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Abstract: Healthcare data are distributed and confidential, making it difficult to use centralized
automatic diagnostic techniques. For example, different hospitals hold the electronic health records
(EHRs) of different patient populations; however, transferring this data between hospitals is difficult
due to the sensitive nature of the information. This presents a significant obstacle to the development
of efficient and generalizable analytical methods that require a large amount of diverse Big Data.
Federated learning allows multiple institutions to work together to develop a machine learning
algorithm without sharing their data. We conducted a systematic study to analyze the current state
of FL in the healthcare industry and explore both the limitations of this technology and its potential.
Organizations share the parameters of their models with each other. This allows them to reap the
benefits of a model developed with a richer data set while protecting the confidentiality of their
data. Standard methods for large-scale machine learning, distributed optimization, and privacy-
friendly data analytics need to be fundamentally rethought to address the new problems posed by
training on diverse networks that may contain large amounts of data. In this article, we discuss
the particular qualities and difficulties of federated learning, provide a comprehensive overview of
current approaches, and outline several directions for future work that are relevant to a variety of
research communities. These issues are important to many different research communities.

Keywords: federated learning; health; privacy preserving

1. Introduction

Traditional machine learning models require centralized access to complete training
data. Such conventional learning architectures collect local data from sensors and devices
(i.e., clients) and transmit it to the central server for processing; later, the learned model
weights are transmitted back to the local clients. This round trip limits the ability of a
model to learn in real time [1–3].

Federated learning (FL), on the other hand, does not require centralized access to
training data; instead, it trains the local model using local training data. The clients then
transmit these locally trained models back to the central server, where they are aggregated
(i.e., weights are averaged) before being returned to the clients as a single optimized global
model. More specifically, FL allows machine learning algorithms to be adapted to learn
over multiple iterations from different datasets distributed across multiple clients [4].

In order to demonstrate how federated learning is creating new possibilities, let
us examine a few examples; medical privacy laws prevent research institutions from
combining patient data to create more potent machine learning models, even though they
rely on machine learning to detect cancer on MRI pictures. Using federated learning, they
can better identify cancer patients so they can provide life-saving medicines by training
highly accurate machine learning models on vast, heterogeneous, worldwide datasets [5].

All machine learning algorithms benefit significantly from accessing data that ap-
proximates the global distribution. FL elegantly addresses the challenges connected with
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the egress of sensitive medical data by allowing different parties to train collaboratively
without the need to communicate or centralize data sets. This reduces the need for central-
ized data storage. As a result, it has the potential to open up new avenues for innovative
research and entrepreneurship, as well as to improve medical care around the world. The
main contribution of our paper is the following:

• Privacy: through the use of FL, we try to provide a distributed learning solution that
is privacy oriented, as clients do not forward their information to a central server.

• Data quality and robustness: we carried out tests on the variation of the distribution of
datasets held by individual clients, and we demonstrated that the proposed solution
is robust as it does not depend on the quality of the data held by individual clients.

• Scalability: we carried out a study based on scalability by evaluating the performance
of our solution as the number of FL clients varies.

• Medical domain: where data are often distributed across different hospitals, clinics,
and research organizations. We proposed a way in which FL can be used in the
medical domain. In this particular case, our goal was to define a system based on a
neural network capable of recognizing a case of COVID-19 from other pathologies
through the use of X-ray images.

The X-ray image dataset is open-source, as are all the tools used to perform the
proposed work.

1.1. General Data Protection Regulation

Due to the General Data Protection Regulation (GDPR) [6] implementation in 2018, EU
residents now have a legal right to protect their data. This presents a barrier to conducting
medical research, especially when more than one hospital is involved. It is possible to
train decentralized machine learning models without sharing data between institutions,
thus preserving users’ right to confidentiality. Researchers in the healthcare industry have
extensively used FL to analyze medical datasets.

1.2. Challenges of Fl in Healthcare

The use of FL in the healthcare industry raises several complicated issues. Hospitals
and clinics may collect data in very different ways, and FL must understand a lot of
textual and unstructured data. As a result, FL for health frequently calls for some data
preprocessing on the part of the medical partner. Additionally, due to the resource-intensive
nature of training machine learning models, FL systems are not commonly employed in
hospitals and doctor’s offices. Computers with GPU capabilities and gradient calculation
capabilities are required in many hospitals. With the exception of IoT applications, this
hinders development. FL is still a possibility, though, because there is a rapid model
training option, and it is acceptable to take more time to produce a good model [7].

2. Related Work

The concept of Federated Learning (FL), proposed in 2017 [8], has attracted the re-
search community’s interest. It allows multiple clients to train global models without
revealing private data. This training mode protects its users’ privacy without violating
owner authority and combines different data sources to maximize their utility. However,
the data samples on each FL participating device are typically not independently and
identically distributed (IID), which poses significant challenges to FL in terms of statistical
heterogeneity [9]. In this paper, we explore the problem with non-IIID data. We also present
some challenges that this problem may pose for FL. In recent years, many efforts have been
made to develop algorithms for federated learning and data exploitation. Many use cases
are related to FL. In [10,11], FL is applied to mobile data users, successfully using federated
learning models to protect privacy and achieve maximum precision.

Mobile devices typically have limited data plans and slow network connections to the
central server where the global model is managed, as seen in [12,13]. Therefore, a widely
used application of federated learning is to reduce network link congestion to minimize
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communication overhead as much as possible. Another application is highlighted in [14],
where the goal is to secure resources from constrained devices and consider the problem
of learning model parameters from data distributed across multiple edge nodes without
sending raw data to a central location. It is also possible to solve other problems, such as
reducing communication costs, as shown in [15], where a two-stream model with a MMD
(Maximum Mean Discrepancy) constraint is trained instead of the single model on devices
in default federated learning settings.

A critical issue is the use of medical data. They are kept in separate data silos, and access
to this data is restricted due to patient privacy concerns, so the learning model cannot fully
utilize these data. However, when enough data are available, machine learning can reach
its full potential and transition from research to clinical practice. In particular, in our study,
federated learning techniques are used to analyze a case of medical data analysis to overcome
this type of challenge, especially in the processing of chest X-ray images. Deep learning is
commonly utilized in FL to diagnose diseases based on chest X-ray images [16,17].

The research presented in [18] has developed an algorithm capable of detecting pneu-
monia on chest radiographs at any time. This level of performance is superior to that of
practicing radiologists using a dense convolutional network.

In [19], a comparison of the performance of four popular models (MobileNetv2,
ResNet18, ResNeXt, and COVID-Net) with the federated learning framework and without
the framework is proposed to detect COVID-19 from chest X-ray images. In [20], a federated
learning system with a dynamic focus for COVID-19 recognition on CXR images, called
FedFocus, is developed. To improve the training efficiency and accuracy, the training loss
of each model is used as the basis for parameter aggregation weighting. As the depth of the
training layer increases, a continuously updated dynamic factor is developed to stabilize
the aggregation process.

3. Federated Learning

McMahan first used FL in an edge server architecture while updating language models
on mobile devices [8]. There are a large number of mobile edge devices, and each one stores
private information.

Researchers at Google developed a federated learning system to frequently update
a collective model to update predictive models in the Gboard system, which is Google’s
keyboard auto-completion system [21]. This was performed to improve the accuracy of
Gboard’s predictions. Users of the Gboard system receive recommended search terms,
and the system remembers whether the terms were clicked or not. The word prediction
algorithm used by Gboard is constantly being improved through a process known as
federated averaging. This method takes into account data from all mobile devices, not
just one (FedAvg). Federated averaging does not require data from each edge device to
be transmitted to a central location. In federated learning, each mobile device, such as a
smartphone or tablet, encrypts the model before uploading it to the cloud.

All encrypted models are combined into a single global model that is also encrypted.
This is performed to prevent the cloud server from reading the data from individual
devices. Then, the new encrypted model is downloaded to each device at the edge of the
cloud system. The federated learning system that Google has developed is an excellent
example of business-to-consumer (B2C) interaction in the context of developing a secure and
decentralized learning environment for B2C applications [22]. In a business-to-consumer
environment, federated learning can increase speed while protecting user privacy. This is
because information can be transferred faster between edge devices and the central server.

In addition to the business-to-consumer paradigm, the business-to-business paradigm
(often referred to as B2B) can also benefit from federated learning. As a fundamental change
to the algorithmic architecture, federated learning replaces the communication of model
parameters with the traditional practice of exchanging data from one site to another. This
prevents unauthorized third parties from "guessing" the content of data belonging to others.
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We categorize federated learning by the process by which the data is distributed among the
many participants.

3.1. Definition

The goal of federated learning is to build a collaborative machine-learning model (ML)
using data from multiple sources. Model training and inference are the two distinct processes
that occur in federated learning. Only information about the neural network weights can be
passed back and forth between parties while model training is being performed. Due to the
nature of the transaction, neither confidential nor private information is revealed on either
side [8]. A party can keep the trained model for itself or share it with multiple parties. The
model is applied to new information when it is time to finalize the data. For example, in a
business-to-business situation, a federated medical imaging system may accept a new patient
even if the patient’s diagnosis came from another facility. In conclusion, it is necessary to
establish a method for equitably sharing the profits generated by collaboration. The viability of
the association should be considered in the design of the processes. A model is a function that
associates a data instance at a party with an outcome. Federated Learning is an algorithmic
framework for building machine learning (ML) models [23]. A model is a function that
associates a data instance at a party with an outcome.

• At least two different groups have shown interest in constructing a machine learning
model together, and each group has data that it would want to utilize to train the model.

• During the process of training a model, each partner is responsible for keeping all of
the data.

• The model might be encrypted and partly shared between parties, preventing third
parties from re-engineering the data from a particular party. This would be accom-
plished by employing a method for encryption.

• The performance of the finished model is equivalent to that of an ideal model that was
built with all data submitted to a single party throughout the construction process.

The FL paradigm is characterized by many properties and is applicable to many
scenarios. In particular, two possible implementations of FL exist and are reported hereafter:
horizontal FL and vertical FL. Regarding its properties, one of the most important is related
to privacy. Some advantages due to this feature have already emerged, but in the following
subsections, we will discuss them better. Given our focus on the medical domain, we will
discuss how FL can be applied in this scenario.

3.2. Horizontal Federated Learning

Horizontal federated learning, also known as sample-based federated learning, is
implemented whenever data sets have the same feature space but distinct samples. This
kind of federated learning is also known as sample-based federated learning. For instance,
the intersection set of customers at two regional banks may be a very small group consisting
of significantly different user groups hailing from various places. The highlight spaces of
both companies are the same due to the similarities between their operations. A cooperative
deep-learning technique is suggested in the reference. This strategy calls for participants
to train individually and only share sections of parameter changes with one another.
In 2017, Google proposed a horizontal federated learning strategy to improve Android
phone models [8]. Using this framework, a single Android phone user may adjust model
parameters locally and then upload them to the Android cloud. This helps train the
centralized model in coordination with other data owners. They also provide a safe
aggregation solution as part of their federated learning architecture to guarantee the
privacy of aggregated user updates [24]. Additively homomorphic encryption is used for
model parameter aggregation in [25], which provides protection from the central server.

The work in [26] advocates using a multi-task federated learning system to enable
several places to carry out autonomous tasks while simultaneously sharing information and
keeping the system secure. In addition to this, the multi-task learning technique that they
give may help solve problems with fault tolerance, laggards, and costly communication.
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The authors proposed the development of a secure client-server architecture in [27],
which would allow models created on client devices to collaborate with models created at the
server site to form a global federated model. This would be possible through an encrypted
connection between the client and the server. The development of the model guarantees that
no sensitive information will be divulged to any unauthorized parties. The authors of [28]
also offered several techniques to cut down on communication costs so that it would be easier
to train centralized models utilizing data that was spread among mobile clients.

3.3. Vertical Federated Learning

For data that has been vertically partitioned, many machine-learning strategies have
been proposed to protect users’ privacy. These strategies include classification [29], gradient
descent [30], secure linear regression [31,32], association rule mining [33], and cooperative
statistical learning [34]. A vertical federated learning strategy for generating a logistic
regression model while protecting privacy was recently published in references [35,36]. The
authors investigated the effect of entity resolution on learning performance and used Taylor
approximation for the loss and gradient functions to make it possible to use homomorphic
encryption for computations that protect privacy. This was performed in order to enable the
use of homomorphic encryption. Vertical federated learning, also known as feature-based
federated learning, is appropriate for situations where two data sets share the same sample
ID space but have different feature spaces. Vertical federated learning can also be viewed
as a vertical version of horizontal federated learning.

Consider two local firms, one of which is an online retailer and the other a financial
institution located in the same city. The bulk of the locals is likely to be included in their
user sets, which results in a substantial amount of overlap between their user spaces. E-
commerce maintains the browsing and purchase histories of the user, but banks record the
user’s income and spending habits in addition to their credit rating; as a result, the feature
spaces of e-commerce and banks are quite different from one another. Let us imagine that
we want a prediction model for a product purchase based on data from both the user and
the product and that this data are shared between the user and the company. Vertically
federated learning combines these variables and calculates the training loss and gradients
to protect users’ privacy from developing a model that collectively uses data from both
sides. This model can then be used to make predictions. Because it allows all participants
to build a plan for “shared wealth” while maintaining their unique identities and rankings,
this form of federal mechanism is known as “federated learning”.

3.4. Privacy

The protection of one’s privacy is an essential part of federated learning. It is necessary
to use security models and conduct analysis to give tangible privacy guarantees. This
part will analyze and contrast some different privacy solutions for federated learning.
Additionally, we will outline ways to reduce indirect leakage and significant difficulties
that may arise [37].

3.4.1. Data Anonymization

Data anonymization, also known as de-identification, is concealing (through methods
such as hashing, for example) or removing sensitive characteristics. For instance, Person-
allyIdentifying Information (PII) in order to make the altered dataset (also known as the
anonymous dataset) unrecognizably anonymous.

The process of data anonymization has to find a balance between protecting individ-
uals’ privacy and the value of the data collected. Hiding or omitting information may
make the dataset less usable. A data subject may also be re-identified when linked with
auxiliary data from other anonymous datasets, rendering them vulnerable to a linkage
attack. This makes it possible to re-identify a data subject. Numerous methods, such as
those based on k-anonymity, l-diversity, and closeness, preserve the distribution of sensitive
attributes in a dataset to reduce the risk of re-identification of a data subject within the
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same quasi-identifier group, have been proposed as ways to thwart linkage attacks [37].
These methods preserve the distribution of sensitive attributes in a dataset. Sadly, such
privacy-protecting methods cannot defend against linkage assaults with opponents who
are aware of the sensitive qualities. The procedures based on k-anonymity need to be
improved, which will need new strategies, such as differential privacy, that provide a
comprehensive assurance of confidentiality.

3.4.2. Secure Multi-Party Computation (SMC)

SMC security models inherently include several parties, and they provide total zero
knowledge by providing security proof inside a well-defined simulation framework. This
means that each party knows nothing but its own input and output. The attribute of having
zero knowledge is very desirable; nevertheless, accomplishing this goal often calls for convo-
luted computational processes, and there is no guarantee that it can be performed quickly. If
enough safeguards are in place for the situation, it is possible that the revelation of some but
not all of one’s information might be deemed appropriate. It is feasible to construct a security
model using SMC while requiring a lesser level of security in order to achieve higher levels
of efficiency [29]. In recent research [38], the SMC framework has been utilized for training
machine learning models using two servers and semi-honest assumptions. The multi-party
computation (MPC) methods are used for model training and verification in [39], which
prevents users from disclosing sensitive data. Sharemind [40] is one of the most advanced
SMC frameworks currently available. A 3PC model with an honest majority and security con-
siderations for both semi-honest and malevolent assumptions was provided in reference [41],
which may be found in references [42–44]. These efforts need the data of participants to be
covertly transferred across servers that are not collaborating with one another.

3.4.3. Differential Privacy

Techniques such as Differential Privacy [45] and k-anonymity are used to protect
users’ data privacy [46–49]. Adding noise to the data or using generalization methods to
obscure certain sensitive attributes until the third party cannot distinguish the individual is
the main goal of differential privacy, k-anonymity, and diversification [50] methods. This
ensures that the data cannot be restored, hence leading to privacy guarantees. However,
at their core, these approaches still need the transmission of the data to another location,
and the execution of these methods often necessitates a compromise between accuracy
and privacy. The authors of paper [51] presented an adaptation of the differential privacy
method in a federated learning environment to protect clients’ privacy rights. This was
accomplished by concealing client contributions while the system was being trained.

3.5. Federated Learning and Healthcare

In the past couple of years, we have experienced a great deal of transition due to a
pandemic. During this historical period, it was clear that healthcare service providers did
not have sufficient resources at their disposal. Medical practitioners must have access to
trustworthy technology to provide excellent patient treatment. However, substantial and
varied datasets are required to train an algorithm for therapeutic applications. It becomes
more difficult to communicate sensitive information when rigorous limitations such as Health
Insurance Portability and Accountability Act (HIPAA) [52] are in place. FL was founded to
respond to problems such as these. Participating organizations use their internal data pool to
train the same algorithm. These establishments might profit from these trained algorithms.
They could avoid compliance with some restrictions while maintaining access to others. In
addition, it creates a database from which they may glean information and expertise.

For the field of machine learning, FL is an innovative new idea and method. This has
the potential to bring significant progress in the healthcare sector. FL does not want to play
the role of medical authority at this time. It is designed to free them up so they may focus
on providing better patient care [5].
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4. Approach

We will discuss the methods used to successfully complete the examinations in the
following paragraphs.

The workflow proposed by us is shown in Figure 1. This technique provides an illustra-
tion of the processes that are carried out on both the client side and the central server.

Figure 1. Local training and global aggregation workflow.

The client is responsible for maintaining the local dataset and, in this instance, includes
pictures of the patient’s radiographs. In the next phase, indicated by Local Training, all
clients use their datasets to train the local neural network. Clients learn to classify inputs
during the training phase indicated by Classification. That is, they learn to recognize images
related to COVID-19. The approach used in this case study is based on supervised learning,
where the samples of the dataset are accompanied by a label indicating the type of image
in question.

In the third step, indicated with Local Parameter Sending, all the clients of the scenario
send the weights of the locally trained neural network to the FL server in question. As
mentioned in the previous sections, the server has the task of aggregating and averaging
the weights from all clients to update the global neural network. This global neural network
will, therefore, have a higher generalization capacity than the local one precisely because it
is built with the help of all clients. The next step is to distribute the global learner weights
to all clients. This process will be repeated until the desired metrics are achieved.

The neural network model’s structure is designed to detect even the most minute
details. The implementation details of the proposed model are reported in Table 1. The
CNN [53] structure comprises 17 Conv2d layers, a flattening layer, and a linear layer.

Table 1. CNN structure.

Number of Layer Layer Type Output Shape Number of Trainable
Parameters

1 Conv2d [8, 256, 256] 216

2 Conv2d [16, 128, 128] 1152

3 Conv2d [32, 64, 64] 4608

4 Conv2d [16, 66, 66] 512

5 Conv2d [32, 256, 256] 4608

6 Conv2d [64, 33, 33] 18,432
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Table 1. Cont.

Number of Layer Layer Type Output Shape Number of Trainable
Parameters

7 Conv2d [32, 35, 35] 2048

8 Conv2d [64, 35, 35] 18,432

9 Conv2d [128, 17, 17] 73,728

10 Conv2d [74, 19, 19] 8192

11 Conv2d [128, 19, 19] 73,728

12 Conv2d [256, 9, 9] 294,912

13 Conv2d [128, 11, 11] 32,768

14 Conv2d [256, 11, 11] 294,912

4.1. Dataset

A database of X-ray images of patients with COVID-19 and other conditions, such as
pneumonia, was used during this specific examination [54]. This dataset is obtained by
merging some datasets used in previous works and is freely available on GitHub.

Table ?? shows the attributes associated with each image. Compared to the starting
dataset, we carried out a preprocessing phase. In particular, we have identified all cases of
COVID-19, and we have defined all the rest of the cases as NO-COVID since our goal is to
train a neural network that can recognize COVID-19 cases from all the rest. We also filtered
the attributes associated with each image as many defined in [54] were not helpful for the
training process.

Table 2. Image attributes.

Attribute Description

Patient ID Internal identifier

Offset

Number of days since the start of symptoms or
hospitalization for each image. If a report
indicates “after a few days”, then 5 days

is assumed

Sex Male (M), Female (F), or blank

Age Age of the patient in years

Finding Type of pneumonia

Survival Yes or No

View
Posteroanterior (PA), Anteroposterior (AP), AP
Supine (APS), or Lateral (L) for X-rays; Axial or

Coronal for CT scans

Modality CT, X-ray, or something else

Number of Layer Layer Type Output Shape Number of Trainable
Parameters

15 Conv2d [128, 13, 13] 256

16 Conv2d [256, 13, 13] 294,912

17 Conv2d [2, 13, 13] 4608

18 Flatten [338] 0

19 Linear [2] 678



Big Data Cogn. Comput. 2023, 7, 18 9 of 16

4.2. Dataset Distribution

Regarding the dataset’s distribution, we have reported two scenarios: (i) an IID
scenario where data are equally distributed in a stratified fashion among the clients. (ii) a
non-IID scenario where the data has been distributed unevenly, following a Gaussian
distribution with N(0, 4).

The choice of σ2 = 4 is dictated to have a smooth distribution of data in contrast to
values such as 1 that introduce a major skew of the slope. For instance, with five clients, we
ended up having 36% of data for the first client, 27% for the second client, 20%, 11%, and
6% for the remaining.

5. Results

Before discussing the tests carried out, it is necessary to define that each subset of
data associated with each individual client has been partitioned to avoid the overfitting
phenomenon; in particular, the following subdivision has been carried out: 60% of the data
are reserved for the training procedure, 20% of the data are reserved for the validation set
useful to avoid overfitting, and the remaining 20% are reserved for the test set to evaluate
the performance of the trained network.

Each measurement made was repeated five times, and the average value of these tests
is reported in the results that will be discussed in this section.

Simulations have been run to illustrate the applicability of federated learning regarding
the application of the example presented before. All experiments were run on a machine
with 16 GB of RAM, an Intel core i7 9750H processor, and an NVIDIA Geforce GTX 1050 Ti
graphics card. According to the results of our study, the performance of federated learning
is extremely comparable to that of the centralized learning scheme.

The final purpose of the paper is to highlight the evident variation of the IID and
non-IID cases of accuracy. In detail, the term “Identically Distributed” refers to a situation
in which there are no overarching trends, the distribution does not vary, and all the items
in the sample come from the same probability distribution. The term “independent” refers
to the fact that each sample item is a separate occurrence. In other words, they do not
have any relationship with one another at all. The results demonstrate that the data
distribution parameter can affect the accuracy. It has been established that even if the
data are disseminated identically, the number of data distribution clients still substantially
impacts the ultimate accuracy and processing of the data.

The results obtained from our case for the centralized system have excellent accuracy,
as can bee seen in Figure 2. For example, in the best case, achieving an accuracy peak of
about 98% after 200 epochs is possible. This is because the central server, which performs
the training together, has a more comprehensive and complete overview and can thus
achieve better accuracy for each case.
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Figure 2. Accuracy in Centralized IID case of use.

However, as explained in the previous sections, this proposed methodology has some
limitations. Several tests have been conducted with the federated case, IID, and non-IID
to overcome these problems, with satisfactory results. Looking at Figure 3, we notice that,
in the IID case, setting the number of rounds to 200, we have an accuracy of 96% for the
scenario with 5 clients and an accuracy of about 93% for the scenario with 15 clients.

Figure 3. Accuracy in the scenario with IID data when varying the number of clients.

The case with NO-IID is reported in Figure 4. When the number of rounds varies, the
accuracy with 5 clients can reach peaks of 90% accuracy and 87% with 15 clients.
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Figure 4. Accuracy in the scenario with NO-IID data when varying the number of clients.

For this type of study, both the IID and the NO-IID distribution cases exhibit similar
accuracy trends, as shown in Figures 3 and 4. In our scenario, we observed that the accuracy
improves with increasing rounds, reaching peaks of 90% after 200 rounds and 87% in the
worst case (where the distribution of 10 and 15 clients coincides).

The comparison in Figure 5 shows that IID data give better results for 5 clients, with a
difference of around 6% between IID and NO-IID after 200 rounds. With a split of 10 or
15 clients, the results are comparable with that of 5 clients. Moreover, the centralized case
is slightly better than the federated one, but at the expense of data protection.

Figure 5. Accuracy comparison between the IID, NO IID, and centralized IID cases.

Figure 6 also shows the confusion matrices for the IID case with varying clients and
for the centralized case, while Figure 7 shows the confusion matrices for the NO-IID case
with varying clients. The confusion matrices shown have the ground truth values as rows
and the predictions as columns. Each element of each matrix represents the values true
positive (first row and first column), false positive (second row and first column), false negative
(first row and second column), and true negative (second row and second column).

Furthermore, since the matrices are built with the parameters just mentioned, functions
such as precision and recall are easily obtainable.
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Figure 6. Confusion matrices for the IID and centralized scenarios.

Figure 7. Confusion matrices for the NO-IID scenario.

Table 3 shows the precision values obtained for each scenario.
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Table 3. Precision achieved for each scenario.

Scenario IID NO-IID

FL with 5 clients 0.97 0.93

FL with 10 clients 0.9 0.87

FL with 15 clients 0.93 0.85

Centralized 0.98 0.98

By carefully observing the confusion matrices and the results obtained in terms of
precision, we can effectively state that the centralized case has superior performance, but
despite this, the various FL approaches that vary in terms of scalability and in terms of
dataset distribution still have excellent performance. In particular, as seen in the accuracy
measures, we observe that the results obtained are in agreement with the previous ones, as
the scenario with a distribution of IID data performs slightly better than the NO-IID scenario.

6. Conclusions

This work allows us to expand our use cases in many areas of engineering, healthcare,
and computer science and summarize overviews of federated learning. We discussed
several medical distribution examples that show how federated learning can overcome
the problems of the centralized case mentioned above and provide a valid and efficient
alternative, especially in terms of privacy and algorithm efficiency.

In summary, in the federated settings, the performance results are slightly better when the
distribution is identical and independent, i.e., IID versus non-IID. Even if a centralized system
could achieve slightly better results in terms of accuracy, federated learning is a good way to
replace the centralized algorithm while preserving data privacy and achieving excellent results.
Indeed, the use of FL, for example, in the health sector, often requires some pre-treatment
of the data on the part of the medical partner. This is something that needs to be taken into
account, as mentioned earlier. In addition, because of the extensive use of computing resources
required to train machine learning models, FL systems are not widely used in healthcare
settings such as hospitals and physician offices. Many hospitals need computers equipped
with GPU capabilities and cannot perform gradient calculations. Nevertheless, despite all of its
drawbacks, FL demonstrates capabilities that enable good results.
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