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Abstract: Diabetic retinopathy (DR) is a medical condition caused by diabetes. The development of
retinopathy significantly depends on how long a person has had diabetes. Initially, there may be no
symptoms or just a slight vision problem due to impairment of the retinal blood vessels. Later, it may
lead to blindness. Recognizing the early clinical signs of DR is very important for intervening in and
effectively treating DR. Thus, regular eye check-ups are necessary to direct the person to a doctor for
a comprehensive ocular examination and treatment as soon as possible to avoid permanent vision
loss. Nevertheless, due to limited resources, it is not feasible for screening. As a result, emerging
technologies, such as artificial intelligence, for the automatic detection and classification of DR are
alternative screening methodologies and thereby make the system cost-effective. People have been
working on artificial-intelligence-based technologies to detect and analyze DR in recent years. This
study aimed to investigate different machine learning styles that are chosen for diagnosing retinopathy.
Thus, a bibliometric analysis was systematically done to discover different machine learning styles
for detecting diabetic retinopathy. The data were exported from popular databases, namely, Web of
Science (WoS) and Scopus. These data were analyzed using Biblioshiny and VOSviewer in terms of
publications, top countries, sources, subject area, top authors, trend topics, co-occurrences, thematic
evolution, factorial map, citation analysis, etc., which form the base for researchers to identify the
research gaps in diabetic retinopathy detection and classification.

Keywords: machine learning; deep learning; diabetic retinopathy; fundus images

1. Introduction

Nowadays, many people are suffering from diabetic retinopathy (DR). It is one of the
most typical reasons among adults aged 20–74 years for blind registration in the world [1].
Retinopathy development depends on how long a person has had diabetes. The prevalence
of diabetes in India alone was 11.8%, with 10.7%, 13.1%, 13.2%, and 9.7% in the 50–59 years
age group, 60–69 years age group, 70–79 years age group, and ≥80 years age group,
respectively, from 2015 to 2019 [2] (Figure 1). In the 70–79 years age group, the prevalence
of diabetes was the highest.

This prolonged diabetes leads to diabetic retinopathy. DR affects the vision of
463 million people worldwide and is responsible for 22.27% of global blindness (2019) [1].
In India, 16.9% [2] (Figures 2 and 3), i.e., around 72.96 million cases in the population, are
suffering from DR, as per a survey done from 2015 to 2019. The Times of India article dated
14th Nov 2021 reported 77 million DR cases in India [3]. The cases increased mainly due to
type 2 diabetes.
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The traditional screening of fundus images for diagnosing DR lesions takes time,
thereby delaying therapy and reducing the chance of success. Therefore, the screening
strategies must be changed to save the time of both doctors and patients by using a
computer-aided diagnosis. Thus, new technologies, such as machine learning, come into
play for detecting and classifying DR. The quality, affordability, and accessibility of DR
screening in the diabetic population are all crucial parameters in preventing blindness.
New technology will ease this issue in terms of cost.

In DR patients, lesions [4] such as microaneurysms, hemorrhages, exudates, and
neovascularization (Figure 4) may develop. These lesions need to be detected early for
proper intervention. Microaneurysms are small swellings that form at the internal wall of a
blood vessel, which may burst and leak blood into nearby tissues, whereas hemorrhages are
ruptures of capillaries. Exudates can be hard exudates or soft exudates. Hard exudates are
yellowish lipids that leak from an abnormal blood vessel, and soft exudates are whitish-grey,
also called cotton wool.
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Diabetic retinopathy is divided into two types: non-proliferative and proliferative.
Non-proliferative DR is divided into three stages: mild, moderate, and severe [5]. Only
microaneurysms are present in mild non-proliferative DR, while exudates characterize
moderate and severe stages, along with microaneurysms. However, microaneurysms may
be present in later stages. During non-proliferative DR, the patient barely experiences any
peculiar symptoms. However, their eyesight gradually becomes impaired as the disease
progresses to the proliferative stage. It may lead to neovascularization; thus, the patient
may lose vision completely. Therefore, intervention at a later stage is less helpful, and thus,
diagnosing DR early is necessary [6].

Artificial intelligence and machine learning have been widely employed in healthcare,
especially for disease diagnosis. Thus, a computer-based diagnosis is required to accu-
rately identify diabetic retinopathy symptoms for early intervention. Many studies were
carried out using machine learning techniques to process medical images automatically
and diagnose diseases. We categorized them based on their learning styles. This study
will be helpful for researchers to acquire insights into the application of AI–ML in the
research of diabetic retinopathy from the year 2000 to 2021. We used bibliometric analysis
to analyze papers related to machine-learning-based diabetic retinopathy. The data was
collected from the Scopus and WoS databases. An intensive quantitative study was done
using VOSViewer, Gephi, Rstudio, and Biblioshiny regarding the top author’s production
over time, trend topic, keywords analysis, thematic evolution, etc. Furthermore, the funda-
mental analysis, such as yearly publication, number of citations per year, top countries, etc.,
was done using Excel.



Big Data Cogn. Comput. 2022, 6, 154 4 of 31

The rest of the paper is designed as follows: Section 2 outlines the search strategy
utilized in data collection from Scopus and WoS databases. The analysis results of the
collected data are given in Section 3 in various ways, such as documents published per year,
the number of citations per year, source analysis, top countries, and top authors involved
in research, and keyword analysis. Section 4 expounds on the qualitative study based on
different machine learning styles used in the literature. Section 5 summarizes the paper
and exhibits a few issues. Finally, Section 6 concludes the article.

2. Research Methodology

Quantitative and qualitative analyses are the two crucial strategies used for collecting
and deciphering data in research. Both quantitative and qualitative analyses were carried
out in this paper, which will help research scholars to refine their research area and identify
the research gaps.

Bibliometric analysis thoroughly examines the research carried out in a particular
area. It is the factual investigation of journals, articles, books, or other distributions. This
particular analysis assessed the significance and impact of journals and articles published in
detecting diabetic retinopathy and may offer assistance regarding treatment advancement,
as well as helping with financing and grants.

This research aimed to look into various machine learning algorithms for diabetic
retinopathy detection, and thus, identify the areas of opportunity to improve the perfor-
mance of machine learning for detecting DR.

Search Strategy

The data were collected from the most popularly known databases, i.e., Scopus and
Web of Science (WoS). Figure 5 shows the search query [7] used in both databases for
this study.
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The search strategy [8] is shown in Figure 6, where a total of 472 documents from
Scopus and 538 from WoS met the selection criteria for all different document types from
2000 to 2021. The documents were articles, conference papers, review articles, conference
reviews, book chapters, letters, abstracts, meetings, early access, editorial materials, and
data papers.
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3. Quantitative Analysis

The comma-separated values (CSV) file downloaded from Scopus contained all the
articles with the author, ID, title, year, source title, volume, issue, page start, page end, page
count, cited by, DOI, link, affiliations, author keywords, publisher, ISSN, ISBN, document
type, source type, and PubMed ID information. The text file downloaded from WoS
contained all the articles with the details of the publication type, authors, book authors,
article title, patent number, source title, volume, issue, DOI, publication year, ISSN, ISBN,
unique ID, and PubMed ID.

We thoroughly analyzed (Figure 7) this information using Excel, RStudio, Biblioshiny,
and VOSviewer to quantify the amount of work done in detecting diabetic retinopathy
using machine learning.
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3.1. Publication Analysis

Figure 8 shows a bar graph of the number of documents published yearly in Scopus
and WoS from 2012 onward. Researchers started working on diabetic retinopathy detection
using machine learning in 2000. Initially, very few papers were published, and after 2013,
we found a substantial increase in publications, with 114 (Scopus) and 136 (WoS) in 2021.
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3.2. Citation Analysis

The comparative analysis of citation received per year for the papers published in
both databases are tabulated, as shown in Table 1, which indicated that around 1000 more
citations were received for the documents published in WoS.

Table 1. Comparative yearly citation analysis.

Database/Year <2017 2017 2018 2019 2020 2021 Total

SCOPUS Citations 4308 2270 1322 793 768 88 9549
Web of Science

Citations 3822 1608 1955 1930 926 248 10,489

The detailed analysis is shown graphically in Figure 9. It was observed that several
citations received were at the peak for the papers published in the year 2016. One of the
documents received 2571 out of 2827 citations (Scopus) and 2386 out of 2531 citations (WoS)
in 2016. The document titled “Development and validation of a deep learning algorithm
for the detection of diabetic retinopathy in retinal fundus photographs” was published in
JAMA—Journal of the American Medical Association by Gulshan V et al. [9] and was included
in both the databases and referred to by many researchers.
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3.3. Country Analysis

The analysis shows that 24 out of 57 countries published at least five documents with
at least five citations. The following graph (Figure 10) shows the top 10 countries with at
least five papers and at least five citations. From the analysis (Table 2), it is clear that the
United States published fewer documents than India, but the average number of citations
received was higher.
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Table 2. List of top countries with the no. of documents and citations.

Country No. of
Documents No. of Citations Total Link

Strength
Avg. No. of Citations

per Document

India 197 3778 342 19.2
United States 55 4784 341 87
China 47 1382 196 29.4
United Kingdom 30 1271 145 42.4
Australia 20 324 81 16.2
Pakistan 18 211 78 11.7
Saudi Arabia 15 193 69 12.9
Canada 13 397 84 30.5
South Korea 12 287 74 23.9
France 11 649 83 59

3.4. Subject Area Analysis

The highest proportion of the work was done in the computer science field at 29.7%
and in the engineering domain at 20.1% (Figure 11). Of course, people in the medical area
were also working to find a solution for automated diagnosis.
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3.5. Sources Analysis

Out of 271 sources, the top 10 sources (Figure 12) were identified in this research field,
which will cast some light and provide the right direction for future research.
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3.6. Top Authors’ Production over Time

The papers produced by the top 10 authors were analyzed over time (Figure 13).
S. Banerjee [10] started working in this area in 2016 with one paper with total citations per
year of 2.29. T. Peto [11] and M. Lamard [12] started their research around 2010, working
till 2021 with five and seven articles, respectively. The top authors’ production over time in
terms of the no. of papers and total citations per year was plotted (Figure 13) and listed in
tabular form (Table 3).
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Table 3. No. of articles and total citations per year for the top authors.

AUTHOR YEAR 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

BANERJEE S

No. of articles 1 2 2 2

Total citations per year
(TCpY) 2.29 3 5.5 0.33

PETO T

No. of articles 1 1 1 2 1 1

Total citations per year
(TCpY) 1 3.25 3.43 8.83 10.3 0.33

LAMARD M

No. of articles 1 1 1 1 1

Total citations per year
(TCpY) 0.08 20.7 4.71 29.7 5.33

MRIAUDEAU F

No. of articles 1 1 1 1 1

Total citations per year
(TCpY) 3.54 1.2 8 4.63 1.2

QUELLEC G

No. of articles 1 1 1 1 1

Total citations per year
(TCpY) 0.08 20.7 4.71 29.7 5.33

CHOWDHURY AR

No. of articles 1 2 1

Total citations per year
(TCpY) 2.29 5.5 0

COCHENER B

No. of articles 1 1 1 1

Total citations per year
(TCpY) 0.08 4.71 29.7 5.33

GOPI VP

No. of articles 2 2

Total citations per year
(TCpY) 10.3 5

GUPTA S

No. of articles 1 2 2 2

Total citations per year
(TCpY) 4.63 4 14.7 0

3.7. Trend Topic Analysis

We analyzed the authors’ keywords over the period (2010 to 2021) and identified the
trend of the keywords used. Terms such as exudates, microaneurysm, SVM, and computer-
aided diagnosis appeared in 2016. These terms indicated that SVM classifiers were used
to detect exudates and microaneurysms in most of the papers. Similarly, we found that
decision trees were used in addition to SVM in 2018. More emphasis was given to the
keyword diabetic retinopathy. Later, in the year 2020, machine learning and deep learning
became the trend (Figure 14) to be used.
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3.8. Author Keyword Co-Occurrence Analysis

The analysis was carried out on keywords with at least ten occurrences (Figure 15).
The authors defined 831 keywords, of which 32 met the threshold of 30 occurrences. The
keywords deep learning occurred 95 times with 207 total link strengths, followed by image
processing, artificial intelligence, convolutional neural network, etc., with fewer times. Of
course, the search keywords will occur the highest number of times. Four clusters were
formed, with 11 items in cluster 1, 9 in cluster 2, 7 in cluster 3, and 5 in cluster 4, which are
indicated by red, green, blue, and yellow regions in the figure, respectively.
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3.9. Conceptual Structure Map

The conceptual structure map was obtained from Biblioshiny using the multiple com-
ponent analysis (MCA) method. This method is commonly used to analyze categorical
data, which seeks to narrow down a vast number of variables into smaller sets of compo-
nents that sum up the information in the data [13]. The conceptual structure is shown in
Figure 16. It was found that exudate and microaneurysm lesions were detected by using
SVM, random forest, kNN, and decision tree machine learning algorithms, which formed a
single cluster. Author keywords such as ophthalmology, age-related macular degeneration,
and optical coherence tomography were most frequently used, along with artificial intel-
ligence, creating a second cluster. The maximum number of author keywords belonged
to the third cluster, which included retinal landmarks (optic disc), lesions (hemorrhages,
hard exudates), and fundus images. Moreover, most papers used the terms segmentation
and machine learning techniques such as SVM, kNN, and advanced techniques such as
deep learning, extreme learning machine, and transfer learning. The segmentation was
generally used to locate retinal landmarks, lesions, etc., and machine learning techniques
for classification.



Big Data Cogn. Comput. 2022, 6, 154 13 of 31

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 13 
 

 
Figure 16. Factorial map. Figure 16. Factorial map.



Big Data Cogn. Comput. 2022, 6, 154 14 of 31

3.10. Thematic Evolution Analysis

The evolution of academic publications was identified from the relationships between
the keywords used in various papers over time. Here, the analysis was done in four time
slices: 2000−2014, 2015−2018, 2019−2021, and 2021−2022.

These four time slices (Figure 17) were selected based on trial and error to find the
trend topics. In the first time slice, most of the research was carried out on microaneurysm
detection and DR classification based on traditional image processing techniques and the
SVM classifier. More concentration was given to feature extraction to improve the model
(SVM, CAD, ELM) performance in the second time slice. During the same period, the
work slowly moved toward exudate detection, as it also forms the early sign of diabetic
retinopathy. It was noticed that in the third time slice (2019−2020), people started working
on random forests, convolutional neural networks, and transfer learning techniques for
exudate detection. Methods such as SVM, CNN, transfer learning, and artificial intelligence
were used in recent papers.
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Figure 18 shows the thematic map for the above four time slices. It manifests the key-
words for each time slice under different themes. The map consists of four themes: Niche,
Motor, Emerging or declining, and Basic themes. The niche theme is a well-developed and
isolated theme and thus lists the keywords less important for the field. The motor theme
lists the keywords that are important in the organization of a research area. The emerging
or declining theme list keywords that are minimally used. The basic theme list keywords
that are widely used in several fields of study.
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4. Qualitative Analysis

In total, 811 documents based on diabetic retinopathy detection were found. These
results were further refined based on annual citation rates, ensuring the paper’s high quality.

Subjective analysis was done on these articles to pinpoint the different machine learning
styles used in DR detection. This paper discusses the types of features used in detecting DR
lesions that significantly impact the performance of detection and classification algorithms.

Most known approaches for detecting lesions rely solely on handcrafted features
(HCFs), which cannot precisely characterize lesions. Therefore, new contextual and textural
features, a combination of grey-level co-occurrence matrix with HCFs, and deep features
with HCFs were used for efficient detection.

The lesion detection and classification can be done using different machine learning
techniques. Various authors suggested different kinds of features in the literature. Hand-
crafted features such as conventional features [14,15], pixel-wise features and superpixel-
wise features, [16–18], and deep features [19,20] were used.

4.1. Diabetic Retinopathy Datasets

Many datasets are available online for retinal images to detect DR lesions and blood
vessels. These datasets are generally used to train, validate, and test models. Hence, they
can be used to assess the performance of a new model compared with the existing models.
Many fundus images are available with varying resolutions, contrasts, etc. Fundus image
datasets are tabulated in Table 4. The most commonly used datasets are DiaretDB0, DiaretDB1,
e-Ophtha Ex, IDRiD, and Kaggle DRD Kaggle.

DiaretDB0 [21] is a publicly available dataset with 130 images, including 20 fundus
images without DR and 110 images with DR early signs. It was collected from Kuopio
University Hospital using a fundus camera with a 50-degree field of view.

The DiaretDB1 [22] database is one of the publicly available datasets containing high-
quality DR retinal images annotated at the lesion level. The resolution of the retinal images
is 1500 pixels by 1152 pixels with a 50-degree FoV. Out of 89 fundus images, 47 and 42 are
assigned for training and testing, respectively.

E. Decencière et al. proposed two datasets, e-Ophtha EX and e-Ophtha MA [23],
consisting of retinal images. Both datasets are a collection of four different resolutions,
ranging from 2544 by 1696 pixels to 1440 by 960 pixels, with a 45-degree field of view. The
e-Ophtha EX has 82 retinal images, of which 35 are without DR and 47 with 12,278 exudate
signs. Similarly, the other dataset, e-Ophtha MA, contains 381 images, of which 233
are without DR and 148 images with 1306 microaneurysm signs. The Indian Diabetic
Retinopathy Image Dataset (IDRiD) [24] is an open-source dataset that is available online.
The experts did the annotations at the pixel level. Hence, more accurate predictions can be
made on DR lesions. Of 81 images, 54 are kept for training and 27 for testing with a 4288 by
2848 pixel resolution and 50-degree field of view (FoV).

The Kaggle Diabetic Retinopathy Detection challenge dataset comprises high-resolution
retina photographs taken under various imaging circumstances. It contains 88,702 RGB
images with varying resolutions, divided into a training set of 35,126 and a testing set
of 53,576. Other freely available datasets are Messidor and Messidor-2 [25], which contain
1200 images (400 images without pupil enlargement and 800 images with pupil enlarge-
ment) and 1748 images, respectively. The Messidor dataset is divided into three equal sets
(i.e., 400 images each). The resolutions of the captured images in both datasets are 1440 by
960, 2240 by 1488, or 2304 by 1536 pixels with a 45-degree FoV. These images are graded
into DR stages varying from 0 to 3 based on the no. of microaneurysms and hemorrhages.
DRIVE [26] and STARE [27] have 40 and 400 images, respectively. The DRIVE dataset has
20 training and 20 testing images with pixel-level annotations. In STARE, the camera was a
Topcon TRV with a 35-degree FoV. The pixel-level annotations of the diverse retinal images
can be found in both the e-Ophtha and IDRiD datasets, and these various retinal images
help to improve the model’s accuracy.
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Table 4. Details of diabetic retinopathy datasets.

Dataset
No. of
Fundus
Images

Field-of-
View

Training
Set (No.
of Images)

Test Set
(No. of
Images)

Normal Abnormal Lesions Image Resolution Data Source
Location Annotations Website

DiaretDB0 130 50◦ - - 20 110 - - Kuopio university
hospital - https://www.it.lut.fi/project/

imageret/diaretdb0/

DiaretDB1 89 50◦ 28 61 5 84
15 soft exudates,
39 microaneurysm,
and 39 hemorrhages

1500 × 1152 pixels Kuopio university
hospital -

https://www.it.lut.fi/project/
imageret/diaretdb1/index.
html

e-Ophtha EX 82 40◦ - - 35 47 12,278 exudates 1440 × 960 pixels to
2544 × 1696 pixels - Pixel level https://www.adcis.net/en/

third-party/e-ophtha/
e-Ophtha MA 381 40◦ - - 233 148 1306 microa-

neurysms
1440 × 960 pixels to
2544 × 1696 pixels - Pixel level

IDRiD 516 50◦ 413 103 164 81 - 4288 × 2848 pixels

Eye Clinic,
Sushrusha Hospital
Building, Nanded,
(M.S.), India

Pixel level

https://ieee-dataport.org/
open-access/indian-diabetic-
retinopathy-image-dataset-
idrid

Kaggle DRD 88,702 - 35,126 53,576 65,343 23,359 - Different resolution - -
https://www.kaggle.com/
competitions/diabetic-
retinopathy-detection/data

Messidor 1200 45◦ - - 540 660 -
1440 × 960,
2240 × 1488 or
2304 × 1536 pixels

- - https://www.adcis.net/en/
third-party/messidor/

Messidor-2 1748 45◦ - - - - -
1440 × 960,
2240 × 1488 or
2304 × 1536 pixels

- - https://www.adcis.net/en/
third-party/messidor2/

DRIVE 40 45◦ 20 20 33 7 - 768 × 584 pixels - Pixel level https:
//drive.grand-challenge.org/

STARE 400 35◦ - - - - - 605 × 700 pixels - - http://cecas.clemson.edu/
~ahoover/stare

https://www.it.lut.fi/project/imageret/diaretdb0/
https://www.it.lut.fi/project/imageret/diaretdb0/
https://www.it.lut.fi/project/imageret/diaretdb1/index.html
https://www.it.lut.fi/project/imageret/diaretdb1/index.html
https://www.it.lut.fi/project/imageret/diaretdb1/index.html
https://www.adcis.net/en/third-party/e-ophtha/
https://www.adcis.net/en/third-party/e-ophtha/
https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data
https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data
https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data
https://www.adcis.net/en/third-party/messidor/
https://www.adcis.net/en/third-party/messidor/
https://www.adcis.net/en/third-party/messidor2/
https://www.adcis.net/en/third-party/messidor2/
https://drive.grand-challenge.org/
https://drive.grand-challenge.org/
http://cecas.clemson.edu/~ahoover/stare
http://cecas.clemson.edu/~ahoover/stare
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4.2. Steps in Diabetic Retinopathy Detection

Generally, the steps involved in diabetic retinopathy detection and classification are
shown in Figure 19. In image segmentation, retinal landmarks, such as the optic disc [28,29]
and blood vessels [30,31] are removed to make lesion segmentation feasible.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 18 
 

The Kaggle Diabetic Retinopathy Detection challenge dataset comprises high-resolu-
tion retina photographs taken under various imaging circumstances. It contains 88,702 
RGB images with varying resolutions, divided into a training set of 35,126 and a testing 
set of 53,576. Other freely available datasets are Messidor and Messidor-2 [25], which con-
tain 1200 images (400 images without pupil enlargement and 800 images with pupil en-
largement) and 1748 images, respectively. The Messidor dataset is divided into three 
equal sets (i.e., 400 images each). The resolutions of the captured images in both datasets 
are 1440 by 960, 2240 by 1488, or 2304 by 1536 pixels with a 45-degree FoV. These images 
are graded into DR stages varying from 0 to 3 based on the no. of microaneurysms and 
hemorrhages. DRIVE [26] and STARE [27] have 40 and 400 images, respectively. The 
DRIVE dataset has 20 training and 20 testing images with pixel-level annotations. In 
STARE, the camera was a Topcon TRV with a 35-degree FoV. The pixel-level annotations 
of the diverse retinal images can be found in both the e-Ophtha and IDRiD datasets, and 
these various retinal images help to improve the model’s accuracy. 

4.2. Steps in Diabetic Retinopathy Detection 
Generally, the steps involved in diabetic retinopathy detection and classification are 

shown in Figure 19. In image segmentation, retinal landmarks, such as the optic disc 
[28,29] and blood vessels [30,31] are removed to make lesion segmentation feasible. 

 
Figure 19. Steps in diabetic retinopathy detection. Figure 19. Steps in diabetic retinopathy detection.

4.3. Image Segmentation

Image segmentation (Figure 20) can be broadly categorized into traditional and machine
learning approaches. The traditional approach includes threshold-based, morphological-
based, region-based, and clustering-based image segmentation, which are listed in Table 5
with the datasets that they used.
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4.3.1. Threshold-Based Segmentation

The segmentation of exudates was implemented using dynamic decision thresholding
and adaptive image quantization by Kaur et al. [6]. Since the threshold value is dynamically
selected for the low-contrast images with a large diversity, this leads to robustness. Using
the Otsu algorithm [17,32] the value for adaptive thresholding, i.e., T, is selected. The
histogram-based locus detection method [33] is used on an image to segment lesions. Optic
disc and blood vessel pixels are irrelevant, and thus, removed using the Hough transform
and a matched filter, respectively.

4.3.2. Morphological-Based Segmentation

Morphological-based segmentation is one of the most commonly used methods for
segmentation. At first, the image pre-processing is done by extracting the green channel,
and then lesion candidates are computed using morphological operations [15]. Morphologi-
cal component analysis [34] is used to separate different components that have anatomically
distinct shapes in an image. Mathematical morphological methods were assessed by several
authors [35] and applied to fundus images for lesion segmentation after pre-processing
using the Gabor filter, median filter, etc.

4.3.3. Region-Based Segmentation

The region is grown pixel by pixel in a recursive manner from a randomly selected
seed point based on similarities and 4- or 8-connectivity with neighboring pixels [36]
in a recursive way. This method generally leads to over-segmentation. The watershed
transform [37] and circular hough transform [38] removes a bright optic disc resembling
the anatomical structure.
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Table 5. Image segmentation methods used in the literature.

Author (Year) Publication Dataset Lesion Segmentation
Technique

Kaur et al. (2017) [6] Biocybernetics and
Biomedical Engineering

Stare, Messidor,
DiaretDB1 and e-Optha
EX

EX Threshold-based
segmentation

Akram et al. (2014) [14] Computers in Biology
and Medicine

Messidor, Hamilton Eye
Institute Macular Edema
(HEI-MED)

EX Thresholding based
segmentation

Zhang X. et al. (2014) [15] Medical Image Analysis e-Ophtha EX EX Morphological top-hat

Sopharak et al. (2009) [17] Sensors Thammasat university
hospital EX Fuzzy Cmeans (FCM)

clustering

Huang C.et al. (2020) [18] Neurocomputing DiaretDB1, e-Ophtha EX
and IDRiD EX Simple Linear Iterative

Clustering (SLIC)

Wang H. et al. (2020) [28] Computer Methods and
Programs in Biomedicine e-Ophtha, HEI-MED EX Morphological

Badgujar et al. (2019) [32] IRBM STARE Otsu’s segmentation
method

Yadav et al. (2021) [33] Measurement e-Ophtha MA Locus detection method

Imani E et al. (2016) [34] Computer Methods and
Programs in Biomedicine

DiaretDB, HEI-MED and
e-Ophtha EX Morphological

Component Analysis

Amin et al. (2017) [35] Journal of Computational
Science e-Ophtha, Messidor EX Mathematical

Morphology

Mahendran et al. (2015) [36] Computers & Electrical
Engineering Messidor EX Region based

segmentation

Kumar S. et al. (2019) [37] Optics & Laser
Technology Diaretdb1 and Diaretdb0 EX Watershed transform

Adem et al. (2018) [38] Expert Systems with
Applications

DiaretDB0, DiaretDB1
and DrimDB EX Circular Hough

transform

Adal et al. (2013) [39] Computer methods and
programs in biomedicine

Retinopathy Online
Challenge (ROC),
University of Tennessee
Health Science Center
(UTHSC)

MA Hessian Operator

Garifullin et al. (2021) [40] Computers in biology
and Medicine IDRiD HE, SE,

HEM, MA
Bayesian lesion
segmentation

Xia H. et al. (2021) [41] Knowledge-Based
Systems e-Ophtha MA Multiscale Residual

Network (MSRNet)
He W. et al. (2021) [42] Information Fusion Private Dataset EX, HEM VGG-based U-Net

4.3.4. Edge-Based Segmentation

First-order and second-order derivation filters can extract high frequencies from an
image. Adal et al. [39] computed the second-order partial derivatives using the Hessian
matrix, and later, microaneurysms were detected using Retinopathy Online Challenge
(ROC) and University of Tennesse Health Science Center (UTHSC).

4.3.5. Clustering-Based Segmentation

Clustering-based segmentation is a method that finds similar pixels based on the
distance, such as Euclidean distance and Manhattan distance, etc., from centroids and
forms into groups or clusters. All elements within one cluster will look closer to each other
than the elements in the other clusters. Huang C. et al. [18] extracted 25 features at the pixel
level and super-pixel level and Sopharak et al. [17] selected four features: intensity, hue,
standard deviation, and hue from contrast-enhanced images using simple linear iterative
clustering and fuzzy C-means clustering methods, respectively. The initial centroid, which
is randomly chosen, and the presence of noise may lead to poor segmentation.
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4.3.6. Neural-Network-Based Segmentation

Technology innovation has been increasing rapidly, especially in machine learning,
leading to its usage in medical fields. Machine algorithms require a neural network
architecture to implement that is basically used in classification and clustering problems.
Researchers are now extensively using neural networks for the same reason.

Garifullin et al. [40] performed MAs, EX, and HEM segmentation using the Bayesian
lesion segmentation method with a dense, fully connected architecture. Xia H. et al. [41]
worked on a multi-scale residual network (MSRNet). He W. et al. [42] proposed an incre-
mental pattern-based segmentation that refines the information obtained from the already
trained model and applies it to the present model. In the feature extraction step, various
features are extracted, such as the intensity, geometric and textural features, grey-level
co-occurrence matrix (GLCM) [36], and deep features [42]. These features are given as
input to a machine learning classifier, which classifies DR lesions.

4.4. Machine Learning Styles

Machine learning techniques are broadly classified as supervised and unsupervised
machine learning techniques. The former classifier requires training data to fit a model for
the given data and can be used to classify diabetic retinopathy. In contrast, no training data
is necessary for the latter classifier. Since the research focuses on the health of diabetics,
the classification algorithms used to detect the disease must provide accurate results. The
various machine learning styles for DR classification are given in Figure 21.
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4.4.1. Supervised Learning

Table 6 shows a list of studies that used supervised learning styles. Few authors [15,28,29,43]
have used the random forest algorithm to classify exudate and non-exudate patches among
the candidates. Mahendran et al. [36] worked with low-contrast images to detect and
localize exudates using a neighborhood-based segmentation technique. The classification
of retinopathy was done using support vector machine (SVM) and probabilistic neural
network (PNN) classifiers and their results were compared.

Table 6. Supervised machine learning styles used in the literature.

Author (Year) Publication Dataset Lesion Features
Extracted Classifier

Zhang X. et al. (2014) [15] Medical Image
Analysis e-Ophtha EX EX HCF Random Forest

Wang H. et. al. (2020) [28]
Computer Methods
and Programs in
Biomedicine

e-Ophtha, HEI-MED EX HCF and Deep
Features Random Forest

Orlando et al. (2017) [29]
Computer Methods
and Programs in
Biomedicine

DIARETDB1 and
e-Ophtha MA and HEM HCF and Deep

Features Random Forest

Badgujar et al. [32] IRBM STARE EX HCF SMO-GBM classifier

Yadav et al. (2021) [33] Measurement e-Ophtha MA HCF
k-NN, SVM, Naive
Bayes, Decision Tree,
and Random Forest

Amin et al. (2017) [35] Journal of
Computational Science e-Ophtha, Messidor EX HCF SVM

Mahendran et al. (2015) [36] Computers & Electrical
Engineering Messidor EX HCF SVM, PNN

Shailesh et al. (2029) [37] Optics & Laser
Technology

DiaRetDB1 and
DiaRetDB0 MA, HEM HCF RBF NN

Liu et al. (2017) [43] Computerized Medical
Imaging and Graphics

e-Ophtha EX,
DiaRetDB1 EX HCF Random Forest

Du J. et al. (2020) [44]
Computer Methods
and Programs in
Biomedicine

e-Ophtha-MA,
DiaretDB1 and ROC MA HCF

RUSBoost using
Decision Tree
Classifier

Yadav et al. [33] and Amin et al. [35] compared the performance of three classifiers,
namely, kNN, SVM, and PNN, and found that SVM had the best accuracy among these
three classifiers. An ensemble classifier is a classifier that combines two or more models to
take advantage of the performances of all models, thereby increasing the accuracy.

A radial basis function neural network [37] was trained using the features extracted
from hemorrhages and microaneurysm segmented regions. A hybrid nature-inspired
Hybrid Spider monkey optimization-Gradient boosting machines classifier (SMO-GBM)
classifier was proposed by Badgujar et al. [32] for exudate-based DR classification. A
combination of RUS (random under-sampling) and AdaBoost [44] was used as a classifier
for MA detection, overcoming the problem of imbalanced data.

4.4.2. Unsupervised Learning

The unsupervised learning method (Table 7) works on unlabeled data, which is beneficial
since labeling is tedious and costly. It groups the pixels based on their similar characteristics.

Kaur et al. [6] developed an adaptive k-means quantization method to form clusters
based on the varying intensities of colors in retinal fundus images, whereas Huang C. et al. [18]
used the simple linear iterative clustering (SLIC) method, which provides an alternative repre-
sentation of fundus images. This representation reduces noise and forms a basis for fast and
precise diagnoses of exudates. The fuzzy C-means clustering technique and morphological
operators were used by Sopharak et al. [17] to segment exudates. Exudates and optic discs
appear bright, making classification difficult. Akram et al. [14] have used a combination of
gaussian mixed model (GMM) and m-mediods classifier which took the advantage of the best
properties of both models.
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Table 7. Unsupervised machine learning styles used in the literature.

Author (Year) Publication Dataset Lesion Features
Extracted Classifier

Kaur et al. (2017) [6]
Biocybernetics and
Biomedical
Engineering

STARE, Messidor,
DiaretDB1 and
e-Optha EX

EX
Shape and
Intensity
features

k-means

Akram et al. (2014) [14]
Computers in
Biology and
Medicine

DRIVE, STARE,
DiaretDB,
Messidor

MA, EX HCF
GMM and
m-Mediods based
classifier

Sopharak et al. (2009) [17] Sensors Thammasat
university hospital EX HCF Fuzzy Cmeans

(FCM) clustering

Huang C. et al. (2020) [18] Neurocomputing
DiaretDB1,
e-Ophtha EX and
IDRiD

EX
Pixel and super
pixel level
features

SLIC, CNN

4.4.3. Semi-Supervised Machine Learning Style

The supervised machine learning style is costly due to the hand-labeling process,
which is overcome by the semi-supervised machine learning style. The latter approach
(Table 8) will work even for less labeled data.

Table 8. Semi-supervised learning styles used in the literature.

Author (Year) Publication Dataset Lesion Features Extracted Classifier

Adal et al. (2014) [39]
Computer methods
and programs in
medicine

ROC, UTHSC MA
Scale-Space features,
SURF features,
Radon features

SVM, KNN, Naïve
Bayes, RF

Cao et al. (2018) [45]
Computerized
Medical Imaging
and Graphics

Messidor MA HCF (37) Multi-kernel
classifier

Less labeled and unlabeled data can be used to train this model. To the best of our
knowledge, Adal et al. [39] and Cao et al. [45] implemented this learning method using
well-known SVM, kNN, naïve Bayes, RF, and multi-kernel classifiers.

4.4.4. Ensemble Learning Approach

This method aims to amalgamate the decisions obtained from different models and
classify an unseen image. Thus, this gleaned classifier (Table 9) gives better accuracy.
The ensemble model is obtained by combining other traditional models. Based on the
combining method, an ensemble is classified into a stacking, blending, bagging, or boosting
type. The optimal solution was obtained by integrating the decision tree output using the
bootstrap method based on voting [46], and RUSBoost [44]. Ignacio Orlando et al. [29]
ensembled both HCF and deep features. A bootstrapped decision-tree-based ensemble
classifier was used to classify exudate pixels and non-exudate pixels [47].

4.4.5. Deep Learning Approach

Deep learning (Table 10), which is a subset of machine learning, extracts lines and
edges in the initial layers and deep features in the later layers using convolution operations.
As a result, it is now playing an essential role in DR detection.
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Table 9. Ensemble learning styles used in the literature.

Author (Year) Publication Dataset Lesion Features
Extracted Classifier

Orlando et al. (2017) [29]
Computer Methods
and Programs in
Biomedicine

DIARETDB1 and
e-ophtha MA, HEM HCF and Deep

Features Random Forest

Du J. et al. [44]
Computer Methods
and Programs in
Biomedicine

e-Ophtha-MA,
DiaretDB1 and
ROC

MA HCF Decision Tree

Fraz et al. (2017) [46]
Biomedical Signal
Processing and
Control

DIARETDB1,
e-Ophtha EX,
HEI-MED and
Messidor

EX HCF Decision Tree

Zhang W. et al. (2019) [47] Knowledge-Based
Systems

Sichuan Provincial
Peoples Hospital EX Deep Features

Pretrained model
and Standard Deep
neural network

Table 10. Deep learning styles used in the literature.

Author (Year) Publication Dataset Lesion Features
Extracted Classifier

Huang C. et al. (2020) [18] Neurocomputing
DiaretDB1,
e-Ophtha (EX) and
IDRiD

EX
Pixel and super
pixel level
features

CNN

Wang H. et al. (2020) [28]
Computer Methods
and Programs in
Biomedicine

e-Ophtha,
HEI-MED

EX, MA, HEM,
CWS

HCF and Deep
features CNN

Adem et al. (2018) [38] Expert Systems with
Applications

DiaretDB0,
DiaretDB1 and
DrimDB

EX Deep features CNN

Xia H et al. (2021) [41] Knowledge-Based
Systems e-ophtha MA Deep features MS-EfficientNet

Liao (2021) [48]
Biocybernetics and
biomedical
engineering

ROC, e-Ophtha
(MA) MA Deep Features UNet

Sandhya et al. (2021) [49] Materials Today:
Proceedings Kaggle dataset EX, MA, HEM,

CWS HCF
Context unit
based Deep
Learning NN

Sambyal et al. (2020) [50]
Biocybernetics and
biomedical
engineering

IDRiD and
e-Ophtha EX, MA Deep features Modified U-Net

architecture

The optic disc was segmented using circular Hough transformation from fundus
images, and CNNs [18,38,48] were used to automatically detect exudates. The super-pixel
is another image representation used to extract features and classify retinopathy stages.

Wang H. et al. [28] suggested a method for exudate identification using a deep convolu-
tional neural network (DCNN). They used a morphological approach to segment exudates;
then, multiple features were extracted and classified using a random forest. Lesion identifi-
cation and DR grading are done using DCNN [41]. Sandhya et al. [49] proposed context
unit-based deep neural networks to recognize DR using a fully connected CNN to extract
multi-features faster.

U-Net architecture is mainly used for semantic segmentation. It consists of encoder
and decoder paths. Modified U-Net [50] uses ResNet34 architecture (four blocks) in the
encoder path and four U-Net decoder blocks. The use of ResNet blocks increases the
accuracy of DR detection.
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4.4.6. Transfer Learning Approach

The application of knowledge obtained by completing one task and using it in solving
some related problem is known as transfer learning. It is classified as a pre-trained model
and is used to develop model-based approaches. Table 11 shows a summarization of
transfer learning approaches used in the literature.

Table 11. Transfer learning styles used in the literature.

Author (Year) Publication Dataset Lesion Features
Extracted Classifier

Samanta et al. (2020) [19] Pattern Recognition
Letters Kaggle dataset EX Deep Features

Inception,
Xception, VGG16,
ResNet-50,
DenseNet and
AlexNet

Saxena et al. (2020) [20] Intelligence based
medicine

EyePACS,
Messidor1,
Messidor2

MA, HEM,
EX, CWS Deep features Inception V3 and

Inception, ResNet

He W. et al. (2021) [42] Information Fusion Private Dataset EX Deep features VGG-based U-Net

Zhang W. et al (2019) [47] Knowledge-Based
Systems

Sichuan Provincial
Peoples Hospital EX Deep features

InceptionV3,
Xception and
Inception,
ResNetV2

Sugeno et al. (2021) [51]
Computers in
Biology and
Medicine

Little flower
hospital,
DIARETDB,
STARE, e-ophtha,
ROC, Diabetic
Retinopathy
Dataset

MA, HEM,
EX, CWS Deep features Inception V3 and

Xception

Khojasteh et al. (2018) [52]
Computers in
Biology and
Medicine

DiaretDB1,
e-Ophtha EX EX Deep Features ResNet50

Pixel-wise segmentation is always intense labor work, which is generally used in
instance segmentation. Liao et al. [48] overcame this difficulty by using data with fewer
annotations and extracted knowledge of the previous model to improve the performance
of their model. The weights of online pre-trained models are used at the initial layers of
their model and the user are free to choose the later layers per their requirement, thus
increasing the new model’s performance [44]. The pre-trained CNN models, such as
ResNet50 [19,20,47], Xception [19,47,51], Inception [19,20,47,51] and VGG16 [42] were used
for segmentation and classified using a multiclass SVM ensemble classifier.

4.5. Performance Measures

Generally, accuracy is the most common metric used to test a model’s performance.
It tells us how well a model performed on the entire data set, but it does not tell us how
much is correctly predicted out of the DR and no DR categories. Thus, a confusion matrix is
used. One can find sensitivity, specificity, precision, and negative prediction value from this
confusion matrix. Sensitivity (true positive rate) and specificity show how well our model
has performed. It is obtained by predicting true positive out of total positive cases and true
negative out of total negative cases. The precision reveals how much is correctly predicted
out of the model’s positive predictions, and the negative prediction value reveals how much
is correctly predicted out of negative predictions made by the model. Researchers also
evaluate their model’s performance using the F1 score, area under curve (AUC), Cohen’s
score, etc., as shown in Table 12.
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Table 12. Performance metrics achieved by various authors.

Author (Year) Lesion Accuracy Sensitivity Specificity Precision Recall F1-Score AUC Cohen’s Kappa
Score

Akram et al. (2014) [14] EX

Messidor: 97.59%,
DRIVE: 94.03%,
STARE: 97.89%,
DiaretDB0: 92.96%

Messidor: 97.61%,
DRIVE: 94.26%,
STARE: 98.79%,
DiaretDB0: 93.08%

Messidor: 97.03%,
DRIVE: 94.74%,
STARE:97.43%,
DiaretDB0: 92.76%

- - - - -

Zhang X et al. (2014) [15] EX - - - - - - e-optha EX: 0.95 -

Sopharak et al. (2009) [17] EX Private dataset:
99.11%

Private dataset:
87.28%

Private dataset:
99.24%

Private dataset:
42.77% - - - -

Huang et al. (2020) [18] HE

e-ophtha:
97.58%,
IDRiD:
98.19%

e-Ophtha:
97.96%, IDRiD:
98.40%

e-Ophtha:
90.84%, IDRiD:
90.67%

- - -
e-Ophtha:
0.9682, IDRiD:
0.9674

-

Samanta et al. (2020) [19] HEM, MA - - - - - - - Kaggle dataset:
0.8836

Saxena et al. (2020) [20] All -

Messidor:
88.84%,
Messidor-2:
81.02%

Messidor:
89.92%,
Messidor-2:
86.09%

- - -
Messidor:
0.958, Messidor-2:
0.92

-

Wang H. et al. (2020) [28] HE - - - - -

e-Ophtha:
0.8929,
HEI-MED:
0.9326

e-Ophtha:
0.9644, HEI-MED:
0.9323

-

Orlando et al. (2017) [29] MA - Messidor: 0.9109 - - - - Messidor: 0.8932 -

Imani et al. (2016) [34] EX -

DiaretDB0:
89.01%, HEI-MED:
81.26%,
e-Ophtha:
80.32%

DiaretDB0:
99.93%, HEI-MED:
99.81%,
e-Ophtha:
99.83%

DiaretDB0:
82.64%, HEI-MED:
63.57%,
e-Ophtha:
77.28%

- -
DiaretDB: 0.961,
HEI-MED: 0.948,
e-Ophtha: 0.937

-

Amin et al. (2017) [35] EX
Seven publicly
available dataset:
98.58%

- - - - -
Seven publicly
available dataset:
0.98

-

Mahendran et al. (2015) [36] MA Messidor: 97.89% Messidor: 98.68% Messidor: 100% - - - - -
Garifullin et al. (2021) [40] All - - - - - - IDRiD: 0.84 -
Liu et al. (2016) [43] EX - e-Optha EX: 76% - e-Optha EX: 75% - e-Optha EX: 76% - -
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Table 12. Cont.

Author (Year) Lesion Accuracy Sensitivity Specificity Precision Recall F1-Score AUC Cohen’s Kappa
Score

Fraz et al. (2017) [46] EX

DiaretDB1:
0.87,
e-Ophtha (EX):
0.89,
HEI-MED:
0.95,
Messidor:
0.98

- - - - -

DiaretDB1:
0.9310,
e-Ophtha:
0.9403,
HEI-MED:
0.9842,
Messidor:
0.9996

-

Zhang W. et al. (2019) [47] All - - - Private dataset:
0.97

Private
dataset: 0.98

Private dataset:
0.97 - -

Khojasteh et al. (2018) [52] EX

DiaretDB1:
98.2%,
e-Ophtha:
97.6%

DiaretDB1:0.99,
e-Ophtha:
0.98

DiaretDB1:
0.96,
e-Ophtha:
0.95

- - - - -

Sugeno et al. (2021) [51] All DiaretDB1: 0.842 DiaretDB1: 0.985 DiaretDB1: 0.988 - - - - -

Gayathri et al. (2020) [53] All
Three publicly
available dataset:
99.89%

- - - - - -
Three publicly
available dataset:
0.994

Deepa et al. (2021) [54] All Private dataset:
96.20% - - - - - - -
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From the table, it is observed that Sopharak et al. [17], Akram et al. [14], Amin et al. [35],
and Khojasteh et al. [52] achieved good accuracies with 99.11%, 98.4%, 98.5%, and 98.2%,
respectively. Out of them, Akram et al. and Khojasteh et al. achieved good sensitivity
and specificity. Akram et al. obtained a sensitivity of 97.61% and specificity of 97.03%
using an ensemble of gaussian mixture model and m-mediods for exudate detection on the
Messidor dataset. Khojasteh et al. obtained a sensitivity of 99% and a specificity of 96%
using ResNet50 with SVM on DIARET DB1.

Sopharak et al. [17] created their own dataset using a KOWA-7 non-mydriatic retinal
camera and obtained this good result by segmenting exudates using fuzzy C-means clus-
tering. Amin et al. [35] achieved a good area under curve (AUC) with better accuracy. They
segmented exudates and used statistical and geometrical features to classify DR and no
DR using kNN, probabilistic, tree-based, and SVM methods on publicly available datasets
(DiaretDB1, DRIVE, e-Ophtha EX, Messidor). The Gaussian SVM outperformed using
DiaretDB1 dataset.

Mahendran et al. [36] achieved a 97.89% accuracy, 98.68% sensitivity, and 100% speci-
ficity using an SVM on the MESSIDOR dataset, i.e., this study achieved superior results in
terms of sensitivity and specificity.

Many studies were conducted to detect other lesions, such as microaneurysms and
hemorrhages, along with exudates and classify diabetic retinopathy. Author Deepa et al. [54]
have achieved 96.2% accuracy with all lesions but Gayathri et al. [53] procured excellent
results with 99.89% accuracy for DR–No DR classification.

5. Discussion and Observations

Two popular databases, namely, Scopus and Web of Science, were used to select papers
based on the query already mentioned regarding the data collection under the Methods
and Materials section.

Deeper and broader insights were provided through quantitative and qualitative
analysis. Both analyses were necessary since they help to form hypotheses for research.
Quantitative analysis was done using Excel, VOSviewer, and Biblioshiny. Such a study
aims toward and can aid in the evaluation of theories. The qualitative analysis was done
regarding a dataset, image segmentation methods, and different machine learning styles
ranging from traditional ML styles to deep learning styles used in the literature. It aids
researchers in better understanding the automated diabetic retinopathy detection system’s
motives, necessity, methodology, and justifications. It provides deep insights into various
kinds of datasets and suitable methods.

Most researchers used publicly available datasets, and few used private datasets
collected from the hospital. However, in either case, the issues were as follows:

(i) First, all images collected belonged to a single modality and were captured from
one particular device from one hospital. To overcome such issues, images must
be captured from different devices under different circumstances, and multimodal
images, such as OCT and fundus images, may be used.

(ii) Second, fewer DR images may lead to overfitting. Thus, the size of the dataset must be
increased, or alternative ML styles, such as semi-supervised, self-supervised, and co-
learning techniques, may be used to produce a good model with better performance.

(iii) The third issue may be due to imbalance, i.e., a biased dataset, which may be avoided
by adequately collecting DR images.

In addition to the above, there may be issues of non-uniform illumination and low
contrast. Since the eye structure is spherical, it leads to brightness at the center and becomes
darker in the surrounding.

Thus, a robust classification model with high accuracy and speed could be possi-
ble that considers these points, and hence, can be deployed on a server to be used by
ordinary people.

Various image segmentation and ML styles are discussed in this paper. For better
segmentation and classification, useful features must be extracted, such as the intensity,
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statistical, textural, grey-level co-occurrence matrix, moments, standard deviation, and
deep features (pixel level and super-pixel level) in the R, G, B, and intensity channels for
both greyscale and color images.

6. Conclusions

This paper presents a literature review of different machine learning styles for diabetic
retinopathy detection. It discusses datasets and the selected papers based on image seg-
mentation, traditional ML styles, DL methods, and the parameters used for quantifying the
performance of various classification models.

It also explores statistical data in DR detection and classification. The quantitative
analysis was based on the Scopus and WoS databases from 2000 to 2021, with 811 documents
published in various journals and conferences, including different kinds of funding received
by researchers worldwide working with other organizations. It was observed that various
research studies were carried out using supervised learning and, recently, deep learning.
Future work can be focused on working with a balanced and multimodal dataset. The
second point is to use semi-supervised, self-supervised, and co-learning techniques with
deep neural networks. This paper may help researchers to narrow the research spectrum
and form hypotheses by identifying the gaps.
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