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Abstract: Software is behind the technological solutions that deliver many services to our society,
which means that software security should not be considered a desirable feature anymore but more
of a necessity. Protection of software is an endless labor that includes the improvement of security
controls but also the understanding of the sources that induce incidents, which in many cases
are due to bad implementation or assumptions of controls. As traditional methods may not be
efficient in detecting those security assumptions, novel alternatives must be attempted. In this sense,
Security Chaos Engineering (SCE) becomes an innovative methodology based on the definition of a
steady state, a hypothesis, experiments, and metrics, which allow to identify failing components and
ultimately protect assets under cyber risk scenarios. As an extension of a previous work , this paper
presents ChaosXploit, an SCE-powered framework that employs a knowledge database, composed
of attack trees, to expose vulnerabilities that exist in a software solution that has been previously
defined as a target. The use of ChaosXploit may be part of a defensive security strategy to detect and
correct software misconfigurations at an early stage. Finally, different experiments are described and
executed to validate the feasibility of ChaosXploit in terms of auditing the security of cloud-managed
services, i.e., Amazon buckets, which may be prone to misconfigurations and, consequently, targeted
by potential cyberattacks.

Keywords: security chaos engineering; attack trees; cloud managed services; vulnerabilities

1. Introduction

Protecting Information and Communication Technology (ICT) assets against potential
threats is nowadays essential, especially with the advent of industry 4.0 and the consequent
revolution. To this extent, cybersecurity aims to protect data and technological infrastruc-
ture in different spheres, e.g., personal, familiar, business, and social. In fact, different efforts
have been made to contribute in such ways, for example, to protect persons against online
sex offenders [1], to defend IoT devices from attacks against data or services [2], to make
smart cities’ infrastructure more resilient [3], to implement cybersecurity in distributed
organizations [4], and to support LEA’s (Law Enforcement Agencies) in the detection of
malware [5] or in the prevention of cybercrimes [6]. Additionally, cybersecurity has also
been considered a field of knowledge that goes beyond the validation of identity, protection
of access, and monitorization of actions. Indeed, it has become a field that focuses its efforts
on the consistency and resilience of systems.

Besides, Site Reliability Engineering (SRE) is a set of practices that aims to improve
a system’s design parameters and the conditions where it operates to supply the system
with essential attributes such as scalability, reliability, and efficiency. The SRE concept
originated at Google around 2003 and was rapidly adopted by other companies with strict
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software requirements regarding scalability and reliability [7]. SRE may be seen as one
way to materialize a DevOps strategy as it offers a set of principles around automatization,
quantification of business-required reliability, reduction of availability risks, and observ-
ability. SRE may be implemented through the definition of reliability goals such as SLI
(Service Level Indicator) or SLO (Service Level Objective), the development of a capacity
plan, and the definition and execution of a change management process, among others [8].

A relatively new approach in the scope of SRE used to test the resiliency of distributed
systems has recently emerged, known as Chaos Engineering (CE). CE is used to validate
a system’s strengths and vulnerabilities when exposed to uncontrolled conditions. By
leveraging the CE methodology, different tests may be designed and applied with the
aim of validating in a measurable way the changes that the steady state of a system may
experiment [9]. Furthermore, another CE principle refers to the importance of including
real word events (hardware or software failures) in the experiments, especially events that
have the potential to generate a high impact or may occur with some frequency. CE also
remarks on the importance of automating experiments as much as possible as it allows for
a better analysis of the outcomes. Lastly, CE prioritizes the execution of tests in production
to guarantee authenticity in the experiments and to consider real traffic patterns, although
the impact of such experiments should be carefully estimated and contained.

Following the CE methodology, a “chaotic” experiment must be designed over a
controlled environment, which allows the observation of the variables that define the
steady state of the target system. Additionally, such a CE experiment must be ruled by
a scientific method that allows the definition and validation of a set of hypotheses [10].
Lately, CE experiments have gained importance as a way to implement SRE as it allows
testing the resiliency of a system against chaotic events so that the system’s weaknesses can
be identified and corrected in advance. Nonetheless, the resiliency of a system should be
validated not only from a perspective of availability. In fact, it should include other aspects
related to the secure and correct operation of the system. Thus, the necessity of evaluating
the system’s resiliency in a holistic way emerges and is consistently most demanded when
we evaluate distributed systems that manage sensitive information, such as secure IoT
services [11] or personal data management solutions [12].

Intending to execute a security-based evaluation of a system, a fresh concept emerged
in 2017 to apply CE principles to experiments that, together with the availability, evaluate
the confidentiality and integrity of a system under chaotic events. That is, SCE (Security
Chaos Engineering) joins the cybersecurity ecosystem, trying to defend the systems against
such events. In a cybersecurity context, chaotic events may be generated by a threat agent
that tries to: (i) make a system unavailable, e.g., through a Distributed Denial of Service
(DDoS) attack, (ii) read sensible data hosted by a system, e.g., through an elevation of
privileges that facilitate the access to restricted information, or (iii) modify users or system
files that alter the operation of the system, e.g., through the remote execution of malicious
code [13].

Noting that the CE methodology can significantly impact new developments by
reducing vulnerabilities through the scientific method and experimentation, this paper
addresses the following research question: how can SCE be used to detect application
vulnerabilities automatically, not limited to a specific context and by taking into account the
actions that are preferred by an attacker based on the effort expended in the exploitation?

Thus, the current paper proposes an SCE framework based on attack trees named
ChaosXploit. ChaosXploit is expected to support the operations of security teams in charge
of detecting and correcting in an anticipated way the vulnerabilities that an under-analysis
system may contain. The defensive labor of those teams implies understanding the attack
goal that an attacker may pursue as well as the offensive techniques that he/she may use
to achieve such an attack goal.

Thus, the main contributions of this paper are summarized as follows:
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1. The proposal of ChaosXploit, an SCE framework that leverages attack trees to address
the execution of attacks. Particularly, the ChaosXploilt architecture contains three
main components: an observer, an experiment runner, and a knowledge database;

2. The design of an attack tree that pursues a specific attack goal, i.e., the extraction or
modification of AWS S3 buckets information that enriches the knowledge database
of ChaosXploit;

3. The execution of a set of experiments that validates the feasibility of ChaosXploit
to execute an attack tree over a specific target, i.e., AWS S3 bucket, exposing multi-
ple misconfigurations.

ChaosXploit was first presented in Ref. [14], and the present paper is an extended
version of such work to include the following improvements and new content:

1. An extension of Section 2 (State of the art) with a detailed analysis of the related
works, including a comparative table with six identified key features;

2. The addition of Section 3 (Background), which includes a set of essential concepts that
introduces the reader to SCE;

3. An extension of Section 5 (Experiments) resulting in the implementation and execution
of the second branch of the proposed attack tree, which aims to extract or modify
information from the AWS S3 buckets;

4. The addition of Section 6 (Discussion), which includes an analysis of the current and
future adoption of SCE in the industry.

The remainder of this paper is organized as follows: Section 2 gathers the major works
contributing to SCE, analyzing their strengths and weaknesses. Then, Section 3 explains the
fundamentals and concepts regarding CE and SCE. In Section 4, ChaosXploit, our proposed
framework to execute SCE experiments, is described. In Section 5, diverse experiments to
test ChaosXploit are designed and performed. Section 6 presents an engaging discussion
on the adoption of SCE in enterprises. Finally, Section 7 concludes the work, adding future
work to possibly improve ChaosXploit.

2. State of the Art

Throughout the literature, CE appears as a relatively hot research topic. That is, its
robust capabilities have been described in different research items while being applied in
several contexts. Nonetheless, such an application and a proper definition must be clarified
since they have been ambiguous so far.

Starting with Netflix’s release of Chaos Monkey in 2011 [15], the CE paradigm has been
mainly used to test the resilience and robustness of virtualized appliances, demonstrating
the potentialities of the chaotic method in such scenarios.

To this extent, the work in Ref. [16] described Pystol, a fault injection framework
to argue on the resiliency of hybrid-cloud systems in adverse events. Specifically, Pystol
is presented as a Software Product Line (SPL) that can be mounted on top of cloud in-
frastructures, being able to exploit CE’s capacities. The proposal is then developed in a
production environment and deployed using standard Kubernetes objects (together with
the corresponding APIs) and Amazon Web Services (AWS) to execute the entire cluster
with three use cases. It is worth mentioning that Pystol has been made available as an
open-source code for further community development.

Additionally, Simonsson et al. [17] proposed ChaosOrca, another open-source fault
injection platform for system calls in containerized applications based on CE principles. In
this sense, ChaosOrca can calculate the self-protection ability of Docker-based microservices
with regard to system call errors. In particular, the system determines the steady state of
the Docker container by systematically registering diverse system metrics (CPU and RAM
consumption, network I/O, among others). Later, some perturbations are injected into
the system calls executed by the isolated dockerized app, avoiding the possible impact
on the ordinary operations of other containers. The proposal is tested in three Docker
microservices scenarios, namely Torrent, Bookinfo, and Nginx, demonstrating encouraging
results in noticing resilience flaws.
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An interesting case study on applying the CE methodology to a real use-case scenario
has been conducted in Ref. [18]. The main idea of the authors is to introduce the CE
paradigm at ICE Gruppen AB, a group of companies working in the grocery market.
Mainly, they started with a literature review, studying the state-of-the-art works on CE and
performing explanatory interviews in the company. The resulting framework, based on a
total of 27 open source CE tools, is then applied to the IT system of the company, including
its e-commerce. Interestingly, among the CE categories identified during the process, the
authors also indicate “network attacks” and “security attacks”.

Furthermore, ChaosMachine is described by Zhang et al. [19]. Particularly, it can be
defined as an open-source and extensible CE framework written in Java to analyze the
capacities of handling exceptions in production environments. In this sense, ChaosMachine
is able to disclose possible resilience issues of try-catch blocks, proposing an architecture
composed of three parts: (i) a monitoring sidecar, (ii) a perturbation injector, and (iii) the
chaos component. Then, ChaosMachine is tested with three voluminous open-source Java
apps, totaling 630k code lines, exhibiting its capacities in production environments with
realistic workloads.

Lately, the principal objective of the chaotic methodology has changed, shifting from
resilience surrounding a system to enclosing security issues. Starting from the assumption
that security failures will happen doubtless, SCE’s primary goal is to test the system’s
security controls using proactive experiments and, therefore, building confidence in its
capabilities to protect against potential threats.

Lamentably, since this paradigm shift has recently happened, the quantity of academic
items and tools is still insufficient. In this sense, ChaoSlingr can be depicted as the first open-
source software contribution to exhibit the potential application of the chaotic principles
to information security [20]. The tool was developed to function on AWS by a team at
the UnitedHealth Group, led by Aaron Rinehart, to demonstrate a simplified mode for
designing security chaos experiments [21]. From the main project, several companies have
started to leverage ChaoSlingr to execute chaotic experiments within their systems.

Moreover, Torkura et al. [13] proposed CloudStrike, a software architecture that mea-
sures the security of cloud environments by applying Risk-Driven Fault Injection (RDFI).
For the reader’s sake, the tool was first proposed in a previous article [22]. Concretely,
RDFI expands the CE paradigm to contemplate cloud security without losing the resilience
perspective by injecting security faults, leveraging the attack graphs representation. Such
SCE tool is tested on various cloud services of principal platforms, namely, AWS, and
Google Cloud Platform. Notably, the authors claim that they can calculate the risk value to
which the system’s assets are being exposed to by using the Common Vulnerability Scoring
System (CVSS). Then, the authors used the SCE methodology to test another tool, CSBAu-
ditor, a cloud security framework that can continuously monitor cloud infrastructures to
identify possible ill-motivated activities [23].

Additionally, the application of SCE to enhance API security is defined in Ref. [24].
Due to the popularity of RESTful APIs in distributed applications, the authors propose
utilizing this methodology to test the configuration of the API’s security controls, exposing
early vulnerabilities. After focusing on the OWASP (Open Web Application Security Project)
list of the top 10 critical web application security risks and automated attack detection,
the authors suggest the application of SCE experiments to address the abovementioned
challenges. Indeed, the work is still in an early phase, but the capabilities of SCE are
recognized as being valuable.

Besides, SCE experiments have been used to test System of Systems (SoS) robustness
against potential attackers in [25]. Concretely, the authors used Chaos Toolkit to conduct
several CE and SCE experiments on a Virtual Unmanned Aerial Vehicle (VUAV). The Attack
Trees methodology is employed to better model possible attacker moves, assuming the
level of access he/she would possess with a previous threat modeling phase. Precisely,
two Attack Trees are developed, namely, injecting corrupted navigation service and killing
ActiveMQ/WorldWind (i.e., the software tools used for communication purposes). Then,
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five separate experiments are executed, evaluating the performance by measuring the CPU
and RAM usage. Results showed a slight increase in CPU load, while RAM was not a
significant metric during tests.

Table 1 summarizes the findings of the state-of-the-art investigation. It has to be
remarked that the works [16–19] refer to CE applications while [13,24,25] propose SCE
employment. Consequently, one could argue that it is obvious that the attributes’ value
of the CE works tend to be “Resiliency”, while “Security” is predominant for the SCE
proposals. Nevertheless, the proposed framework in Ref. [18] adds security features to the
CE requirements. Such confusion is directly derived from the ambiguous definition of CE,
as previously stated.

Table 1. Comparison of the related works highlighting the main features.

Related Work Attributes Application Context CE Tool Threat Model Experimental Data Automation
Level

Camacho et al. [16] Resiliency Cloud Ad-hoc 7 7 7
Simonsson et al. [17] Resiliency Containers (Docker) Ad-hoc 7 crafted 3

Jernberg et al. [18] Resiliency Security Web 27 CE tools survey 7 crafted 7
Zhang et al. [19] Resiliency Java applications Ad-hoc 7 Public Java code 3

Torkura et al. [13] Security Cloud Ad-hoc Could Attack Graphs crafted ≈
Sharieh, Ferwron [24] Security API 7 7 7 7

Bailey et al. [25] Security SoS ChaosToolkit Attack Trees crafted 7
Our proposal ChaosXploit Security Any ChaosToolkit based Attack Trees Public buckets 3

Legend: 3 Yes, 7 No, ≈ Partially.

Another clear difference between CE and SCE works is that most SCE proposals
leverage a threat model to map the attackers’ moves within the protected system. In
particular, Attack Graphs and Attack Trees seem to be a suitable choice to infer the goals of
the attackers and, possibly, anticipate them.

Regarding the tool used to implement the proposals, many of them present ad hoc
development of the CE/SCE framework. In this sense, one could say that, in specific
situations, implementing from scratch can lead to better solutions. However, re-using
already mature and tested tools should be the primary choice in order to fairly compare
different proposals.

Additionally, two key aspects must be highlighted: (i) the importance of using publicly
available data to perform experiments and (ii) the significance of a high automation level for
CE/SCE frameworks. That is, most of the analyzed papers present crafted experiments to
demonstrate their features, making the comparison challenging to execute. Then, one of the
crucial characteristics of any chaotic tool is the automation level of the experiments. Since
modern systems feature high complexity and distribution, automating those experiments
is highly desirable.

Last but not least, the surveyed works suggest the chaos tests application only in
a particular context (e.g., Cloud, containers, etc.). It is effortless to claim that the de-
sign of a full-fledged CE/SCE tool would broaden its application scope, leading to more
experimentation and, perhaps, better results.

The research presented in the paper at hand uses as reference the characteristics of all
these tools presented in related works and proposes an SCE-powered framework based on
attack trees to detect and exploit vulnerabilities in different targets as part of an offensive
security exercise. This framework, unlike those previously mentioned, can be used in any
application context whether in different clouds (AWS, GCP, Azure), containers (Docker,
Kubernetes), or web applications. Additionally, compared to current CE tools, our proposal
develops a threat model based on attack trees since these enable modeling organized
actions for more than one SCE experiment, allowing a better traceability and following
the same attack goal. Another differentiating component that stands out in our proposal
vs. other SCE tools is the high level of automation, since we can make a list of actions
to be performed and, when launching the experiment, these will be executed in a row.
Finally, we are aware that we are not reinventing the wheel, as our proposal is built on
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the ChaosToolKit, one of the most mature tools in CE. Lastly, our proposal is tested with
common cloud services, meaning that the experiments can be easily replicated.

3. Background

For the sake of the reader, some important concepts are introduced to allow a better
understanding of the context surrounding CE and SCE.

3.1. Chaos Engineering (CE)

As previously mentioned, the concept of CE emerged in 2011 when Netflix moved its
services to the AWS cloud. Netflix’s engineers feared that an internal instance could fail
during the move, severely impacting the overall operation. For this reason, ChaosMonkey
was created to test the stability of Netflix by injecting faults that randomly terminate
internal instances [26]. A year after launching ChaosMonkey, Netflix added new modes
that report different types of faults or detect abnormal conditions. Each of those modes
were considered to be a new simian, and together they formed what is known as the
SimianArmy [27].

In 2016, Kolton Andrus and Matthew Fornaciari founded Gremlin [28], which is rec-
ognized as a leading CE solution. Along with the creation of Gremlin, the formal definition
of CE was also born as “the discipline of experimenting on a system in order to build
confidence in the system’s capability to withstand turbulent conditions in production” [9].

A few CE frameworks may be found in the wild. One of the most notable frame-
works is the above-mentioned Gremlin, which allows one to experiment with more than
10 different attack strategies on different infrastructures. Nevertheless, not all of those
strategies are free to use, and it does not have reporting capabilities. Another well-known
CE framework is ChaosMesh [29], an open-source cloud-native tool built on Kubernetes
Custom Resource Definition (CRD). Specifically, it allows testing several scenarios checking
for network latency, system time manipulation, and resource utilization, among others.
Nonetheless, this tool does not have the advantage of scheduling attacks.

Another open-source CE framework is Litmus [30] which allows developers to use
a set of tools to create, facilitate, and analyze chaos in Kubernetes with automatic error
detection and resilience scoring. Last but not least, it is important to mention ChaosToolkit
(CTK) [31], an open-source tool that permits the automation and customization of CE
experiments by defining a set of probes and actions that may be pointed to different types
of targets.

It is worth remarking that the CE experiments are not chaotic at all. In fact, they are
based on the scientific method and should follow the CE principles [9] that define the
subsequent steps to guarantee that the experiments are correctly executed.

1. Define the behavior of the system (observability), which is key to measure with the
purpose of approval or disapproval of an hypothesis that may be defined later;

2. Identify the steady state to mark out what should be considered as a normal behavior
of the system;

3. Define a hypothesis that will be proved or refuted at the end of the experiment;
4. Execute the experiment by introducing real-world events such as creating instances

that expose malfunctions and interrupted network connections, among others.

The fact that CE experiments have a defined method corroborates that this discipline
does not consist of “breaking things on purpose”. On the contrary, CE experiments are
generally done in a proper testing environment with similar conditions to the ones obtained
in a real environment exposed to disruptive incidents. Thus, the application of CE allows
testing attributes such as availability and reliability in a controlled environment. Generally,
the results that arise from conducting a CE experiment can help anticipate incidents,
improve the understanding of system failure modes and reduce maintenance costs [32].

Once the method and benefits of implementing CE have been discussed, defining
and implementing an experiment can be effortless. For example, in Ref. [10], one of the
experiments considered a recommendation system that, as part of its functionality, stores
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all the searches inserted by users in a cache so that such queries may be used to redefine
the recommended product that is returned to the user. The experiment uses CE to check
what would happen if the communication were to fail between (i) the process (Redis Client)
requesting to store the queries and (ii) the cache (Redis server) that effectively stores them.
In this case, the purpose of the CE experiment is to determine if the recommendation
system may still work after injecting failures, so it is defined as follows:

• Observability: Navigate the application and view the recommended products;
• Steady State: The recommended products should be returned to the user;
• Hypothesis: A failure in the communication with the storage component (Redis

server) causes a failure in the product returned to the user by the recommendation
system, even in subsequent queries when the storage component is restored.

With the execution of this experiment it may be possible to conclude, for example, that
the hypothesis is refuted since when injecting failures in Redis Server, the recommendation
system handles the error and manages to recover automatically as soon as the access to
the storage system is re-established. Thus, it proves that the recommendation system is
resilient to failures in the storage system.

3.2. Security Chaos Engineering

By using CE, testing security in systems with the premise that “failure is the greatest
teacher” is possible. This idea was first proposed by Aaron Rinehart [21], who pursued the
application of CE in cybersecurity while working as Chief Security Architecture at the Unit-
edHealth Group [33]. As mentioned in the previous section, CE has traditionally focused
on testing system availability, while recent research is striving to apply this discipline in
the field of cybersecurity. Concretely, the main goal is to apply CE concepts by testing not
only the availability but also other attributes such as integrity and confidentiality to boost
the concept of Security Chaos Engineering (SCE). SCE has been defined as “the identification
of security control failures through proactive experimentation to build confidence in the
system’s ability to defend against malicious conditions in production” [21].

In this context, ChaosSlingr can be recognized as the first open-source framework that
demonstrated the value of applying SCE to cybersecurity [34]. This tool was created by
Aaron Rinehart and proposed a simple experiment. It sought to misconfigure some ports
on a system and observe the behavior. Although it was a good initiative, ChaoSlinger was
no longer maintained and became part of a larger project known as Verica [35].

As mentioned, while CE aims to test the resilience of a system, SCE also provides
measures and experiments to provide top-notch security to the systems. By leveraging the
SCE methodology, it is possible not only to corroborate assumptions or discover vulnera-
bilities but also to infer possible mitigations [36]. That is, SCE falls into the cybersecurity
ecosystem, as it allows checking that the security controls that validate the confidentiality,
integrity, and availability of the system are reliable. This check is based on identifying
security flaws caused by the human component, insecure design, and lack of resilience in
the system under protection. In addition, SCE experiments can identify the exact points
where security flaws exist and act on time.

The methodology applied by SCE is similar to the one described for CE, as it incorpo-
rates the definition of steady state, observability, and hypothesis. However, it pursues a
different objective as it aims to validate the security of a system, for example, by discover-
ing vulnerabilities, misconfigurations, logic flaws, and insecure design, among others. In
addition, if experiments are executed frequently, SCE may help in the reduction of security
incidents and remediation costs, as it allows developers to: (i) understand their system,
(ii) define a response plan, (iii) identify system modules failing, and (iv) note that some
components were omitted during development. In addition, SCE minimizes impacts on
users through experimentation, which in turn improves the ability of developers to track
and measure security.

One helpful experiment to explain the SCE methodology is associated with under-
standing the behavior of a firewall when some associated ports are misconfigured. This
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was one of the experiments that were executed with ChaoSlingr, a framework created by a
team at UnitedHealthGroup, explained in detail in Chapter 7: the journey to SCE of [21]. A
brief overview of the experiment is presented below:

• Observability: Detection of security configuration changes that have occurred in
a device;

• Steady State: The firewall is able to detect all changes over the ports;
• Hypothesis: A misconfigured port should be detected and blocked by the firewall,

and such an event should be appropriately logged.

From the execution of this experiment, it could be possible to prove that half of the
time, the hypothesis is fulfilled, and the other half of the time, the firewall does not detect
and block it. In addition, a cloud configuration tool could be able to detect the failure, but
this is not being logged, so it is not possible to identify that an incident has occurred. Thus,
proper remediations should be undertaken to avoid the incorrect operation of the firewall.

3.3. Differences between SCE and Traditional Pentesting

At this point, one could legitimately wonder about the difference between SCE and
traditional penetration testing techniques and the added value of using SCE. In order to
establish these differences, Table 2 illustrates some key aspects to be considered in this
comparison, which are explained in the following paragraphs.

Table 2. Main differences between traditional pentesting and SCE.

Traditional Pentesting SCE

People implementing Executed mainly by personnel external to the
organization (external red team)

Executed mainly by organization’s internal personnel
(internal red or blue team)

Methodology behind ISECOM, EC-Council, OWASP, others Chaos Engineering principles

Security approach Offensive Defensive

Available tools Bunch of offensive tools Few SCE frameworks

Grade of automatization Mainly manual procedures Mainly automated procedures

Expected frequency Depend on organization policies and risk appetite,
generally every 3 or 6 months

High frequency for definition, can be applied for each
incremental development

Phase of SDLC where applied Generally in production phase Along all the SDLC

Scope of tests Generally unitary tests Unitary and full system tests

Kind of vulnerabilities detected Own-system errors, misconfigurations Own-system errors, security assumptions about
the systems

As indicated in Table 2 traditional pentesting allows attacking different targets by
finding and exploiting vulnerabilities and misconfigurations. On the other hand, SCE
allows us not only to test for system errors but also for security assumptions about the
system, which includes component misconfiguration but also human errors, so we can
affirm that SCE has a bigger scope in terms of vulnerabilities that can be detected.

In addition, the pentesting process may require a set of different activities, which can
be automated in a defined way, e.g., fingerprinting, scanning, and brute forcing, but the
exploitation phase will generally require highly manual activities through the construction
of customized exploits and payloads. Secondly, SCE strives for a high automatization in
the development of experiments, so they can be reproducible and repeatable.

Additionally, traditional pentesting is generally executed by an external red team,
because generally, the aim is to emulate a double-blind scenario where an attacker does not
know the internal details about the system that he is attacking, and the persons in charge
of protecting the system do not know when the attack will be launched [37]. In this regard,
SCE offers a different approach, as SCE experiments are intended to be executed by the
persons who build (developers), maintain, and secure the system, who can be part or not
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part of a blue team or an internal red team in case the organization has one; all of this is
part of a defensive strategy.

The frequency of pentesting exercises may depend on external regulatory or internal
requirements and organization risk appetite, resulting in pentesting tests developed regu-
larly, e.g., every 3 or 6 months for the case of organizations with an intermediate maturity
security level, and mainly over systems that are in the production phase. In the case of SCE,
the experiments have a high frequency by definition, as SCE experiments may be designed
and performed along the software development life cycle. This means it is possible to
incorporate it in the early stages of development and reduce the remediation costs.

It is important to note that currently there are many tools available that can be used
in different phases of pentesting, but there are not many SCE-based tools, as indicated
in Section 2, so the contribution of a framework in this regard improves the traditional
pentesting process as it offers an alternative way of detecting vulnerabilities in the protected
assets, providing a new tactic that enriches the existing tool-set of blue and red teams.
Additionally, when considering complex or distributed systems, SCE experiments help to
understand the system as a whole, going beyond unit tests over specific components which
is common in pentesting exercises.

Finally, methodologies behind pentesting refer to quite popular publications from
ISECOM (OSSTMM methodology), EC-Council (hacking phases), or OWASP (security
testing guides), among others. However, none of them are based on a scientific method,
which SCE does by following the CE principles.

4. ChaosXploit Architecture

This section describes ChaosXploit, a SCE-powered framework composed of different
modules that support the application of CE methodology (described in Section 3.1) to
test security in different kinds of information systems. The architecture of the proposal is
depicted in Figure 1. It is worth noting that a label has been assigned to each module to
represent the step in the EC methodology that is executed in that module. Additionally,
each internal module is described in the following sections. In particular, the Knowledge
Database is described in Section 4.1, the Observer is detailed in Section 4.2, and the SCE
Experiments Runner is explained in Section 4.3.

Continuous ValidatorSteady State Validator

Attack Goals

Decider
Exploiter

Rollback

User Applications

Tree

Steady

State

Knowledge DataBase

Rollback

Steady

State

Managed Cloud

Services Tree

Rollback

Kubernetes-

related Tree

Steady

State

Network-related

Tree

Steady

State

Rollback

Hypothesis

Generator

Terminator

Observer

RollBack

Runner

SCE Experiments Runner

Connector Target

Identify Steady State

Define the hypothesis

Execute the experiment

Observability & verification

CE Method

Figure 1. The proposed architecture of ChaosXploit and its relation to SCE methodology.
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4.1. Knowledge Database

The knowledge database is responsible for providing the steps required to conduct
an offensive SCE experiment executed by a team (blue team) interested in maturing a
defensive strategy. Thus, this module is composed of a set of attack trees and a hypothesis
generator, which will be some of those in charge of executing the second step of the CE
methodology, i.e., defining the hypothesis for the experiment. The tasks assigned to these
modules are detailed below.

4.1.1. Attack Trees

This module is in charge of delivering the intelligence for executing the SCE experi-
ments. Such intelligence is represented by different attack trees, where each tree clusters
different branches focused on achieving a specific attack goal, e.g., gaining access to data
stored in a cloud storage solution. So, different attack goals may be pursued as attack trees
are contained in the knowledge database. Each branch of an attack tree gathers different
offensive actions that may be conducted to achieve the final attack goal, where an action
may be a python script, an HTTP request, or some process to be run on the operating
system. It is worth mentioning that attack trees for different types of targets may be defined,
such as trees for user applications, managed cloud services, Kubernetes, and network
devices, among others.

4.1.2. Hypothesis Generator

The intelligence contained in the attack trees needs to be converted to a hypothesis
so that it can be consumed by the other modules of ChaosXploit. So, the Hypothesis
Generator is responsible for translating the branch actions contained in an attack tree into a
form readable for the module that executes the SCE experiments, i.e., the exploiter. Each
hypothesis generated by this module is a statement about the system being tested that
must be refuted or confirmed by the SCE experiments, e.g., an organization will not expose
private data when the recognition tool Foca [38] is pointed out to the main domain.

4.2. Observer

The observer groups all the activities related to the observation of both the target and
the SCE experiment. This module is important because it allows controlling the specific con-
ditions of the target before, along, and after the execution of the SCE experiments.Therefore,
this module will address, in its different components, the first step of the CE methodology:
identification of the steady state and the fourth step: observability and verification. This
module is composed of a steady-state validator, a continuous validator, and a terminator.

4.2.1. Steady State Validator

The steady-state validator is responsible for verifying the steady-state hypothesis
on the target representing the steady-state conditions, which allows us to create a direct
association with the first step of the CE methodology. These conditions will depend on the
target of the attack and the hypothesis defined in the hypothesis generator. For example,
a normal condition may be a well-formed response from a web server or an assumption
about the system.

4.2.2. Continuous Validator

The continuous validator is activated once the experiment starts and is constantly
checked until the end of the experiment. It allows for verifying specific signals detected
from the target, which makes it possible to determine the results of an interaction between
the exploiter and the target. These signals are especially important because they can
indicate whether a current action included in a branch of an attack tree has succeeded, so
the following action in the branch should be triggered, or they can indicate that the target
is not vulnerable and the other actions in the branch should not be executed. This leads us
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to categorize it as one of the components that perform the last step of the CE methodology,
as it allows us to observe and verify the behavior of the experiment.

4.2.3. Terminator

Each time the execution of an action is completed, the experiment status is updated
and the terminator validation is performed. This module observes the failure states of the
SCE experiment to define the actions to be taken accordingly, thus it is associated with
the last step of the CE methodology. For example, if the target stops responding due to
the execution of an SCE experiment, the experiment status is updated to failed and the
terminator will be able to inform the Rollback Runner so that it can restore the target.

4.3. SCE Experiments Runner

The SCE Experiments Runner is in charge of the SCE experiment’s execution over a
target to validate or refute a hypothesis. This component is fundamental because it not
only leads the interaction with the target but also centralizes the communication with the
observer and knowledge database. Although it is an execution module, it also includes
elements that contribute to the development of the other steps of the CE methodology. It
consists of three main elements: attack goal decider, exploiter, and rollback runner.

4.3.1. Attack Goal Decider

The attack goal decider receives a defined goal attack as input to be tested over a
target. Such an attack goal may be contributed by the user of ChaosXploit who is interested
in probing if a particular system is susceptible to a specific attack. Then, the attack goal
decider requests the knowledge database for the proper attack tree that matches such a
defined goal. This request implies that the module is involved in the hypothesis generation
process (step 2 of the CE methodology). In addition, when asking for the information
from the knowledge database, it will receive the actions to be performed to execute the
experiment, which allows it to be associated with the third step of the methodology as well.

4.3.2. Exploiter

The exploiter executes the SCE experiment over a target to validate or refute a hypoth-
esis. This is directly associated with the third step of the methodology. With such purpose,
the exploiter performs the offensive actions defined previously by the attack tree obtained
from the knowledge database. Besides, it is also able to collect information about specific
responses coming from the target to define the next step in an attack.

4.3.3. Rollback Runner

An experiment may contain a sequence of actions that reverse what was undone
during the execution; this allows us to identify the points where failures were generated.
Thus, the Rollback Runner is supported by the last phase of the methodology. The set of
actions will be called by the Rollback Runner after the Continuous Validator finishes its
execution regardless of whether an error occurred in the process or not.

4.4. Connector

The connector is responsible for searching for the most suitable extension to connect
to the target on which the user wants to run the experiment. Once an extension has been
defined, the connector establishes the link with the target and tests that the scenario is
adequate to run the SCE experiment.

While ChaosXploit has a high level of automation, some previous activities are re-
quired before executing the experiments. First, the security team in charge of testing an
under-analysis system must define the attack goal to be tested in the experiments and draw
an hypothesis with its corresponding steady state. Then, an attack tree consistent with the
previously defined attack goal is needed, which may come from an external cyberthreat
intelligence provider (in cases where the under-analysis system is common and sufficiently
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known by the provider) or from the security team that builds it as a way to understand the
possible steps an attacker could perform to achieve the attack goal. After the attack tree
is defined, ChaosXploit will automatically perform all necessary actions, i.e., identify the
vulnerability type, do the exploitation from the tree and measure steady-state, to conclude
the SCE experiments. In case the results have not been satisfactorily completed, the type of
vulnerability found will be indicated by ChaosXploit.

The interactions between the components of ChaosXploit are shown in Figure 2.
First, the user of ChaosXploit requests the Attack Goal Decider for the execution of a
SCE experiment, informing the attack goal to be considered and the target where the
SCE experiment should be addressed. Then, the Attack Goal Decider retrieves from the
knowledge database the steady-state of the experiment, the rollback procedure, and the
most proper hypothesis (a branch in the attack tree) that matches the attack goal desired by
the user. The Attack Goal Decider also requests to the Connector the preparation of the
extension for the target informed by the user. When a connection to the target is established
and a hypothesis is defined, the Attack Goal Decider then performs the following actions:
(i) It establishes the steady state of the experiment in the Observer and tests it in an initial
phase. Therefore, in this step, it is necessary to establish a new connection to validate its
stability. In case this action fails, the state of the experiment is updated to failed and it
is terminated; (ii) it starts the execution of the steps defined in the selected branch of the
attack tree with the help of the Exploiter, and (iii) it keeps continuous communication with
the Continuous Validator to monitor the execution of the exploitation in progress and in
that way be aware if the attack goal is achieved. If the Continuous Validation fails, then the
termination process is activated by the Terminator. The experiment ends with the execution
of the Rollback Runner to restore everything.

SCE Experiments Runner Knowledge DB Connector Target

RollBack Runner Attack Goal Decider Exploiter Steady-State Validator Cont. Validator Terminator

Observer

Hypothesis GeneratorUser

get_execution(Goal, Target) get_elemets(Goal)

[Steady State, Rollback, Hypothesis]

set_extension(Target) Connect(Target)

Connection Status

set_steady_state(Target)

terminate()

start()
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validate_steady_state(Target)

Status

Status

Status

Connection Status

Status: invalid

terminate()
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Status

Status

run_rollback()

Result

Final Status

Connect(Target)

Connection Status

Connect(Target)

Connection Status

Connect(Target)

Connection Status

Connect(Target)

Connection Status

Figure 2. Flow diagram of the execution of a SCE experiment in ChaosXploit.

5. Experiments

Multiple experiments have been conducted using the ChaosXploit proposal mentioned
in Section 4, which are also available in the public repository of the project [39]. Based on the
fact that AWS S3 buckets and Elasticsearch databases account for nearly 45% of the cloud
misconfigured and compromised technologies [40], the proposed session of ChaosXploit
experiments focuses on evaluating the security of the AWS S3 service. It considers the
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possible configurations and whether they permit establishing a connection, whether they
are public or private buckets, or whether they permit getting the configured Access Control
Lists (ACLs) which allow managing the access to the buckets and their objects. These lists
define which AWS accounts or groups have access and what kind of permissions they have.

This section of experiments comprises the following subsections: Settings, Section 5.1,
in which the hardware and software requirements to develop the experiment, are spec-
ified. Definition of the knowledge database, Section 5.2, in which the attack tree is
presented together with the specification of the branches chosen for the experiments.
Sections 5.3 and 5.4 describe the implementation of the first and second branches of the
attack tree. Each of them contains the definition of the steady-state and the hypothesis,
as well as the input parameters and the monitored variables. Additionally, each of them
includes a subsection for result analysis.

5.1. Settings

The following setup was used to execute the above-mentioned experimental session
using ChaosXploit:

• Hardware: the experiments were executed on a Fedora OS with AMD Ryzen 5 3500U
CPU, 8 GB RAM, and 512 GB SSD;

• Internal Components: Some of the components of ChaosXploit have been built over
existing modules of ChaosToolkit, as it is an open-source framework that allows its
extension and improvement to make it oriented to security purposes. ChaosToolkit
was chosen since this tool simply allows automation of the experiments using json
files. The connection to the different targets (buckets) was done using boto3 (SDK
for python);

• Environment: The first version of ChaosXploit should be installed on a virtual envi-
ronment with python3.7 and Chaostoolkit installed.

5.2. Definition of the Knowledge Database

In Figure 3 it is possible to observe the attack tree designed for this experimental
session. In this case, ChaosXploit is used as an internal auditing tool where a user with
the role of an attacker can follow the four paths shown in the attack tree. These paths are
described as:

• Branch 1: In this case, the intruder first locates public buckets by either listing the
names or by using search engines such as the Wayback Machine. The next step aims
to verify whether the attacker is successful in connecting to the bucket. Once inside,
he has access to look at the storage system’s objects, and read the Access Control Lists
(ACL). The attacker will be able to accomplish the attack objective if these ACLs have
permissions that are available to the general public;

• Branch 2: In this route, the attacker tries to access private buckets using privilege
escalation after failing to recognize public buckets. A policy rollback in this situation,
where a user with permission to restore a previous policy is requested, presents a
chance for privilege escalation. In a perfect world, this user would have had adminis-
trator rights or full access to the S3 service;

• Branch 3: in which the attacker can use brute-forcing techniques to compromise other
user’s credentials and thereby gain access;

• Branch 4: where the attacker can use social engineering techniques such as phishing
to compromise credentials and gain access.

It is important to note that the execution of the first and second branches was included
in the scope of this project, as the actions included in such branches were easier to auto-
mate. Other branches could also be implemented through a combination of manual and
automatic actions.
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Figure 3. Designed attack tree for the experimental scenario, highlighting the implemented branches.

5.3. Results of ChaosXploit’s Execution of Branch 1: Exploitation of Public Buckets
5.3.1. Description

The reason for this experiment is that data can be stored on Amazon S3 and safe-
guarded from illegal access using encryption techniques and access management software.
However, the shared responsibility model of cloud services has caused security config-
uration errors by the designers of this sort of storage. Exposing the data to the public
endangers its availability, confidentiality, and integrity.

Based on the goal of the attack tree (Extract or modify Information), it is possible to
define this first experiment following the CE method as follows:

• Observability: AWS S3 Buckets that can be found publicly;
• Steady State: The buckets to be analyzed suggest having the access controls prop-

erly configured;
• Hypothesis: If you try to access the objects stored in the buckets, then you will not

be able to see their contents or the associated access controls since they are properly
configured to prevent information leaks.

Below is a description of how the first branch of the attack tree specified for this
scenario was implemented and executed. First, by taking regular expressions into account,
public buckets were discovered using enumeration approaches. Since Amazon S3 has
established some specifications for the bucket names, it is quite simple for an attacker to
compile a list of them. Then, boto3, the AWS SDK for Python, was used to carry out the
connection check. This stage allowed us to clean up the buckets, removing any that were
empty or had incorrect names. Then, ChaosXploit looks at the buckets to see if their objects
can be read, and lastly, it checks to see if any buckets provide access to the ACLs.

As shown in Table 3, three monitored variables were considered: (i) Object-Collectable-
Buckets, which are the buckets that have public files such as pictures, documents, exe-
cutable files, among others, which may be gathered through the experiment, (ii) ACL-
Collectable-Buckets which refers to those buckets that have public ACLs, and can be
accessed by anyone, and (iii) the Permissions obtained from the ACLs.
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Table 3. Monitored variables and input parameters considered along the execution of branch 1 by
ChaosXploit.

Monitored Variables
Name Description

Object-Collectable-Buckets N° of buckets that have public objects and are accessible by anyone
ACL-Collectable-Buckets N° of buckets that have public ACLs and are accessible by anyone

Permissions N° of permissions obtained from the ACL.
Input Parameters

Name Description

Domain (Optional) Domain name to which you want to identify the buckets
Threads N° of execution threads

Mode Object-Collectable-Buckets or ACL-Collectable-Buckets
Output Output File

Regarding the input values, four were needed to execute the experiment. First, the
domain is an optional input that should contain the name of the organization to be analyzed.
We have considered this option since ChaosXploit can be used as an internal audit tool.
Therefore, with this argument, the enumeration of the buckets will be limited to all those
that are related to the given domain. In case this input is not provided, ChaosXploit will
generate a list of names using brute-force, wordlists, and bucket naming rules defined
by AWS. Second, the number of threads is considered as an input, so that the process of
connecting and reading the buckets’ information may be performed in parallel on the
different cores, according to the defined thread’s value. Third, the mode indicates the
type of analysis to be performed, whether it aims to find Object-Collectable-Buckets or ACL-
Collectable-Buckets. The last input, output, is a file name used to store the results and feed
the ChaosXploit continuous validator.

5.3.2. Results Analysis

ChaosXploit’s functionality was tested using a list of 3k buckets obtained through a
bucket name enumeration process, which can be performed using automated tools.

As seen in the upper left part of Figure 4, all possible actions of the first branch of the
attack tree presented in Section 5.2 were executed by ChaosXploit. It is possible to identify
that for the second action (Check possible connection), out of the 3k buckets listed, 271 did
not allow a connection. This is because the bucket no longer existed or had an invalid name,
e.g., it did not follow the common bucket naming characteristics proposed by AWS. This
leaves us with 2729 buckets to be tested.

In the case of the third act of the branch (Inspect collectible buckets), 2454 buckets were
well configured and passed the steady-state defined in our experiment, since they did not
allow reading files or permissions listed in the ACLs. However, 275 did not pass validation.

The lower left part of Figure 4 shows the file extensions that were extracted from the
252 Object-Collectable-Buckets. From each bucket, only the first 50 objects were collected,
since some buckets had more than 100,000 files stored, for a total of 7465 collected files. Of
all these files it was possible to identify that more than 2000 were images (jpg and png) and
approximately 1250 were categorized as others because they could be log files, folders, or
had no extension.

To analyze the users and user groups associated with each bucket we first need to
know that Amazon S3 has a set of predefined groups:

• AuthenticatedUsers group representing all AWS accounts;
• AllUsers group allowing anyone in the world to access the resource;
• LogDelivery group allowing access logs to be written to the bucket.

Additionally, AWS also defines the following types of permissions:

• READ Allows the grantee to list the objects in the bucket;
• WRITE Allows the grantee to create new objects in the bucket. For the bucket and ob-

ject owners of existing objects, it also allows deletions and overwrites of those objects;
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• READ_ACP Allows the grantee to read the bucket ACL;
• WRITE_ACP Allows the grantee to write the ACL for the applicable bucket;
• FULL_CONTROL Allows the grantee the READ, WRITE, READ_ACP, and WRITE_ACP

permissions on the bucket
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Figure 4. Results of the execution of ChaosXploit to achieve the defined attack goal (extract or modify
information) through the branch .

In the upper right part of Figure 4 is possible to identify that 92 of the 257 buckets
allowed the extraction of the ACLs. Up to 13 permissions per bucket were identified.
Some of them showed information about the user who owned the bucket ( known as
CanonicalUser by AWS); others showed data about the users who belong to one of the
predefined groups by AWS and had access to the bucket. Then, it is worth noting that for
the information associated with canonical users, the FULL_CONTROL permission was
enabled for 84 buckets (91.3%). In the case of the data associated with the users who belong
to any of the groups, 64 (69.5%) of them allow the reading of the stored objects (READ
permission) and 89 (96.7%) allow the reading of the ACLs (READ_ACP permission).

Finally, we analyze the results of those buckets that allowed the extraction of both
objects and ACLs. As seen in the lower right part of Figure 4, 69 buckets (25%) allowed
both tasks to be performed. These were filtered by the AllUsers and AuthenticatedUsers user
groups and it was identified that 41 (38.3%) from the AllUsers group and 17 (29.8%) from the
AuthenticatedUsers group were allowed to read the ACLs and the objects. Nevertheless, it
was identified that 11 buckets (10.3%) from the AllUsers group and 11 buckets (19.3%) from
the AuthenticatedUsers group allowed the modification of their content (WRITE permission)
and the alteration of the ACLs (WRITE_ACP permission), indicating a big flaw that could
severely compromise the confidentiality, integrity, and availability of the stored data.

With these results, we have noticed the importance of not only providing a tool for the
detection of flaws or vulnerabilities but also seeing it as an aid to infer possible mitigations
to prevent the exploitation of such vulnerabilities.

Table 4 shows the summary of the results considering the differences between tradi-
tional pentesting and SCE presented in Section 3.3. In this case, it is important to highlight
that different tools (s3enum https://github.com/koenrh/s3enum (accessed on 11 October
2022), Sublist3r https://github.com/aboul3la/Sublist3r (accessed on 11 October 2022),
bucketkicker https://github.com/craighays/bucketkicker (accessed on 11 October 2022))

https://github.com/koenrh/s3enum
https://github.com/aboul3la/Sublist3r
https://github.com/craighays/bucketkicker


Big Data Cogn. Comput. 2023, 7, 1 17 of 24

may be integrated to ChaosXploit to execute this experiment, which allows us to enumerate
the names of the buckets in an optimal way. After the bucket names are identified, ChaosX-
ploit may perform the rest of the actions in a completely automated way. In addition, as
we have refuted the hypothesis, ChaosXploit allows us to report a vulnerability related
to misconfiguration because the security assumptions on the buckets have not passed the
validation of the steady state of the experiment.

Table 4. Results of ChaosXploit’s execution of branch 1 in terms of differences between traditional
pentesting and SCE.

SCE

People implementing Executed by ChaosXploit’s team
Methodology behind Chaos Engineering principles

Security approach Defensive
Available tools ChaosXploit

Grade of automatization All actions to be performed in this branch of the tree have been automated
Expected frequency By definition, high frequency

Phase of SDLC where applied Along all the SDLC
Scope of tests Full test on the buckets list

Kind of vulnerabilities detected Security assumptions about the configurations of the buckets

5.4. Results of ChaosXploit’s Execution of Branch 2: Exploitation of Private Buckets
5.4.1. Description

This second branch refers to scenarios where the AWS policy administration in an or-
ganization is not working properly, and a user account maintains unnecessary policies, e.g.,
when a user changes role or area in a company. This scenario, caused by a misconfiguration
in the IAM module, may be more critical when such a policy enables the user account to
restore policies. Thus, the user may cause an elevation of privileges that allow him/her
access to services and data in an unauthorized way. As part of the security inspection that
a cybersecurity team could execute over a business infrastructure, one may assume that
an internal attacker, e.g., an employee or contractor, could be interested in validating if
his/her account allows the execution of policies additional to the required ones for the role.
In addition, in the case of an external attacker, he/she could be interested in validating
if some previously compromised AWS account, which contains limited permissions, can
be elevated.

Considering the previous scenario, the following SCE definitions aligned to the scien-
tific method are posed:

• Observability: List and status of the policies assigned to an AWS user account un-
der analysis;

• Steady State: The AWS user account under analysis has policies assigned to him/her
according to minimum privilege and need-to-know policies specific to his/her role in
the organization;

• Hypothesis: Policies assigned to an AWS user account should not be modified in an
unauthorized way.

For the execution of the second branch of the tree, ChaosXploit checks the policies
assigned to the user account’s profile defined for the experiment setup. If it identifies that
the user account has the permission to restore previous versions of its policies, then it lists
all the policy versions and searches for the one with elevated permissions to gain access
to a privileged service, i.e., the AWS managed storage service (S3). This will achieve the
goal of the attack tree: to extract or modify information. If the user does not have such
a permission, ChaosXploit will start the execution of the third branch of the presented
attack tree.

The upper part of Table 5 shows the two main variables that were monitored through
the experiments of branch 2, i.e., Attached-User-Policies and Current-Policy. First, Attached-
User-Policies is used at two moments of the branch execution: (i) at the beginning of branch 2
to identify all policies associated with a user account, and (ii) at the middle of branch 2 to
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identify permission associated with the user account that allows for the restoration of the
previous version of policies and a previous policy that may be a suitable candidate to be
restored, e.g., a policy that allows for the extraction and modification of information in the
AWS S3 service. Second, Current-Policy represents the current version of the user’s policy
set, so this variable verifies whether the previous policy’s restoration was successful.

Table 5. Monitored variables and input parameters considered along the execution of branch 2 by
ChaosXploit.

Monitored Variables
Name Description

Attached-User-Policies Listing of policies assigned to a user
Current-Policy Policy currently assigned to the user

Input Parameters
Name Description

User-Account User account from which the actions will be performed
Output Output file

On the other hand, the lower part of Table 5 shows the input elements that ChaosXploit
receives for the execution of this branch. In this case, ChaosXploit uses the name of the user
account (user account) for whom the security inspection must be performed. In addition,
ChaosXploit takes as a parameter the name of the output file (output) for where to store
the results.

5.4.2. Results Analysis

Figure 5 shows the execution of ChaosXploit for branch 2, which includes (i) the
setup of ChaosXploit (lines 1–5), (ii) the steady state validation which assumes a correct
configuration of the policies assigned to the user account under analysis (lines 6–10), (iii)
execution of the actions that allow validating the hypothesis through an attempt to restore
a previous policy (lines 11–20). This last set of lines includes listing the user policies (line
13–14), validating the current version (line 15), identifying the version that allows the
privilege escalation (line 16), restoring the desired policy (line 17–18) and validation of the
restore (line 20).

Figure 5. Validation of the steady state and elevation of privileges achieved by ChaosXploit through
branch 2.

Table 6 shows the details of each of the policy versions found by ChaosXploit for the
user account under analysis. This table lists the policy versions, the effects on the actions
(either allow or deny access), the actions that indicate what the user can or cannot do, the
resources on which the action may be applied, and additional conditions under which the
policy has an effect. The current policy version (1) has limited actions related to the IAM
service, but it still allows to change the policy through the action SetDe f aultPolicyVersion.
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It is also possible to identify the policy version 5, which includes some actions to manage the
AWS S3 service. However, such actions would not allow reaching the attack goal because
they do not allow modifying information. Finally, the version chosen by ChaosXploit (2) to
be restored was the one that allows any action on any resource without any condition.

Table 6. Policy versions found by ChaosXploit through branch 2.

Version Effect Action(s) Resource(s) Condition

1 (Current) Allow “iam:Get*”, “iam:List*”, “iam:SetDefaultPolicyVersion” * None
2 Allow * * None
3 Deny * * IP Condition
4 Allow “iam:Get*” * Time Condition
5 Allow “s3:ListBucket”, “s3:GetObject”, “s3:ListAllMyBuckets” * None

Once the previous policy is restored, as shown in Figure 5, ChaosXploit initiates the
actions shown in Figure 6. Between the first actions, ChaosXploit establishes the connection
to the target and defines the collect mode to inspect the files in the bucket and the write
mode to write a new file (lines 1–4). Additionally, ChaosXploit creates new files in the S3
bucket, as this experiment was being executed in its own controlled environment (lines 5–6).
The validation of the steady state at lines 8–10 failed in this case as the policy settings can
be manipulated and used to alter the information.

Figure 6. Attack goal (extract or modify information) achieved by ChaosXploit through branch 2.

In experiments executed along branch 1 (Section 5.3) and branch 2 (Section 5.4), the
attack goal was achieved so the experiments ended in a critical state similar to the one seen
in line 11 at Figure 6. Table 7 shows the summary of the results for this second experiment,
considering the differences between traditional pentesting and SCE presented in Section 3.3.
In this case, we highlight the ChaosXploit capabilities to develop this kind of experiment
that exploits the AWS authorization module. Additionally, we define the scope of the
experiment only to users belonging to the same IAM account. Finally, as the experiment
ended in a critical state, we report a vulnerability associated with privilege escalation,
which allows a user to pass from few to many permissions, putting the confidentiality and
integrity of the information available in the different AWS services at risk.

Table 7. Results of ChaosXploit’s execution of branch 2 in terms of the differences between traditional
pentesting and SCE.

SCE

People implementing Executed by ChaosXploit’s team
Methodology behind Chaos Engineering principles

Security approach Defensive
Available tools ChaosXploit

Expected frequency By definition, high frequency
Phase of SDLC where applied Along all the SDLC

Scope of tests Users belonging to the IAM account
Kind of vulnerabilities detected Privilege escalation considering the policy versions assigned to users
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6. Toward an Adoption of SCE in Industry

With the growing adoption of CE, many companies have included it as a discipline for
improving reliability. According to InfoQ [41], the appropriation of CE practices to inject
failures and generate resilience has evolved to the “Early Majority stage”, which means that
its adoption is about one-third of the overall population. Gremlin, Litmus, and Steadybit
are some key CE initiatives that have contributed to this achievement.

The stories of the adoption of CE reported by companies such as Capital One, Linkedin,
Google, and Microsoft [34] are examples of its wide acceptance. The appropriation of CE as
a common discipline to inject failures and generate resilience provides arguments to justify
the success of this discipline between industry and academia.

Not only have the failures of the infrastructure attracted the attention of practition-
ers, but data breaches and security incidents have risen in recent years [42]. Failure to
implement basic configurations and appropriate security controls have led to causes that
contribute to the security incidents. Undoubtedly organizations are being asked to produce
with extremely high throughput and with very little resources to maintain the security
status quo. All the while, there is a divergent gap in how we design and build distributed
systems and approach security engineering.

In this sense, SCE serves as a foundation for developing a learning culture around
how organizations build, operate, instrument, and secure their systems. The goal of these
experiments is to move security in practice from subjective assessment into objective
measurements. As they do in CE, Security Chaos experiments allow security teams to
reduce the “unknown unknowns” and replace “known unknowns” with information
that can drive improvements to security posture. The promise in terms of adoption and
sophistication is immense.

Even though introducing false positives into production networks and other infras-
tructures under the context of CE is a common practice nowadays, SCE is still seen as more
of an academic research topic than industry practice. Nevertheless, in recent years, SCE is
starting to become known in the industry. One example is the Thoughtworks report [43],
which documented an evolution around this technique migrating SCE from a phase of
“Assess” to “Trial”, which means that SCE could be eventually used in a controlled way and
validated that the security policies in place are robust enough to handle common security
failure modes.

Another remarkable example of the application of SCE in the industry was docu-
mented by Jamie Dicken [44]. She wrote about her SCE journey at Cardinal Health, a global
Fortune 20 healthcare manufacturer and distributor of medical and laboratory products
and a provider of performance and data solutions for healthcare facilities. Cardinal Health
needed an applied security model to protect critical infrastructure and data as it was mov-
ing to the cloud, and SCE became the most appropriate answer. Cardinal Health created a
process named Continuous Verification and Validation (CVV) that, by using SCE, allowed
them to continuously verify that security controls were working correctly and as expected.

Adopting SCE first requires a solid understanding of the principles of chaos. For
example, insufficient observability of the chaotic experiments would impede drawing
reliable statements about a hypothesis. After understanding the fundamentals, the next
step should start by developing competency and confidence in the methods and tools
needed to perform the SCE experiments. For this, a new SCE practitioner may decide to
start designing small and manual experiments. In case the hypothesis is not disproved,
we can automate the experiment. Here, ChaosXploit may play a key role as one of the
few SCE platforms existing nowadays that may enable the industry to design and execute
experiments aimed at the automatic and controlled exploitation of vulnerabilities and
validation of systems security. Security validations can also be achieved progressively
through security chaos game days that allow players to advance in this path without
causing a security incident on production.

On the side, diverse teams should know and try SCE since it is no longer a limited
concept for Security Engineers or security teams. We believe that if SCE begins as an
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engineering practice, it could be quickly adopted by other roles (Cloud Engineers, Software
Engineers, Site Reliability Engineers) and teams (platform, infrastructure, operations,
and application development) as it would allow them to improve the reliability of their
applications through proactive testing of their own security.

7. Conclusions and Future Work

The digital revolution, or digital transformation, as it has been called in recent years,
has proven to be an incredible driving factor in our society. Thanks to this revolution, our
society was able to handle some of the most serious restrictions that the recent pandemic
put on different essential services, e.g., the use of highly interactive e-health services in
response to the restrictions regarding in-person medical consultations, exploitation of
e-learning platforms to face the limitations in the physical access to formal educational
services, enabling e-payments as an alternative to the use of traditional financial services,
among many others.

On the downside, such a change also implies the existence of ill-motivated entities
that constantly try to attack connected systems to damage the confidentiality, integrity, or
availability of the provided online services. Such threat entities use increasingly advanced
techniques, for example, based on malware campaigns [45] or threats addressed to a specific
technology [46].

Over the last years, a novel paradigm has emerged, the so-called Chaos Engineering
(CE), whose main objective consists of testing the resiliency of distributed and complex
systems through continuous observation and experimentation. More recently, the paradigm
has evolved to embrace the entire cybersecurity ecosystem, i.e., Security Chaos Engineering
(SCE) comes into play to defend the system assets against cyberattacks through continuous
and rigorous experimentations on possible security holes and consequent mitigations.

In this paper, we proposed ChaosXploit, an SCE-powered framework that can conduct
SCE experiments on different target architectures. Based on the hypothesis generated
by the knowledge database and the attack representations, ChaosXploit executes SCE
experiments over a target to find a potential security problem as an ultimate goal. In
addition, ChaosXploit features an observer that is in charge of verifying the change between
the steady state of a certain hypothesis and the current state of the system. To prove
the capabilities of ChaosXploit, a set of experiments was conducted on several AWS S3
buckets, evaluating their security characteristics with SCE. The results demonstrated that
our approach could be successful, highlighting several unprotected buckets for a specific
attack path. To foster its adoption, ChaosXploit was made publicly available for the
cybersecurity community through the repository of the project [39].

Future work will explore the possibility of widening the ChaosXploit framework target
architectures to include other use cases, systems, or providers. That is, the extension of the
Attack Trees knowledge base is considered mandatory to include a number of different
application scenarios, which can lead to the potential improvements of ChaosXploit, too.
Particularly, one could easily argue that using a standardized attack modeling method-
ology (e.g., MITRE ATTC&K [47]) would be beneficial for the proposed SCE framework,
even if some adjustments are needed to achieve full compliance. Besides, integrating a
recommendation module to suggest countermeasures once a security flaw is discovered
is worth investigating. In this sense, several attack models have been proposed in the
literature so far, and some of them already integrate the Attack Trees representation adding
countermeasures (e.g., Attack Countermeasures Trees [48], Attack Response Trees [49],
etc.). Thus, ChaosXploit may incorporate those representations in the Knowledge base and
select the optimal reaction to fire against the threat based on specific criteria [50]. Moreover,
the performance of ChaosXploit should be further evaluated to prove its usefulness in
performance-demanding or critical scenarios. Expressly, the assessment of the response
time and resource consumption is essential to argue the applicability of the presented
framework in scenarios where the threat discovery procedure must be executed in real-time
or with limited computation capabilities.
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