.00 0.88 0.93
macro avg 0.72 0.92 0.77
weighted avg 0.95 0.89 0.90

Figure 8. AUPRC metric Wide and Deep.

3.4. Fairness Metrics in the Models

In Step (3), the fairness metrics for the models were obtained, and these results allowed
for the identification of a pattern in Step (4).

In FIFC and MovieLens, those classes are male and female, while in JUBTC, they
encompass male, female, transgender, and other. Note that the sensitive attributes are
multi-class for JUBTC and binary in FIFC and MovieLens. The benefited group defined
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to calculate the fairness metrics, following Equation (6): male for the FIFC and female for
JUBTC and MovieLens.

The following metrics were used in the FIFC, JUBTC, and MovieLens datasets to
identify bias and fairness: error disparity, FNR disparity, FPR disparity, PPR disparity, TPR
disparity, statistical parity, equalized odds, AUPRC disparity, predictive parity, equal of
opportunity, predictive equality, FNR difference, and average odd difference.

Figure 9a depicts that the error disparity, PPR disparity, and statistical parity metrics
identified bias and fairness, used in the FIFC model, with the beneficiary class being 0-Male
and the other fairness metrics failing to do so.

Figure 9. VGG19 fairness metrics. (a) Results for Disparity and Parity metrics, (b) Results for
Difference metrics, (c) Results for Other Fairness metrics.

Figure 9b,c demonstrates that there was fairness and no bias in the other fairness metrics.
The JUBTC model’s fairness metrics were examined using the same method to deter-

mine their similarities. Figure 10 illustrates the result of the derived fairness metrics. The
occurrence of a gender class in JUBTC, such as male or female, indicates that the message
refers to that gender, whether toxic or not. Messages that were not related to gender were
removed from the dataset.
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Figure 10. BERT fairness metrics. (a) Results for Disparity and Parity metrics, (b) Results for Difference
metrics, (c) Results for Other Fairness metrics.

Figure 10a illustrates the disparity metrics. Error disparity, FNR disparity, FPR dis-
parity, and PPR disparity portray that the model is biased and unfair toward male and
transgender genders, while in statistical parity, the lack of fairness is identified in transgen-
der and other gender. The TPR disparity, AUPRC disparity and predictive parity portrays
fairness and no bias in the model. Due to a lack of data for Group 3, which prevents further
analysis, we decided that all metrics for this group should be zeroed out.

Figure 10c depicts that the equalized odds, equal of opportunity, and predictive
equality detected no bias and present fairness for male and transgender individuals, neither
did the FNR difference, average odd difference and FOR difference (Figure 10b).

For the MovieLens model, the PPR disparity, and error disparity statistical parity
metrics in Figure 11a identified bias and lack of fairness, favoring class 1—Male. The
other disparity metrics did not indicate bias and indicated fairness, as did the equalized
odds metric.
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Figure 11. Wide and Deep fairness metrics. (a) Results for Disparity and Parity metrics, (b) Results
for Difference metrics, (c) Results for Other Fairness metrics.

Figure 11 illustrates that the remaining metrics do not identify bias and present fairness.
Tables 6–8 show the results of the analyses of the fairness metrics of the models that

resemble each other.

Table 6. Disparity and parity metrics in all models.

ED FNRD FPRD PPRD TPRD AUPRC PP SPV

FIFC-VGG19 unfair fair fair unfair fair fair fair unfair
JUBTC-BERT unfair unfair unfair unfair fair fair fair unfair
MovieLens-Wide and Deep unfair fair fair unfair fair fair fair unfair

Similar Different Different Similar Similar Similar Similar Similar
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Table 7. Difference metrics in all models.

FNRDif AOD FORD

FIFC-VGG19 fair fair fair
JUBTC-BERT fair fair fair
MovieLens-Wide and Deep fair fair fair

Similar Similar Similar

Table 8. Other fairness metrics in all models.

EO EOO PE

FIFC-VGG19 fair fair fair
JUBTC-BERT fair fair fair
MovieLens-Wide and Deep fair fair fair

Similar Similar Similar

The fairness metrics ED, PPRD, TPRD, FNRDif, AOD, FORD, SPV, EO, AUCPRC, PP,
EOO and PE had the same behavior in all models, varying in all as unfair or fair, despite
changes for benefited classes between experiments. The fairness metrics FNRD and FPRD
had variable behaviors in all models, ranging from unfair or fair.

The results show that neither the model nor the benefiting class affect the relationship
between the metric and the sensitive attribute. The JUBTC BERT differs from the other
problems for the metrics FNR disparity and FPR disparity, highlighted with yellow color in
Table 6. Figure 5 demonstrates a deviation from this pattern, with the harmed class as the
least represented. One explanation is that gender is multi-class in JUBTC, whereas in the
other datasets, it is binary.

These results reveal that, regardless of the model, the sensitive attribute predicts a
similar behavior for the metrics, with the sensitive attribute serving as an indicator of the
measure to be employed.

However, additional tests employing correlation and similarity metrics are required
to establish the optimal fairness metric for a sensitive feature. Additionally, this method
and its results may be helpful in identifying which fairness metrics are more relevant and
robust than others for detecting bias and fairness in machine learning models, acting as a
steppingstone for additional study to tackle this difficult research subject.

4. Conclusions and Future Research

This study provided a steppingstone to analyzing patterns in several metrics for
identifying bias and fairness, applying the gender-sensitive attribute as a case study, for
three different areas of applications in machine learning models: computer vision, natural
language processing, and recommendation systems.

We observed that while some metrics indicated bias and lack of fairness, others did
not, revealing a consistent pattern in different application domains for the same sensitive
attribute, with similarities across domains for the statistical parity, PPR disparity, and
error disparity metrics, thus indicating lack of fairness while accounting for the studied
sensitive attribute.

All metrics presented equivalent results in identifying bias and fairness for the studied
sensitive attribute, except for FNRD and FPRD. This could be due either to variations
within the sensitive attribute between datasets (e.g. different number of classes), or to some
specificities related to the detection of false negative/positive instances in the protected and
unprotected groups of the sensitive attribute. Nevertheless, this supports our findings since
the analyzed patterns point toward the possibility of using common metrics for the same
sensitive attribute to identify bias and fairness in machine learning models, for different
application domains.
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Moreover, we found that the similarities between the metrics and their patterns identified
when analyzing the sensitive attribute showed to be a significant factor when determining
fairness metrics for different contexts. Hence, our approach can support the analysis of the
context to determine the most suitable metrics for recognizing bias and fairness in protected
groups, driving the development of more bias-free and fairer machine learning models. We
also conclude that different use cases with the same sensitive attributes have similar contexts.

We suggest that future research focuses on comprehending fairness metrics in various
settings, including a more diversified number of sensitive attributes. To determine which
metric should be applied for each issue, further investigations with a larger number of
models, under various architectures, can be conducted as well.
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Abbreviations
The following abbreviations are used in this manuscript:

ML machine learning
CV computer vision
NLP natural language processing
RS recommendation systems
AUPRC area under the precision–recall curve
P ratio of positive
N ratio of negative
macro avg macro average
weighted avg weighted average
FIFC FairFace challenge
JUBTC Jigsaw unintended bias in toxicity classification
IJB-C IARPA Janus Benchmark-C
CCD Civil Comments dataset
VGG19 Visual Geometry Group
BERT bidirectional encoder representations from transformers
SPV statistical parity value
EO equalized odds
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PE predictive equality
PPV predictive parity
AOD average odd difference
FNRDif FNR difference
FNRD false negative rate disparity
PPRD predicted positive ratio disparity
FPRD false positive rate disparity
ED error disparity
TPRD true positive rate disparity
TP true positive
TN true negative
FP false positive
FN false negative
AOD average odds difference
FORD FOR difference
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