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Abstract: Diabetic retinopathy occurs due to long-term diabetes with changing blood glucose levels
and has become the most common cause of vision loss worldwide. It has become a severe problem
among the working-age group that needs to be solved early to avoid vision loss in the future. Artificial
intelligence-based technologies have been utilized to detect and grade diabetic retinopathy at the
initial level. Early detection allows for proper treatment and, as a result, eyesight complications can be
avoided. The in-depth analysis now details the various methods for diagnosing diabetic retinopathy
using blood vessels, microaneurysms, exudates, macula, optic discs, and hemorrhages. In most trials,
fundus images of the retina are used, which are taken using a fundus camera. This survey discusses
the basics of diabetes, its prevalence, complications, and artificial intelligence approaches to deal with
the early detection and classification of diabetic retinopathy. The research also discusses artificial
intelligence-based techniques such as machine learning and deep learning. New research fields such
as transfer learning using generative adversarial networks, domain adaptation, multitask learning,
and explainable artificial intelligence in diabetic retinopathy are also considered. A list of existing
datasets, screening systems, performance measurements, biomarkers in diabetic retinopathy, potential
issues, and challenges faced in ophthalmology, followed by the future scope conclusion, is discussed.
To the author, no other literature has analyzed recent state-of-the-art techniques considering the
PRISMA approach and artificial intelligence as the core.

Keywords: artificial intelligence; diabetic retinopathy; domain adaptation; explainable AI; fundus;
optical coherence tomography (OCT)

1. Introduction

Ophthalmology is a medical specialty that focuses on the scientific research of diseases
and diagnosing and treating various eye disorders. Ophthalmologists used to diagnose eye
problems manually, which took a long time [1]. Diabetes is a long-term illness that interferes
with our body’s average capacity to digest food. Most of our foods are broken down into
glucose and enter our bloodstream. When blood sugar levels rise, our pancreas is pushed
to secrete insulin. Insulin is the element that permits blood glucose to enter our body’s cells
and then be used as food. Whenever a person develops diabetes, the body either does not
create enough insulin or does not utilize it that well. There is more blood glucose when
insufficient insulin or cells stop producing insulin. Complications of diabetes [1] include
diabetic retinopathy (eye damage), neuropathy (nerve damage), nephropathy (kidney
disease), cardiomyopathy (heart problems), gastroparesis, skin problems, etc. [1–4]. In
primarily elderly populations, eye problems are the leading cause of blindness.

Furthermore, according to a World Health Organization (WHO) report, as the world’s
population ages, patients suffering from ocular disorders are predicted to increase [5,6]. As
a result, there is a lot of interest in applying artificial intelligence (AI) to improve ocular
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treatment while simultaneously cutting healthcare costs, especially when telemedicine is
included [7,8]. Compared to the number of medical facilities accessible, the ratio of people
suffering from eye disease is vast [9]. The most common causes of visual impairment are
diabetic retinopathy, macular degeneration because of growing older, and glaucoma, a
disease that affects the eyes. Cataracts are a type of aberration, and macular edema is a
type of edema that affects the retina. Neovascularization of the choroids (CNV), retinal
detachment, refractive errors, amblyopia, and strabismus are some of the retinal problems
that may lead to a poor visual prognosis.

1.1. Applications of AI in Retina Images

There are three primary use case situations in retina image applications: classifying,
segmentation, and predictions, which are shown in Figure 1.
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Figure 1. Applications of AI in retina imaging.

• Classification: Categorization cases are commonly used in binary or multi-class retinal
image analysis, such as automated screenings or detecting of the stage of disease or
type. ML and DL methods are applicable here based on the level of understandability
required or the quantity of the dataset provided.

• Segmentation: The fundamental goal of segmentation-based approaches is to sub-
divide the objects in a picture. The primary purpose of all these techniques is to
investigate morphological features or retrieve a meaningful pattern or feature of rele-
vance from a snapshot, such as borders in 2D or 3D imaging. Segmentation of pigment
epithelial detachment (PED) is used to diagnose chorioretinal diseases.

• Prediction: Most predicted situations are alarmed with illness development, future
treatment outcomes based on an image, etc. The prediction approach can also be used
to depict the local retention region.
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1.2. Diabetic Retinopathy (DR)

DR is a sight-threatening illness resulting from damage to the retinal vessels, and it is
increasing at an exponential rate. Diabetic problems are widespread and, as a result, this
condition affects blood vessels, which then affect the retina’s light-sensitive components.
The primary cause of this disease’s progression is a deficiency of oxygen delivered to the
retina [10]. Persons with a long poor glycemic control are much more susceptible to causing
it; whether an individual is type 1 or type 2 diabetic, the illness rises as they age [11,12].
DR is a secret illness that only emerges through its latter stages when therapy is impossible.
Frequent retinal scanning is necessary for diabetic individuals to effectively treat DR at an
earlier time to avert disability [13]. Automated screenings are essential to save manual tasks
because the cost of such a method is high [14]. Additionally, because most of the population
is above 45 years of age, a non-invasive procedure would be beneficial. According to the
researchers, fundus imaging is a comfortable and non-invasive technology optometrists use
to determine DR severity levels. Parameters such as microaneurysms (MAs), hemorrhagic
(HEMs), exudates (EXs), and cotton wool spots are examined (CWS) for the detection of
DR. There is a need for technology that allows a non-technical person to take a picture
on [15–18] a mobile phone and email it to ophthalmologists, who can then subsequently
advise their patients by looking at the picture on their phone.

Early detection can overcome DR. In the current circumstances, AI, along with related
approaches, such as ML and DL in computer science, has proved to be a powerful tool
for detecting complicated patterns in ocular illnesses. Computerized DR detection [19]
techniques save cash and effort and are much more effective than traditional diagnoses [20].
Figure 2 shows the difference between a standard vision image and DR.
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Figure 2. Normal vision and DR vision.

An occurrence of various sorts of lesions on an eye can be used to diagnose a DR
image, as shown in Figure 3. Lesions of microaneurysms (MA), hemorrhages (HM), and
hard and soft exudates (EX) are shown [2–4].

Microaneurysms (MA): Microaneurysms (MA) in the fundus picture is an early clinical
symptom of DR, causing retinal dysfunction due to blood/fluid leaking on the retina [21,22].
It appears as small red spots on the retina [23]. They may be encircled by a yellow lipid
ring or hard exudates. They are surrounded by sharp borders and would be less than
125 µm. Endothelial dysfunction in these microaneurysms can result in leakage and retinal
edema, leading to visual loss. The criterion for correctly detecting MAs is fluorescein
angiography (FA), whose shapes fall into various categories such as focal bulge, saccular,
fusiform, mixed, pedunculated, and irregular [24].
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Figure 3. Representation of a fundus image with the lesion annotations.

• Hemorrhages (HM) appear as patches on the retina which can be 125 µm in diameter
with an uneven edge. Its two categories are flames (superficial HM) and blot (deep
HM) [23].

• Hard exudates: Hard exudates, which typically can be seen as bright yellow areas on
the eye, are caused by hemolysis. These were also found in the eye’s coastal parts and
had clear boundaries.

• Soft exudates: White spots on the eye generated from nerve fiber swelling are called
soft exudates (cotton wool). These are ovular or circular. Soft or hard secretions
constitute white lesions, whereas MA and HM were red growths (EX). A sample image
of various stages of DR is provided in Figure 4. DR is classified as non-proliferative
DR (NPDR) and proliferative DR (PDR). Further, NPDR is classified as mild, moderate,
and severe, as shown in Figure 5.
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Later phases, as opposed to earlier phases such as mild, moderate, and NPDR, are
much more extreme versions in which additional frail vessels emerge. Such blood veins
bleed blood into the ocular, hurting a human’s sight. Fuzzified eyesight, decreased color
recognition, dark spots, or threads swimming across our eyesight, changing vision, etc., are
all symptoms of this disorder [10]. The typical situation involves the absence of DR lesions
and fluid leakage from arteries.

Mainly in the event of milder NPDR, at minimum, one MA with/without HEMs,
exudates, plus CWS, could be seen. MAs, HEMs, exudates, and CWS, less serious than
severe NPDR, are known as moderate NPDR. Severe NPDR is characterized by more than
a MA and HEM in four quadrants, venous beading in two quadrants, and intra-retinal
and mild vascular abnormalities in one quadrant. PDR is identified by the massive size
of the optic disc, cup, blood vessels, or pre-retinal vitreous, with DR abnormalities [26,27].
Furthermore, DR is the most significant cause of visual impairment in most developing
and industrialized countries, especially among working individuals [28,29]. Furthermore,
the manual DR evaluation of a specialist is arbitrary and firmly based on our technical
experience. As a result, computerized technologies are urgently needed to quantify DR on
a more extensive dataset reliably and reduce inter- and intra-reader variability [30,31].

1.3. Evolution of DR Using AI

In the United States, Europe, and Asia, it is estimated that around one-third of patients
with diabetes (34.6%) have DR to some degree [32]. It is also worth noting that one out
of every ten people (10.2%) has vision-threatening DR [33]. Vision loss caused by DR has
been proven preventable with timely treatment. Enormous work has been performed in
this field.

Additionally, there are various methods for detecting DR. Multiple DL-based fully
automated DR monitoring methodologies have been introduced in the latest years. This
section discusses some of the present research performed on DR with AI. The evolution of
DR with artificial intelligence is shown in Figure 6. There are pioneering works carried out
in this evolution. One of the works, presented by Gardner et al. [34] in 1996, stated that
neural networks can detect diabetic features in fundus images and compare the network
against an ophthalmologist screening a set of fundus images. Cree et al. [35] proved that
computer vision techniques were suitable to detect microaneurysms. Their experiments
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relied on simple morphological and thresholding techniques using eight features among
pixel area and total pixel intensity measured on each candidate. The proposed method
achieved similar results to those obtained by clinicians and proved that automated detection
can be used for diagnostic purposes. Franklin [36] proposed a novel retinal imaging method
that segments the blood vessels automatically from retinal images. This method segments
each image pixel as vessel or non-vessel, which, in turn, is used for automatic recognition
of the vasculature in retinal images. Retinal blood vessels were identified by means of a
multilayer perceptron neural network, for which the inputs were derived from the Gabor
and moment invariant-based features. Later, the methods evolved to detect not only
microaneurysms in the fundus, but also the stage of diabetic retinopathy using ML and DL
approaches [37]. A detailed literature review is discussed in Sections 3.1 and 3.2.

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 6 of 46 
 

network against an ophthalmologist screening a set of fundus images. Cree et al. [35] 
proved that computer vision techniques were suitable to detect microaneurysms. Their 
experiments relied on simple morphological and thresholding techniques using eight 
features among pixel area and total pixel intensity measured on each candidate. The 
proposed method achieved similar results to those obtained by clinicians and proved that 
automated detection can be used for diagnostic purposes. Franklin [36] proposed a novel 
retinal imaging method that segments the blood vessels automatically from retinal 
images. This method segments each image pixel as vessel or non-vessel, which, in turn, is 
used for automatic recognition of the vasculature in retinal images. Retinal blood vessels 
were identified by means of a multilayer perceptron neural network, for which the inputs 
were derived from the Gabor and moment invariant-based features. Later, the methods 
evolved to detect not only microaneurysms in the fundus, but also the stage of diabetic 
retinopathy using ML and DL approaches [37]. A detailed literature review is discussed 
in Sections 3.1 and 3.2. 

 
Figure 6. Evolution of DR with artificial intelligence. 

1.4. Prior Research 
According to our understanding, only a few systematic literature review (SLR) 

publications on DR using AI Technology are available. Jahangir R. [15] covers five main 
areas: data, preprocessing method, methods used in ML- and DL-based approaches, and 
performance evaluations used in DR detecting tactics. Contrast enhancement paired with 
green stream removal yielded the best classification results in picture preprocessing 
approaches. Among several features considered for DR detection, structure, texture, and 
statistical features were determined to be the most discriminative [25]. Compared to other 
ML classifiers, the artificial neural network has proven to be the most effective. The 
convolutional neural networks outperformed other DL networks in DL. 

Pragathi P [38] suggested an integrated ML approach that incorporates support 
vector machines (SVMs), principal component analysis (PCA), and moth-flame 
optimization approaches. The DR dataset is first subjected to the ML algorithm’s decision 
tree (DT), SVM, random forest (RF), and naïve Bayes (NB). The SVM algorithm 
outperforms the others, with an average performance of 76.96%. The moth-flame 
optimization technique is combined with SVM and PCA to increase the performance of 
ML systems. This proposed approach outperforms all previous ML algorithms with an 
average performance of 85.61%, and the accurate categorization of class labels is 
accomplished. Wei Zhang [39] discusses DeepDR. It uses transfer learning and ensemble 

Figure 6. Evolution of DR with artificial intelligence.

1.4. Prior Research

According to our understanding, only a few systematic literature review (SLR) publica-
tions on DR using AI Technology are available. Jahangir R. [15] covers five main areas: data,
preprocessing method, methods used in ML- and DL-based approaches, and performance
evaluations used in DR detecting tactics. Contrast enhancement paired with green stream
removal yielded the best classification results in picture preprocessing approaches. Among
several features considered for DR detection, structure, texture, and statistical features
were determined to be the most discriminative [25]. Compared to other ML classifiers, the
artificial neural network has proven to be the most effective. The convolutional neural
networks outperformed other DL networks in DL.

Pragathi P [38] suggested an integrated ML approach that incorporates support vector
machines (SVMs), principal component analysis (PCA), and moth-flame optimization
approaches. The DR dataset is first subjected to the ML algorithm’s decision tree (DT),
SVM, random forest (RF), and naïve Bayes (NB). The SVM algorithm outperforms the
others, with an average performance of 76.96%. The moth-flame optimization technique is
combined with SVM and PCA to increase the performance of ML systems. This proposed
approach outperforms all previous ML algorithms with an average performance of 85.61%,
and the accurate categorization of class labels is accomplished. Wei Zhang [39] discusses
DeepDR. It uses transfer learning and ensemble learning to detect DR in fundus images. It
consists of cutting-edge neural network works built from common convolutional neural
networks and custom standard deep neural networks. DeepDR is developed by creating a
high-quality dataset of DR medical images and then having clinical ophthalmologists label



Big Data Cogn. Comput. 2022, 6, 152 7 of 41

it. The primary objective of this review would be to study the existing scholarly articles and
related conclusions on the specified study topic. Table 1 lists the study topics that will aid
in focusing on this SLR. To the author’s knowledge, this study ensures detailed SLR, which
is the first to cover methodologies for the detection of DR based on the AI methodology for
robust and reliable detection.

Table 1. Highlights of earlier research related to DR.

Ref No Objectives and Topic Discussions Type

[15]

Datasets, picture preparation methods,
ML-based methods, DL-based strategies, and
evaluation metrics are presented as five
components of DR screening methodologies.

Did not follow the PRISMA approach. Studies
that were released between January 2013 and
March 2018 are considered in this study.

Review

[39]

It discusses DeepDR, an automated DR
identification, and grading system. DeepDR uses
transfer learning and ensemble learning to detect
the presence and severity of DR in
fundus images.

Did not follow the PRISMA approach.
Experiment results indicate the importance and
effectiveness of the ideal number and
combinations of component classifiers in
model performance.

Review

[38]

It discusses an integrated ML approach that
incorporates support vector machines (SVMs),
principal component analysis (PCA), and moth
flame optimization approaches for DR.

Did not follow the PRISMA approach.
Utilizing the PCA technique to reduce the
dimensions has had a detrimental impact on the
performance of the majority of ML algorithms.

Review

[40]
It presents the latest DL algorithms used in DR
detection, highlighting the contributions and
challenges of recent research papers.

Did not follow the PRISMA approach. Robust
deep-learning methods must be developed to
give satisfactory performance in cross-database
evaluation, i.e., trained with one dataset and
tested with another.

Review

[41]

It presents a comprehensive survey of
automated eye diseases detection systems using
available datasets, techniques of image
preprocessing, and deep learning models.

Studies that did not follow the PRISMA
approach are considered from January 2016 to
June 2021.

Review

The major highlights of this paper are:

1. Datastores in the discipline of DR detection are accessible online, as well as the
existence of DR datasets.

2. An exhaustive survey of widely used ML and DL methodologies for DR detection
is discussed.

3. Feature extraction and classification techniques used in DR are discussed.
4. Future research concepts such as domain adaptation, multitask learning, and explain-

able AI in DR detection are discussed

1.5. Motivation

Working in the discipline of ophthalmology is primarily motivated by a concern for
human health. The eye is among the essential sensory inputs since it receives data from
the world and then transmits it to the central nervous system. Our mind subsequently
converts the information collected by the eyes to usable information. As a result, our
eyes are crucial senses which provide us with knowledge of the world, enabling us to try
new knowledge, participate in artistic processes, and generate lovely memories. There is
plenty of work to be performed in today’s industrialized world utilizing various modern
personal digital assistants, laptops, smartphones, etc. Additionally, because of the influence
of COVID-19 over the last two years, most people who work from home utilize various
internet platforms. As a result of all these factors, most people are experiencing vision
problems. Various disorders such as obesity, cardiovascular disease, hypertension, strokes,
and depression are more prevalent in persons with vision problems [37]. They are also
more likely to stumble, become hurt, or become depressed.
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As per recent publications, surveys [42], and clinical information, many people have
indeed been detected with DR, AMD, cataracts, glaucoma, CNV, drusen, corneal scarring,
and a variety of other eye ailments [33,38]. AI-related techniques have been used to
diagnose eye-related disorders, and there is still a lot of AI potential to be discovered.
Because AI and related approaches would fundamentally alter vision care, it would be
a good possibility for the healthcare business as the element of AI is only beginning to
be unveiled. As a result, there is a lot of interest in using AI to improve ophthalmologic
treatment while lowering healthcare costs. This review further highlights a variety of allied
methodologies and datasets to keep up with the field of ophthalmology’s rapid growth.
This publication aims to assist young researchers in a greater understanding of visual
retinal problems and to work in optics to develop a self-contained platform.

1.6. Research Goals

According to the earlier studies and their outcomes, this research compares DR with
AI and, accordingly, research questions are proposed to obtain a comprehensive survey of
DR detection using AI. Table 2 shows the grouped survey items to make this study more
comprehensive by enlisting research questions considered during SLR.

Table 2. Research questions.

RQ. No. Research Question Objective/Discussion

1 What are the most common artificial
intelligence-based methods for DR detection?

It assists in determining the most relevant artificial
intelligence algorithms for DR diagnosis
applications nowadays.

2 What are the various Features Extraction Techniques
for DR? List various feature extraction techniques used for DR.

3 What are the relevant datasets for DR?

Discovers several publicly available datasets that may be
used as benchmarks to compare and assess the
performance of various methodologies, as well as gives
new researchers a head start.

4 What are the various evaluation measures used for
DR detection?

The most used standards and metrics for DR detection
are reviewed.

5 What are the potential solutions for a robust and
reliable DR detection system?

It makes it easier to find significant research areas to
be studied.

Specific perspectives must be available to help academics generate innovative thinking
by evaluating related studies. The first research question examines previously published
work and the most common AI-based DR detection methods. The goal of research ques-
tion 2 is to create a list of all feature extraction techniques used in DR [43]. Research
question 3 will outline relevant datasets for DR exploration. Research question 4 will look
at a few prominent evaluation measures in DR utilizing AI methodologies. In research
question 5, existing effective methodologies’ limitations and future directions constraints
are listed.

1.7. Contribution of the Study

Our systematic literature review made the following contributions:

1. To exploring available data sets which have been used for detecting DR.
2. To investigate artificial intelligence strategies that have been employed in the literature

for DR detection.
3. To explore feature extraction and classification.
4. To study multiple assessment metrics to analyze DR detection and categorization.
5. To highlight the scope of future research, concepts such as domain adaptation, multi-

task learning, and explainable AI in DR detection techniques used in DR.
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This survey includes the research methodology for artificial intelligence-based oph-
thalmic analysis and the study’s contribution in Section 2. The literature on techniques-
based ophthalmology analysis is discussed in length in Section 3. In addition, a comparative
examination of approaches and findings achieved by various ophthalmology researchers
has been reviewed. In Section 4, a comparative examination looked at the potential dif-
ficulties and implications of related procedures in the optics domain. Section 5 clarifies
the overview by outlining clinical applications, future research, and avenues for studying
various diseases, diagnoses, and treatments for eye disorders. Section 6 discusses perfor-
mance measures, Section 7 introduces biomarkers in DR, and Section 8 highlights research
challenges with future research directions. The analysis is arranged to categorize and
evaluate existing publications to encompass the study’s breadth. The first step in defining
the study topics is that the inclusion ratio of prior work could be precisely calculated. Some
views can help scientists develop new innovative ideas by examining related spadework.
Figure 7 demonstrates the organization of the Systematic Literature Review.
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Table 2 provides a list of research questions used in SLR. The identification of informa-
tion sources is the second phase in our SLR. Databases such as Scopus and Web of Science
were used to find related papers. Some general and specific keywords are included in
Table 3 that can be used to create search queries for finding research publications.

Table 3. Direct and indirect keywords were used.

Fundamental Keyword “Diabetic Retinopathy”

Direct Keyword “Artificial Intelligence” “Machine Learning” “Deep Learning”

Indirect Keyword “Ophthalmology” “Fundus Images” “DR Stages” “OCT”
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2. Research Mechanism of Study

A descriptive analysis was carried out using the eligible study items for a structured
literature review and meta-analysis (PRISMA) method. PRISMA comprises a list of pro-
tocols for longitudinal studies and other data-driven concepts, which includes writing
and formatting guidelines. A three-step technique is employed to conduct a systematic
review: the creation of research questions, online databases, and guidelines for accepting
and discarding scientific papers of such research analysis processes are presented in the
following pages.

The analysis is arranged systematically to categorize and evaluate existing publications
to encompass the study’s breadth. The first step in defining the study topics is that the
inclusion ratio of prior work could be precisely calculated. Some views can help scientists
develop new innovative ideas by examining related spadework. Table 2 provides a list of
the relevant studies used in SLR. The identification of information sources is the second
phase in our SLR. Scopus and Web of Science were used to find related papers. Some general
and specific keywords are included in Table 3 that can be used to create search queries for
finding research publications. The third step is to develop techniques for evaluating the
technical and scientific documents. These results uncovered identified publications related
to our condition. The proposed approach is divided into two sections: (I) choose queries
that are used to search for and collect all relevant data using Boolean AND/OR, and (II)
use Boolean operators AND/OR to find out search keywords from survey questions to
make a note of topics. Table 4 lists the web searches used for this research. Figure 8 gives
relevance of paper distribution based on (a) Data Source, (b) Year, and (c) Document Type.

Table 4. Search terms employed.

Database Query Initial Outcome

Scopus (Diabetic AND Retinopathy AND Artificial AND Intelligence AND
Machine AND Learning AND Deep AND Learning)

149

Web of Science 79

Paradigms for Inclusion and Exclusion

A set of study protocols for selecting and excluding factors for rejections of scientific
studies was developed to pick relevant scholarly articles for the literature review (Table 5).
Three inclusion criteria phrases are employed in the screening procedure,

(a) Insignificant scientific studies were weeded out depending on the info and terms
found in study summaries. Summaries of scientific papers that fulfilled a minimum
of 40% of an IC are maintained for other stages.

(b) Full-text screening: Articles with summaries that only address limited elements of
the keyword search are rejected if they do not reference or connect to a particular
keyword in Table 3.

(c) Step of quality assurance: The leftover scientific studies were subject to something
such as a qualitative review, and those that did not meet any of the eligibility principles
were eliminated.

• RC1: Recommendations and results must be included in research articles.
• RC2: Scientific data must be included in scientific papers to support their conclusions.
• RC3: The aims and findings of the research must be expressed.
• RC4: For scientific studies, citations must be proper and adequate.
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Table 5. Inclusion and exclusion criteria considered.

Inclusion Criteria

Rather than reviews or survey pieces, scientific papers should be primary research papers.

Scholarly articles that appeared between 2014 and April 2022.

Query terms must be included in the titles, abstracts, or whole body of peer-reviewed publications.

Articles that address at least one research question.

The developed solution should aim at resolving issues with diabetic retinopathy detection using AI.

Exclusion Criteria

Articles that are written in languages other than English.

Studies published that are identical.

Complete scientific papers are not always available.

Research papers that are not related to diabetic retinopathy using AI.

3. RQ1 Artificial Intelligence for DR Detection

The first half of this section discusses artificial intelligence-based DR detection tools,
ML techniques, DL techniques, and transfer learning (Table 6). DR is a leading primary
cause of preventable blindness worldwide, and artificial intelligence technologies can help
with early detection, monitoring, and treatment. The lack of ground truth criteria in retinal
exam datasets concerns supervised artificial intelligence algorithms that require high-
quality exams. Various groups have used AI methods, such as ML and DL, to construct
automated DR detection tools [44]. Such AI-based technology has been demonstrated
to reduce prices, improve detection ability, and increase universal care for DR screening.
Latest DL studies in optics suggest that it could substantially change human evaluators
while retaining a good exactness.
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Table 6. Major automated diabetic retinopathy tools.

Software Sample Size Only DR OR
Controls Device Grading/

Mechanism Limitation Software
Mechanism Used Accuracy

Bosch [44] 1128 DR with age of 18+.

Bosch Mobile Eye Care
fundus camera.
Single field
non-mydriatic.

ETDRS.

In some of the eyes
diagnosed as normal, the
other eye may have had early
evidence. Further, while the
study notes the findings of
DR, it would be useful to
know how accurate this
software is for individual
lesions, such as exudates,
microaneurysms, and
macular edema.

CNN-based
AI software.

For DR screening
in India.

Sensitivity—91%.
Specificity—96%.
Positive predicted
value (PPV)—94%.
Negative predictive
value (NPV)—95%.

Retmarker DR
[45] 45,148 Screening diabetic

patients.

Used non-mydriatic
cameras.
Canon CR6-45NM with a
Sony DXC-950P 3CCD
color video camera other
cameras, such as Nidek
AFC-330 and
CSO Cobra, have been
used temporarily.

Coimbra
Ophthalmology.
Reading Centre
(CORC).

The short duration of the
study (2 years) and the lack
of more detailed information
on systemic parameters, such
as lipid stratification.

Feature-based
ML algorithms.

Used in local DR
screening in
Portugal, Aveiro,
Coimbra, Leiria,
Viseu, Castelo
Branco, and Cova da
Beira.

R0—71.5%,
RL—22.7%,
M—2.2%,
RP—0.1%,
NC—3.5%.
Human grading
burden reduction
of 48.42%.

Eye Art [46] 78,685

A cross-sectional
diagnostic study of
individuals with
diabetes.

Two-field undilated
fundus photograph.
Two-field retinal CFP
images (one
disc-centered and one
macula-centered) were
taken for each eye
(Canon CR-2 AF or
Canon CR-2 Plus AF;
Canon USA Inc.).

ETDRS.

A limitation of the study is
that optical coherence
tomography was not used to
determine clinically
significant macular edema.
Color fundus photographs
CFP is known to be an
accurate, sufficient, and
widely accepted clinical
reference standard, including
by the FDA.

AI Algo.

Used in Canada for
detection of both
mtmDR and vtDR
without physician
assistance.

Sensitivity—91.7%.
Specificity—91.5%.
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Table 6. Cont.

Software Sample Size Only DR OR
Controls Device Grading/

Mechanism Limitation Software
Mechanism Used Accuracy

Retinalyze [47] 260

Retrospective
cross-sectional study
of diabetic patients
attending routine.

Mydriatic 60◦ fundus
photography on 35-mm
color transparency film
was used, with a single
fovea-centered field
fundus camera
(CF-60UV; Canon Europa
NV, Amstelveen, The
Netherlands) set.

Routine grading was
based on a visual
examination of
slide-mounted
transparencies.
Reference grading
was performed with
specific emphasis on
achieving high
sensitivity.

Commercially unavailable
for a long time until
reintroduced into its
web-based form with DL
improvements.

Deep learning based. Used in Europe to a
greater extent.

Sensitivity 93.1%
and specificity
71.6%.

Singapore
SERI-NUS [48]

76,370
SIDRP
between
2010 and
2013 (SIDRP
2010–2013)

With diabetes.
FundusVue, Canon,
Topcon, and Carl Zeiss
nonmydriatic.

Grading was
completed by a
certified
ophthalmologist and
retina specialist.

Identification of diabetic
macular edema from fundus
photographs may not
identify all cases
appropriately without
clinical examination and
optical coherence
tomography.

Using a deep
learning system. Singapore.

Sensitivity 90.5%
and specificity 91.6%.
AUC—0.936

Google [49]

128,175
Aravind Eye
Hospital,
Sankara
Nethralaya,
and
Narayana
Nethralaya

Macula-centered
retinal fundus
images were
retrospectively
obtained from
EyePACS in the
United States and
three eye hospitals in
India among patients
presenting for
diabetic retinopathy
screening.

Two sets of 9963 Eyepacs
images from Centervue
DRS, Optovue iCam,
Canon CR1/DGi/CR2,
and Topcon NW using
45◦ FOV and 40%
acquired with pupil
dilation.
Images from a 1748-
Messidor-2 from a
Topcon TRC NW6
nonmydriatic camera
and 45◦ FOV with 44%
pupil dilation.

DR severity (none,
mild, moderate,
severe, or
proliferative) was
graded according to
the International
Clinical Diabetic
Retinopathy scale.

Further research is necessary
to determine the feasibility of
applying this algorithm in
the clinical setting and to
determine whether the use of
the algorithm could lead to
improved care and outcomes
compared with current
ophthalmologic assessment.

CNN based.
Inception-v3
architecture.

Used in North
Carolina to a
greater extent.

Sensitivity—97.5%.
Specificity—93.4%.



Big Data Cogn. Comput. 2022, 6, 152 16 of 41

Table 6. Cont.

Software Sample Size Only DR OR
Controls Device Grading/

Mechanism Limitation Software
Mechanism Used Accuracy

IDx-DR [50] 900 With no history
of DR.

Widefield stereoscopic
photography
mydriatic.

FPRC Wisconsin
Fundus Photograph
Reading Center,
and ETDRS.

The prevalence of referable
retinopathy in this
population is small, which
limits the comparison to
other populations with
higher disease prevalence.

AI-based logistic
regression model.

Dutch diabetic Care
system-1410.

Sensitivity—87.2%.
Specificity—90.7%.

Comprehensive
Artificial
Intelligence
Retinal Expert
(CARE)system
[51]

443 subjects
(848 eyes)

Previously
diagnosed diabetic
patients.

One-field color fundus
photography (CFP)
(macula-centered
with a 50◦ field of vision)
was taken for both eyes
using a nonmydriatic
fundus camera (RetiCam
3100, China) by
three trained
ophthalmologists in
dark rooms.

International Clinical
Diabetic Retinopathy
(ICDR) classification
criteria.

This technique has
drawbacks when it comes to
detecting severe PDR
and DME.
(1) Poor imaging results from
fundus such as ghost images
and fuzzy lesions, in
leukoplakia, lens opacity, and
tiny pupils. Cases create
difficulty in AI identification.
(2) The difference in the
results was caused by the
study’s insufficient
sample size.
(3) Some lesions were
overlooked during the
50-degree fundus
photography focused on
the macula.

AI-based. Chinese community
health care centers.

Sensitivity—75.19%.
Specificity
93.99%.



Big Data Cogn. Comput. 2022, 6, 152 17 of 41

3.1. Machine Learning Techniques in DR Detection

Several ML techniques are developed for DR classification. They are discussed below
and a diagrammatic explanation is given in Figure 9
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(a) Linear Discrimination Analysis: The local linear discriminating study forms the most
extensively utilized classifications and dimension reduction methods. It can be used
to discriminate between multiple classes. It finds a projection to a line, allowing
samples from various classes to be separated [15]. In the critical ML investigations,
LLDA was utilized only once. Wu and Xin [52] used the LLDA algorithm to detect
microaneurysms and compared the results with the SVM and k-NN in the ROC
dataset. The authors found that the LLDA algorithm failed to perform, and the SVM
gave good results for both the LLDA and k-NN, in terms of accuracy.

(b) Decision Trees: A fundamental tool for solving classification tasks. Its structure is
similar to a tree and hierarchical, where an internal node represents a test on an
attribute, a branch represents a test outcome, and a terminal node carries a class
label. A root node is a topmost node in a tree. It is used to represent decisions in
decision analysis. One of the benefits of a DT is that it does not necessitate much
data preparation. One downside of a DT is that it can occasionally result in overly
complicated DTs, often known as overfitting. With DIARETDB0 and DIARETDB1
datasets, Rahim and Jayne [53] detected microaneurysms from retinopathy images
using SVM and k-NN.90% of the total photos were used for training, while the
remaining 10% were used to test the classification algorithms.

(c) Support Vector Machines: SVMs (support vector machines) is a CNN model for cate-
gorizing data. This generates a binary classifier around the datasets example (support
vectors and hyperplane). Accordingly, the A+ and A− categories denote the nearest
distances toward the positively and negatively extreme examples. A hyperplane is a
plane that separates the A+ and A− levels, featuring A+ on one side of the hyperplane
and A− on another [15]. In various studies, researchers successfully employed SVM
techniques to classify distinct DR conditions, including [54–58]. Furthermore, the
authors claim that the SVM improves classification performance. SVM, SCG-BPN,
and GRN exudates within retinal photos have been detected and classified using
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techniques by Vanithamani and Renee Christina [59]. The DIARETDB1 dataset, con-
sisting of 40 training and 40 testing images, was used. The experimental findings
revealed that the SVM algorithm outperformed the SCG-BPN and GRN algorithms in
classification performance.

The naïve Bayes (NB) classifier is probabilistically based. It works with numerical data
to build a model. It takes significantly less amount of numeric data to predict classification.

(d) Naïve Bayes: As a result, it is a quick and straightforward categorization algorithm.
Wang and Tang [60] examined three classification systems for microaneurysm detec-
tion: NB, k-NN, and SVM. Tests were conducted on the private and public datasets.
k-NN outperformed in its research compared to the NB method.

(e) K-Nearest Neighbor: One of the most basic and straightforward ML techniques is the
k-nearest neighbor (k-NN) methodology. It classifies items in a feature set using the
training set’s nearest instances. The character “k” shows the cluster count utilized
by the classifiers to build its prediction. Among the 40 publications about ML, the
k-NN algorithm was employed in numerous investigations [15]. The k-NN method
was utilized by Nijalingappa and Sandeep [61] to classify DR into severity stages.
They employed 169 photos from Messidor and DIARETDB1 datasets and a unique
dataset [53] in their research. They used 119 photos to train their ML method and
50 photographs to test it. The classification results produced by k-NN are satisfactory.

(f) Random Forest: Random forest is an effective and successful ML classification method.
It forms decision trees in forests (DT). The projections will be much more accurate
if enough bushes are in the forests. Every tree casts a judgment about categorizing
a novel method depending on its characteristics, and the models are then stored
with the tree’s name. The category with the best scores is chosen by forest. To put it
differently, an RF classification technique is comparable to the bagging technique. A
subset of the training dataset is formed in RF, and a DT is created for each subset. In
the testing set, every input sequence is classified by all the DTs, as well as the forest
chooses the one with the best scores [15]. The RF classifier was only used once in
the experiments that were chosen. The RF classifier was used by Xiao and Yu [62] to
detect bleeding in retinal images. They used 35 photos from a unique dataset and
55 images from DIARETDB1. They employed 70% of the photos for training the ML
network, and the remaining 30% were used for testing and classification with the RF
technique. The RF algorithm acquired good sensitivity, according to the findings of
the experiments.

(g) Artificial Neural Networks: This classifier comprises three layers: input nodes, hidden
nodes, and an output vector. There seem to be numerous nodes in the input and
hidden nodes, but only one in the output nodes. A neuron is a type of activating
unit in a neural network. Patterns are sent from the input nodes layer, which does
the actual processing. The node with hidden units is allocated random weights. The
output node is equipped with a hidden layer, ready for the outcome. It is similar to a
perceptron in that it takes numerous inputs and creates a single output.

Considering DR imaging, several researchers applied a single ANN classification
technique and got outstanding results. The authors of [63–68] employed a single ANN
model and discovered that it was superior diabetes classifying strategy.

(h) Unsupervised Classification: Unsupervised classification is employed when prior
knowledge is unavailable. Inside this circumstance, just the set of information and
characteristics that correspond to specific occurrences is revealed. In the chosen papers,
unsupervised classification techniques were used many times. Zhou and Wu [22,69]
used a ROC dataset with 100 images to perform unsupervised classification for
microaneurysm identification. 50% of the photos were used for training, and the other
50% were used for testing in their experiments. In their experiments, the authors found
that unsupervised classifiers performed reasonably well. Unsupervised classification



Big Data Cogn. Comput. 2022, 6, 152 19 of 41

methods were used by Kusakunniran and Wu [70], and Biyani and Patre [53], to
identify exudates in DR scans, with a sensitivity of 89% and 88%, accordingly.

(i) Ensemble Classifiers: It is also called group learning and it combines different classifi-
cation methods to create a more accurate model, and is a type of learning that takes
place in groups [71]. There are three ways to do it: bagging, boosting, and stacking.
Many classifying techniques work at a time in parallel during bagging, and the most
accurate one is voted on at the end. The final classifier is the one that receives the most
votes. Boosting is a technique that employs a sequence of classification algorithms.
The weight of every model is adjusted based on the prior iteration. The data are
split into many segments, each of which is checked with the help of others, and so
on [72]. The stacking comprises base models, often known as level-0 models, as well
as a meta-model that combines the level-0 model prediction. Stacking contrasts with
boosting, in which a meta-model focuses on learning how to effectively combine the
predictions again from base models, rather than a series of models that solve former
models’ prediction mistakes [73].

HDT with FFNN was used by Mane and Jadhav [74] to generate a categorization
mechanism. The authors used two data sets, DIARETDB0 and DIARETDB1, to evaluate
their DR image categorization capabilities over HDT and LMNN independently, but instead
concluded that it was 98% reliable. Fraz and Jahangir [75] developed a classifier model
using datasets DIARETDB1, e-Ophtha Ex, and Messidor. All 137 images were used for
training their ML system and 341 images were used to evaluate their ensemble-based
classifier. 98% accuracy was achieved in their experimentation.

(j) Adaptive Boosting: AdaBoost is a systematic way to analyze a wide range of empirical
systems. It works step-by-step, wherein each tree fits into a modified version of the
original dataset before producing a robust classifier. This technique was utilized once
in the chosen significant research. The AdaBoost method was used by Prentasic and
Loncaric [76], wherein exudates were detected in DR images and a sensitivity of 75%
was achieved, according to their experiments.

(k) Self-Adaptive Resource Allocation Network Classifier: It selects training data based
on self-regularized phenomena and then discards redundant data, requiring less
memory and computer capacity. The network is then trained using the selected
samples that have more information. Although the SRAN method was used two
times in the primary ML tests, it did not perform as well as other categorization
techniques. The authors of [22,77] evaluated the SRAN classification method to the
McNN and SVM classifiers again to identify and track different ocular illnesses. A
dataset from Coimbatore, India’s Lotus Eye Hospital, was used in their study.

In ML-based techniques, better performance is given by statistically-based charac-
teristics also followed by shape and structure [78]. ANN gives better performance for
classification over SVM and, in the case of ML techniques, ensemble classifiers perform
better. Deep learning is a part of machine learning which works with artificial neural
networks. It requires a huge amount of data and gives more accurate results as compared
to ML techniques. In DL, CNN is primarily applied to extract and categorize the DR images
automatically. The further section discusses DL and DR in detail.

3.2. Deep Learning in DR Screening

DL is a subclass of ML that has grown towards a more robust and valuable tool, a prac-
tical methodology for ML. A DL model is comprised of a complex architectural style with
a multidimensional framework. In medical image analyses, DL [79] is used to categorize,
localize, segment, and identify medical images. With multiple methodologies, DL delivers
more spectacular and promising DR disease diagnosis and categorization results. Convo-
lutional neural networks (CNN), deep Boltzmann machines (DBM), autoencoders, deep
neural networks (DNN), recurrent neural networks (RNN), deep belief networks (DBN),
and generative adversarial networks (GAN) are only a few of the DL-based techniques [80].
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CNN is more widely employed in medical imaging than other DL approaches. The three
layers within CNN architecture are convolution, pooling, and fully connected layers. The
CNNs dimensions, levels, and filter number could be changed to suit the author’s require-
ments. Several filters combine in the convolutional layers to extract image features and
build feature maps. Second, the average or max-pooling strategy is commonly used to
reduce the volume of feature maps in pooling layers. Finally, the whole image feature set is
created using completely connected layers. Subsequently, the data are categorized among
two kernel functions, sigmoid (binary classification) or SoftMax (multi-classification) [80].

Whenever the sample data are insufficient, the data can be retrieved and precompiled
to increase image features, and augmenting is performed as needed. The information
is then examined. To sort Kaggle color images into five categories depending on DR
scales, Pratt et al. [22] used a CNN containing ten convolutional layers, eight max-pooling
layers, three fully connected layers, and a SoftMax classifier. Fundus images are shrunk
and adjusted. L2 regularization and dropout methods proved helpful for the authors to
minimize overfitting. They achieved a specificity of 95%, correctness of 75%, and sensitivity
of 30%.

Wang et al. [81] combined handmade characteristics with CNN features. They then
used the random forest (RF) classifier to develop a classifier that identifies exudate growths
(hard) using the HEI-MED and E-ophtha datasets. Three convolutional and pooling layers
were utilized to create the CNN, and only one FC layer was used for feature finding. HEI-
MED and E-ophtha achieved an AUC of 0.9323 and 0.9644, respectively, and a sensitivity
of 0.9477 and 0.8990. The DRIVE, STARE, and CHASE DB1 datasets were used to create a
complete CNN model to capture blood vessels, as noted by Oliveira et al. [70]. The color
fundus images were first refined. The dataset images were normalized using the stationary
wavelet transform after extracting the green channel (SWT). Finally, before CNN processing,
the patches were removed and augmented. In the DRIVE, STARE, and CHASE DB1
databases, the model achieved AUCs of 0.9821, 0.9905, and 0.9855, respectively. Chudzik
et al. [82] used eighteen convolution layers, batch normalization layers, three max-pooling
layers, up-sampling layers, and four skipped connections to construct a CNN model. Using
image databases, the author employed three datasets to identify microaneurysms: E-ophtha,
DIARETDB1, and ROC. Before CNN processing, images were preprocessed.

Yan et al. [83], introduced a technique for identifying DR lesions using DIARETDB1 by
combining standard handcrafted features, improvised LeNet features, and a classifier and
taking a combination of U-net and improved LeNet. During the preparatory step, green
channels were clipped, CLAHE was used to increase contrast enhancement, a Gaussian
filter was employed to reduce distortion, and morphological approaches were applied.
The U-net design was utilized to segment the blood arteries when detecting red lesions.
The LeNet architecture was upgraded with four convolutional layers, three max-pooling
layers, and a fully connected layer to produce 48.71% sensitivity. DeepDR, a self-contained
technique that combines pre-trained models Resnet and Inception V3, was proposed by
Zhang et al. [39]. It has a sensitivity of 97.5% and a specificity of 97.3%, with an AUC
of 97.7%.

DL models (DLMs) are a recent type of ML that uses a multi-layered artificial neural
network (ANN) to learn more excellent representation from the information. DL has become
the most common technique for detecting, predicting, forecasting, and classifying problems
in various domains in recent years. It exposes numerous prospects for avoiding such a
terrible condition in the healthcare profession, especially DR [12]. The DLMs were highly
influential in various computer vision and biomedical image analysis applications [39,84].
It has proven to be an effective method of categorizing medical data. The CNN model plays
a vital role in NPDR category classification, including excellent specificity and sensitivity
using fundus photos. This also improved the effectiveness, availability, and affordability of
DR grading systems, which were tested on several exciting images and scenarios [83,85].
Figure 10 shows the diagrammatic explanation of DR using DL.
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Apart from the other DL approaches presented in the above section, transfer learning
is a novel strategy that allows us to employ a previously trained model on a new problem
statement. The topic of DR transfer learning is covered further down.

3.3. Transfer Learning in DR

Transfer Learning is a pretrained network, also known as a stored network, and
is a typical DL approach that uses a limited set of feature examples. It improves the
learning performance of a target task by transferring knowledge learned in a pre-trained
network [86,87]. Transfer learning is utilized when inadequate data are required for the
target task training and even when the perfect option for possible concerns is available.
Applying this understanding to the target problem, transfer learning is employed to train a
CNN by not re-initializing CNN weights [87]. Weights are instead loaded from a different
CNN trained on a large dataset. The only healthy dataset to transfer trained version weights
is the ImageNet problem [88].

There are two parts to pre-trained networks. The initial section consists of a succession
of convolution and pooling layers followed by a densely linked classifier. Convolutional
feature maps consider object locations in an input image. Object detection tasks, on either
hand, are frequently worthless for densely coupled levels at the tip of the convolutional
base. A pretrained network has been trained in a vast dataset, typically used for large-scale
picture classification techniques. VGG19, Xception, MobilNet, ResNet, DenseNet, and
Inceptionv3 are a few types of networks. The ImageNet dataset was used to train these
networks, which consist primarily of everyday items and animals. By understanding
the spatial ranking of characteristics, pre-trained systems might be used as generic mod-
els if the data are large and general enough [88]. A pretrained model could be used in
feature extraction and fine-tuning. The convolutional base of a pretrained system with
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new classifiers is used for feature extraction, and the dataset is processed via it. Since it
learns general representations for various tasks, the convolutional foundation is reusable.
Fine-tuning, performed in conjunction with feature extraction, entails unfreezing portions
of the model’s top layers (used for feature extraction). The top layers and the classifier
of the system are then trained together [85,88]. Figure 11 depicts transfer learning from a
pre-trained CNN model. The learned convolutional base can be used to extract features,
which are then fed into a new classifier. Negative transfer and overfitting are significant
difficulties when using full-scale, fine-tuned transfer learning systems. Whenever the
domain of the pre-trained system and the performance are not equal, the reverse transfer
happens, leading to low efficiency in the transfer learning model [89]. This can be due to
the complexity of the characteristics collected in the last layers, which are unsuitable for the
target domain. Fine-tuning subsequent layers, on the other hand, cause overfitting issues.
To adjust later-level features to our goal domain, we must train the layer with such a huge
set of parameters. It is not possible because the common, pretrained network InceptionV3
contains 21,802,784 parameters, while ResNet152 contains 58,370,944 parameters. When-
ever these large-scale networks are trained, there is a risk of overfitting [87,88]. The success
of using transfer learning for DR classifications may be analyzed by comparing trained
models from inception to their fine-tuned variants.
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Several researchers in [90–92] concluded that utilizing transfer learning improves a
model’s accuracy in categorizing DR [93]. To train a DL model, many photos are required.
The number of images in DR image datasets is restricted. Collecting DR photos and
correctly labeling them is a time-consuming, experience-intensive, and resource-intensive
operation [73].

4. RQ2 Feature Extraction Techniques for DR
4.1. Explicit or Traditional Feature Extraction Methods

The literature on image processing and image segmentation is researched a lot. These
methods use shallow ML classifiers to diagnose DR using image processing-based feature
detectors to measure blood vessels and the optic disc, and count abnormalities such as
the presence of lesions, including hard exudates, soft exudates, microaneurysms, and
hemorrhages, in an image. Additionally, features such as shape, color, intensity, statistical
features, and texture-based features are examples of these characteristics. The following
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paragraphs provide a summary of these characteristics and are also given in Figure 12 and
Table 7 gives traditional feature extraction methods used in DR.
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(a) Characteristics based on shape and structure: The shape and size of various DR
lesions, such as hard and soft exudates, hemorrhages, and microaneurysms, are among
these characteristics. For example, Zhou and Wu [94] used shape-based criteria to detect
microaneurysms: area and perimeter, axis length, circularity, and compactness.

(b) Features based on RGB (color): These characteristics are based on the image’s red,
green, and blue color planes. For example, authors Jaya and Dheeba [95] employed color
fundus images to detect hard exudates and used four color-based characteristics. They
used RGB color space to build color histograms.

(c) Features based on intensity: The pixel intensity in the red, green, and blue planes is
called intensity. The authors of [11] employed intensity characteristics to detect cotton-wool
patches in DR images. Similarly, the authors of [16] employed intensity characteristics to
determine hard and soft exudates by computing maximum and lowest pixel intensities.

(d) Statistical characteristics: Statistical parameters are used to calculate statistical
calculations from the pixels of a DR image. The authors of [96] used statistical and color
features to identify hemorrhages in retinal images. The statistical parameters employed
are maximum and minimum mean with standard deviation. Feature extraction plays a
vital role in research methodologies. Feature extraction methods in the case of DR can
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be classified as explicit or traditional feature extraction methods and direct methods or
implicit methods (based on CNN).

(e) Texture-based characteristics: They provide texture-related information on DR
images. Entropy, cluster shade, discrepancy, and correlation were four GLCM-based
features that Vanithamani and Renee Christina identified [97]. Authors Nijalingappa and
Sandeep [61] employed GLCM to extract textural features such as contrast, correlation,
energy, homogeneity, similarity entropy, sum variance, difference variance, sum entropy,
difference entropy, sum average, and inverse difference moment. In the selected papers,
writers used several features in ML methodologies, such as form, shade, intensity, statistical,
and texture-based characteristics. Shape and statistical features are the most frequently
employed combination of features.

Table 7. Traditional feature extraction methods used in DR.

Ref. No Authors Feature Selected
Features and

Classifiers
(Technique)

Weakness Database (Performance
Analysis)

[98]
Di Wu, Wu,
Zhang, Liu, and
Bauman, 2006.

To find out blood
vessels in
the retina.

Gabor filters.

Requires high-
performance time
with greater
feature vector
dimension.

STARE.

Tested 20 images.
For normal images,
TPR—80 to 91% and
FPR—2.8 to 5.5%.
For abnormal images,
TPR—73.8–86.5%
FPR—2.1–5.3%.

[99] Sanchez et al.
(2009).

To detect hard
exudates from
cotton wool spots
and other
artifacts.

Edge detection
and mixture
models.

The diversity of
brightness and
size makes it
difficult to detect
the hard exudates,
hence method
may fail when
they appear very
few in the retina.

Eighty retinal
images with
variable color,
brightness, and
quality.

A sensitivity of 90.2%
and a positive
predictive value of
96.8% for an
image-based
classification accuracy
sensitivity of 100% and
a specificity of 90%.

[100]

Garcia, Sanchez,
Lopez, Abasolo,
and Hornero
(2009).

Red lesions image
and shape
features.

Neural networks
with multilayer
perceptron (MLP),
radial basis
function (RBF),
and support
vector machine
(SVM).

The black box
nature of ANN
and more
accuracy requires
more amount
of data.

The database was
composed of
117 images with
variable color,
brightness, and
quality. 50 were
used for training
and 67 for testing.

Using lesion-based
sensitivity and positive
prediction values
in percent.
MLP—88.1, 80.722.
RBF—88.49, 77.41.
SVM—87.61, 83.51.
Using image-based
sensitivity and
specificity in percent.
MLP—100, 92.59.
RBF—100, 81.48.
SVM—100, 77.78.

[101] Sanchez et al.
(2008). Hard exudates.

Color information
and Fisher’s
linear
discriminant
analysis.

When there are
only a few very
faint HEs in the
retina, this
proposed
algorithm may
have limited
performance.
More images are
required for
better results.

Fifty-eight retinal
images with
variable color,
brightness, and
quality from the
Instituto de
Oftalmobiología
Aplicadaat
University of
Valladolid, Spain.

Using a lesion-based
performance sensitivity
of 88% with a mean
number of 4.83 ± 4.64
false positives
per image.
Using Image-based
sensitivity-100 and
Specificity of 100%
is achieved.

[102] Quellec et al.
(2012).

Abnormal
patterns in
fundus images.

Multiple-instance
learning.

The training
procedure is
complex and
takes a lot of time.

Messidor
(1200 images) and
e-optha
(25,000 images).

In the Messidor dataset,
the proposed
framework achieved an
area under the ROC
curve of Az = 0.881 and
e-optha Az = 0.761.
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Table 7. Cont.

Ref. No Authors Feature Selected
Features and

Classifiers
(Technique)

Weakness Database (Performance
Analysis)

[103]
Kose, ¸SEvik,
˙IKiba¸s, and
Erdo¨l (2012).

Image pixel
information.

Inverse
segmentation
using region
growing,
adaptive region
growing, and
Bayesian
approaches.

Difficult to choose
the correct way to
select a prior.

A total of
328 images with
760 X 570
resolution from
the Department
of Ophthalmol-
ogy at the Faculty
of Medicine at
Karadeniz
Technical
University
were used.

This approach
successfully identifies
and localizes over 97%
of ODs and segments
around 95% of
DR lesions.

[104] Giancardo et al.
(2012).

Exudates in
fundus images.

Feature cector
generated using
an exudate
probability map,
the color analysis,
and the wavelet
analysis. Exudate
probability map
and wavelet
analysis.

Intensive
calculation.

HEI-MED,
Messidor, and
DIARETDB1.

AUC is between 0.88
and 0.94, depending on
the dataset/features
used.

[105] Zhang, Karray, Li,
and Zhang (2012).

Microaneurysms
and blood vessel
detection.

Locate MAs using
multi-scale
Gaussian
correlation
filtering (MSC)
with dictionary
learning and
sparse
representation
classifier (SRC).

Dictionaries for
vessel extraction
are artificially
generated using
Gaussian
functions which
can cause a low
discriminative
ability for SRC.
Additionally, a
larger dataset is
required.

STARE and
DRIVE.

For STARE:
FPR—0.00480.
TPR—0.73910.
PPV—0.740888.
For DRIVE:
FPR—0.0028.
TPR—0.5766.
PPV—0.8467.

[106] Qureshi et al.
(2012).

Identifying
macula and optic
disk (OD).

Ensemble
combined
algorithm of edge
detectors, Hough
transform, and
pyramidal
decomposition.

It is difficult to
determine which
one is the best
approach because
good results were
reported for
healthy retinas
but less precise
on a difficult
data set.

Diaretdb0,
Diaretdb1, and
DRIVE 40% of the
images from each
benchmark are
used for training
and 60% of the
images are used
for testing.

The average detection
rate of macula is 96.7
and OD is 98.6.

[107] Noronha and
Nayak (2013).

Two energy
features and six
energy values in
three orientations.

Wavelet
transforms and
support vector
machine (SVM)
kernels.

The performance
depends on
factors such
size and quality
of the training
features, the
robustness of the
training, and the
features
extracted.

Fundus images
were used.

Accuracy, sensitivity,
and specificity of more
than 99% are achieved.

[108] Gharaibeh N
(2021).

Cotton wool
spots, exudates.
Nineteen features
were extracted
from the
fundus image.

Unsupervised
particle swarm
optimization
based relative
reduct algo
(US-PSO-RR),
SVM, and
naïve-Bayes
classifiers.

Detection and
elimination of
optic discs from
fundus images
are difficult,
hence lesion
detection is
challenging.

Image-Ret.

Obtained a sensitivity of
99%, A specificity of
99% and a high
accuracy of 98.60%.
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Table 7. Cont.

Ref. No Authors Feature Selected
Features and

Classifiers
(Technique)

Weakness Database (Performance
Analysis)

[109] Gharaibeh N
(2018).

Microaneurysm,
hemorrhage, and
exudates.

Co-occurrence
matrix and SVM.

Can be tried on
larger datasets. DIARETDB1.

Obtained a sensitivity of
99%, a specificity of
96%, and an accuracy
of 98.4%.

[110] Akram, Khalid,
and Khan (2013).

Image shape and
statistics.

Gaussian mixture
models and
support vector
machine and
Gabor filter bank.

Need to work on
a large dataset.

Four hundred
and thirty-eight
Fundus images.

An accuracy of 99.4%, a
sensitivity of 98.64%,
and a specificity of
99.40% are achieved.

[111] Harini R and
Sheela N (2016).

Blood vessels,
microaneurysms,
and exudates.

The gray level
co-occurrence
matrix (GLCM) is
utilized to extract
textural features
the classification
is completed
using SVM.

Problem working
with large
datasets since
training requires
more time
with SVMs.

Seventy-five
Fundus images
were considered,
forty-five were
used for training,
and thirty
for testing

An accuracy of 96.67%,
a sensitivity of fundus
of 100%, and a
specificity of 95.83%
are achieved.

[112]

Anjana
Umapathy,
Anusha
Sreenivasan,
Divya S. Nairy
(2019).

Exudates and red
lesions in the
fundus image.

Decision tree
classifier.

Requires more
time for training
and persistent
overfitting.

STARE, HRF,
MESSIDOR, and
a novel dataset
created from
Retina Institute of
Karnataka.

The approach achieved
an accuracy of 94.4%.

4.2. Direct Methods

Direct methods are also called implicit methods. In recent works, direct methods are
likely to use deep CNN. These direct methods do not need to extract features manually;
instead, they acquire the patterns of DR anomalies and deliver grading results according
to the grading criteria. CNN architecture such as ImageNet AlexNet, GoogleNet, and
Inception-V3 are all used to train DR pictures in the literature. Furthermore, we do not
need to create a feature vector with direct methods. These techniques are new research in
the literature.

Zago et al. [113] used two CNNs to build an approach for detecting DR vs. non-DR
color images based on the expectation of lesion regions (pre-trained VGG16 and CNN). A
DIARETDB1 dataset was utilized for training. The datasets IDRiD, Messidor, Messidor-2,
DDR, DIARETDB0, and Kaggle were used for checking. The Messidor data yielded the
highest scores, with an AUC of 0.912 and a sensitivity of 0.94. Jiang et al. [114] generated a
method that classified the fundus image dataset as referable DR or non-referable DR using
three CNNs (Inception-v3, ResNet152, and Inception-ResNet-v2). The photos were scaled,
improved, and augmented before CNN training. The Adaboost approach would then be
used to connect them. All network weights were modified using the Adam optimizer, and
the model had a correctness of 88.21% and an AUC of 0.946, to estimate the five-stage DR
and evaluate the performance of CNNs.

Wang et al. [75] used the Kaggle fundus dataset and three distinct CNNs, namely
(pre-trained VGG16, AlexNet, and Inception-v3). With all three pre-trained models, the
fundus images have been resized to different forms, yielding 63.23%, 50.03%, and 37.43%
using Inception-v3, VGG16, and AlexNet, accordingly.

Hua et al. [111] used the DRIVE dataset photos to extract the retinal blood vessels.
The author chose four feature maps using a ResNet-101 pre-trained network; individual
feature maps were then blended to create a single map. Before CNN processing, the fundus
images were enhanced. With the best feature maps merged, the accuracy was 0.951, the
sensitivity was 0.793, the AUC was 0.9732, and the specificity was 0.9741. The retinal blood
vessels were extracted using a CNN created by Wu et al. [112] from three well-known
databases: STARE, DRIVE, and CHASE. In the preprocessing phase, the color images were
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transformed to grayscale images, normalized, augmented, and the image contrast was
increased using CLAHE. For datasets such as STARE, DRIVE, and CHASE, the model
attained AUCs of 98.75%, 98.30%, and 98.94%, respectively, and an accuracy of 96.72%,
95.82%, and 96.88%.

5. RQ3 Datasets Available for DR

An enormous number of public datasets are available for DR. Training, validation,
and testing can be performed using various datasets, and the performance of various
systems can be compared and examined. Fundus color photographs and optical coherence
tomography (OCT) are retinal imaging methods. OCT gives the internal structure of the
retina and is available in 2D and 3D. In contrast, images taken from fundus cameras are
2D photographs of the retina [115]. The Table 8 gives various fundus image datasets:

Table 8. Datasets.

Sr. No Dataset Name Description References Availability Link

1 Kaggle

EyePACS has supplied this dataset for the DR
detection challenge. There are 88,702 photos in
this collection (35,126 for training and 53,576 for
testing) [116].

[31,49,55,56,116–125] Free https://www.kaggle.com/c/diabetic-retinopathy-
detection/data (accessed on 2 May 2022).

2 ROC (Retinopathy
Online Challenge)

There are 100 photos in this collection. Canon
CR5-45NM, Topcon NW 100, and NW
200 cameras were used.

[52,57,60,69,82,126,127] Free http://webeye.ophth.uiowa.edu/ROC/ (accessed on 2
May 2022)

3 DRIVE

This dataset contains 40 photos from a DR
program in Holland (split into training and
testing, 20 images each). The camera was a Canon
CR5 non-mydriatic 3CCD with a 45-degree field of
view (FOV).

[57,65,128–133] Free
https:
//www.isi.uu.nl/Research/Databases/DRIVE/Gulshan
(accessed on 2 May 2022)

4 STARE
There are 400 photos in total in this dataset. The
fundus camera used was a Topcon TRV-50 with a
35-degree field of view.

[57,128,130,132–136] Free http://www.cecas.clemson.edu/~ahoover/stare/
(accessed on 3 May 2022)

5 E-Optha

The OPHDIAT telemedical network created this
dataset. E-Ophtha MA and E-Ophtha EX are the
two datasets that make up this collection. Both
have 381 and 82 photos in them, respectively.

[55,70,75,82,96,137–139] Free http://www.adcis.net/en/Download-Third-Party/E-
Ophtha.html (accessed on 3 May 2022)

6 DIARETDB0

There are 130 photos in this dataset (normal
images = 20, images with DR symptoms = 110).
The photos were obtained with a fundus camera
with a field of view of 50 degrees.

[55,61,74,140] Free http://www.it.lut.fi/project/imageret/diaretdb0/
(accessed on 3 May 2022)

7 DIARETDB1

There are 89 photos in this dataset (standard
images = 5, images with at least mild DR = 84).
The photos were obtained with a fundus camera
with a field of view of 50 degrees.

[53,55,57–60,62–64,67,70,74,75,82,96,
97,119,135,137,139,141–145] Free

http:
//www.it.lut.fi/project/imageret/diaretdb1/index.html
(accessed on 4 May 2022)

8 Messidor-2
This dataset includes 1748 photos collected with a
Topcon TRC NW6 non-mydriatic fundus camera
with a 45-degree field of view.

[146] On-demand http://www.latim.univ-brest.fr/indexfce0.html
(accessed on 3 May 2022)

9 Messidor
This dataset includes 1748 photos collected with a
Topcon TRC NW6 non-mydriatic fundus camera
with a 45-degree field of view.

[58,61,66,75,97,125,137,141,147–150] Free http://www.adcis.net/en/Download-Third-Party/
Messidor.html (accessed on 3 May 2022)

10 DRiDB This dataset, which includes 50 photos, is
accessible upon request. [76,94] On-demand https://www.ipg.fer.hr/ipg/resources/image_database

(accessed on 3 May 2022)

11 DR1

The Department of Ophthalmology of the Federal
University of Sao Paulo created this dataset.
(UNIFESP). It contains 234 images captured with
TRX-50X, the mydriatic camera having
45 degrees FOV.

[54,150] Free http://www.recod.ic.unicamp.br/site/asdr (accessed on
4 May 2022)

12 DR2

The Department of Ophthalmology at the Federal
University of Sao Paulo also contributed to this
dataset (UNIFESP). It contains 520 photographs
taken with the TRC-NW8, a non-mydriatic camera
with a 45-degree field of view.

[54] Free http://www.recod.ic.unicamp.br/site/asdr (accessed on
3 May 2022)

13 ARIA
This dataset contains 143 images. The camera
used was a Zeiss FF450+ fundus camera with a
50-degree field of view.

[151] Free http://www.damianjjfarnell.com/?page_id=276
(accessed on 5 May 2022)

14 FAZ (Foveal Avascular
Zone)

There are 60 photos in this dataset (25 images that
are normal and 35 images with DR). [141] Free http://www.biosigdata.com/?download=Zone

(accessed on 5 May 2022)

15 CHASE-DB1

There are 28 photos of 14 children included in this
dataset (consisting of one image/eye).
CHASE-DB1 deals with Child Heart and Health
Study (CHASE) in England.

[130] Free https://www.blogs.kingston.ac.uk/retinal/chasedb1/
(accessed on 5 May 2022)

16
Tianjin Medical
University Metabolic
Diseases Hospital

This dataset contains 414 fundus images. [57] Not publicly available http://eng.tmu.edu.cn/ResearchCenter/list.htm
(accessed on 5 May 2022)

17 Moorfields Eye Hospital

Data from countries such as Kenya, Botswana,
Mongolia, China, Saudi Arabia, Italy, Lithuania,
and Norway are collected at Moorfields Eye
Hospital in London.

[60] Not publicly available
https:
//www.moorfields.nhs.uk/research-and-development
(accessed on 5 May 2022)

https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
http://webeye.ophth.uiowa.edu/ROC/
https://www.isi.uu.nl/Research/Databases/DRIVE/Gulshan
https://www.isi.uu.nl/Research/Databases/DRIVE/Gulshan
http://www.cecas.clemson.edu/~ahoover/stare/
http://www.adcis.net/en/Download-Third-Party/E-Ophtha.html
http://www.adcis.net/en/Download-Third-Party/E-Ophtha.html
http://www.it.lut.fi/project/imageret/diaretdb0/
http://www.it.lut.fi/project/imageret/diaretdb1/index.html
http://www.it.lut.fi/project/imageret/diaretdb1/index.html
http://www.latim.univ-brest.fr/indexfce0.html
http://www.adcis.net/en/Download-Third-Party/Messidor.html
http://www.adcis.net/en/Download-Third-Party/Messidor.html
https://www.ipg.fer.hr/ipg/resources/image_database
http://www.recod.ic.unicamp.br/site/asdr
http://www.recod.ic.unicamp.br/site/asdr
http://www.damianjjfarnell.com/?page_id=276
http://www.biosigdata.com/?download=Zone
https://www.blogs.kingston.ac.uk/retinal/chasedb1/
http://eng.tmu.edu.cn/ResearchCenter/list.htm
https://www.moorfields.nhs.uk/research-and-development
https://www.moorfields.nhs.uk/research-and-development
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Table 8. Cont.

Sr. No Dataset Name Description References Availability Link

18 CLEOPATRA
The CLEOPATRA collection consists of 298 fundus
images. It includes images from 15 hospitals
across the United Kingdom to diagnose DR.

[152] Not publicly available Not available

19 Jichi Medical University

There are 9939 posterior pole fundus images of
diabetic patients in this dataset. The camera used
was a NIDEK Co., Ltd., Aichi, Japan, AFC-230,
with a 45-degree field of view.

[153] Not publicly available https://www.jichi.ac.jp/ (accessed on 5 May 2022)

20 Singapore National DR
Screening Program

This dataset was collected during the Singapore
National Diabetic Screening Program (SIDRP)
between 2010 and 2013; a total of 197,085 retinal
images were collected.

[97] Not publicly available Not available

21 Lotus Eye Care Hospital
Coimbatore, India

It contains 122 fundus images (normal = 28,
DR = 94). A Canon non-mydriatic Zeiss fundus
camera with a FOV of 90 degrees was used.

[22,77,154] Not publicly available https://www.lotuseye.org/centers/sitra/ (accessed on 5
May 2022)

22

Department of
Ophthalmology,
Kasturba Medical
College, Manipal, India

This dataset contains 340 images (normal = 170,
with retinopathy = 170). Non-mydriatic retinal
camera, namely, TOPCON, was used

[155] Not publicly available
https://manipal.edu/kmc-manipal/department-
faculty/department-list/ophthalmology.html (accessed
on 5 May 2022)

23 HUPM, Cádiz, Spain
Fundus photos from Hospital Puerta del Mar in
Spain were taken, including 250 photos
(50 normal and 200 with DR symptoms).

[156] Not publicly available https://hospitalpuertadelmar.com/ (accessed on 5 May
2022)

6. RQ4 Evaluation Measures Used for DR Detection

Performance measure parameters play a vital role in evaluating a model on futuristic
or unknown data to estimate a model’s generalization accuracy. A few of them are listed
below.

6.1. False Positive Rate (FPR)

The percentage of times that segmenting retinal images produces positive instead of
negative findings.

It can be written as follows:

FPR =
FP

TN + FP
(1)

6.2. False Negative Rate (FNR)

It is the percentage of time that segmenting retinal images produces negative instead
of positive findings.

It can be written as follows:

FNR = FN/(TP + FN) (2)

6.3. Accuracy [89]

It is the ratio of correctly assigned pixels in the segmented image to several blood
vessel pixels.

It is given as:

A =
TN + TP

TN + FN + FP + TP
(3)

6.4. Specificity

It is the ratio of correctly detected vessels to the total number of non-vessels.

Spec =
TN

FP + TN
(4)

6.5. Sensitivity/Recall Rate

It is the ratio of accurately identified vessels to the total number of vessels.

Sen =
TP

FN + TP
(5)

https://www.jichi.ac.jp/
https://www.lotuseye.org/centers/sitra/
https://manipal.edu/kmc-manipal/department-faculty/department-list/ophthalmology.html
https://manipal.edu/kmc-manipal/department-faculty/department-list/ophthalmology.html
https://hospitalpuertadelmar.com/
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6.6. F-Score

The F-score is a measurement of test accuracy. The number of positive outcomes is
divided by the number of authentic positive results.

F − Score = 2 × Recall × Precision
Recall + Precision

(6)

6.7. ROC

It is a graph showing classifier performance at all conceivable thresholds. The graph
depicts the positive rate (on the Y-axis) and the false positive rate (on the X-axis).

6.8. Positive Predictive Value (PPV)

It can be given by the probability of fundus images being segmented accurately.

6.9. Negative Predictive Value (NPV)

It can be given by the probability of fundus images being segmented inaccurately.

6.10. False Discovery Rate (FDR)

It’s also known as a false positive and can be defined as the rate of an expected part
of errors.

6.11. Confusion Matrix

A confusion matrix is used to find out what our ML algorithm achieved and where it
went wrong. It is a matrix used for evaluating classification models’ performance on a given
set of test data. It can only be determined if the values for testing data are initially known.
It is also known as an error matrix since it displays the flaws in the model’s performance as
a matrix [157].

The following are some characteristics:
(a) Rows correspond to what is predicted and columns correspond to the known truth

or actual values. Here, a matrix for the prediction of two classes for a classifier is given by a
2 × 2 table, three classes by a 3 × 3 table, etc.

(b) Actual values are the actual values for the given observations, whereas projected
values are predicted by the model.

(c) The following Table 9 gives the values,

Table 9. Sets ed.

N = Total Predictions Actual: NO Actual: Yes

Predicted: No True Negative False Positive

Predicted: Yes False Negative True Positive

The following cases are listed in the table above.

1. True Negative: when the model’s predicted and the actual value is No.
2. True Positive: when the model’s predicted and the actual value is Yes.
3. False Negative: when the model’s predicted value is Yes, and the actual value is No.

It is also known as a Type-II mistake.
4. False Positive: when the model’s predicted value is No, and the actual value is Yes. A

type-I mistake is another name for it.

6.12. Kappa Value

Cohen’s Kappa is a common statistic for determining how well two raters agree. It can
also be used to evaluate a classification model’s performance. Using Kappa, a comparison
of ML model predictions to the humanly established credit scores can be made. Similar to
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many other evaluation measures, Cohen’s Kappa is calculated using the confusion matrix.
On the other hand, Cohen’s Kappa considers imbalances in class distribution and might be
more challenging to assess than overall accuracy [158].

7. EMR and Biomarkers in DR

Biomarkers are biological elements found in blood, other bodily fluids, or tissues that
indicate the presence of a good or aberrant process, as well as a condition or disease. They
act as a highlighter and can be used to assess how well the body reacts to treatment for
a symptom. They play an essential role in identifying the physiological state or disease
detection. Measurable indicators such as blood pressure, temperature, C-reactive protein,
etc., are examples of a few biomarkers. Circulating biomarkers may be beneficial in
diagnosing initial retinal illness before structural reforms are visible with existing imaging
technology [159]. Personalized diabetes vision care precisely forecasts the threat of diabetic
retinopathy (DR) development and loss of vision in real-time [160]. This utilization of
electronic medical records (EMR) provides a framework for the incorporation of artificial
intelligence (AI) algorithms that anticipate DR development into healthcare decisions [161].
The threat of retinopathy evolution and vision problems can be projected using an algorithm
applied to pieces of information from each patient, enabling patients to obtain prompt
therapy. Hemoglobin A1c, also called HbA1c levels, are among the most well-known
indicators for glycemic control. Hemoglobin A1c has been demonstrated to have a high
correlation with the evolution of systemic symptoms of diabetes, particularly DR [162].
Early treatment diabetic retinopathy study (ETDRS) and the diabetic retinopathy severity
scale (DRSS) are traditional biomarkers for DR. Longitudinal clinical studies show that
DRSS-based fundus photographic assessment effectively represents the projected risk
of disease development, responsiveness to treatments, and long-term visual results [3].
The DRSS has affected DR patients globally, employing a scale ranging from no diabetic
retinopathy (NPDR) to severe proliferative diabetic retinopathy (PDR). Different ocular
biomarkers consist of various parameters found in ocular coherence tomography (OCT),
retinal blood flow, retinal oxygen saturation, vascular endothelial growth factor (VEGF),
neural retina assessments (electroretinograms), and retinal vessel geometry [161,163]. Some
novel biomarkers include:

• Genetics: The investigation of genes associated with the development of advanced
DR, vascular endothelial growth factor (VEGF), lipoproteins, and inflammation. There
have been genome-wide association studies and single nucleotide polymorphisms
(SNPs) linked to an enhanced danger of sight-threatening retinopathy [164].

• Epigenetics: It is the study of how environmental variables interact with genes. DNA
methylation, histone modification, and microRNAs are among the biomarkers being
investigated [165,166].

• Proteomics: It is the study of protein structure and function research in cultured
cells and tissues. A current study shows that diabetic patients have higher levels of
transport proteins (vitamin D binding protein), arginine N-methyltransferase 5, and
inflammatory proteins (leucine-rich alpha-2-glycoprotein) [167,168].

• Metabolomics: The study of chemical traces left by biological activities. Data on
increased metabolite cytidine, cytosine, and thymidine found in DR patients using
mass spectrometry is included in the studies. These nucleotide concentrations may be
relevant in monitoring DR progression and evaluating therapy [169].

8. RQ5 Challenges and Future Research Directions

This section addresses several scientific issues that previous diabetic detection investi-
gations have not addressed. Much effort is required to improve the effectiveness of various
diabetic detection systems. Various research challenges and their workable solutions are
listed below.

Challenge 1: The origins of DL models are frequently unknown; hence, they are
viewed as a black box. This results in a need for an automatic (parameter) optimization
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strategy. It is also challenging to determine the best configuration and values for layer
numbers and node numbers in different layers. Basic domain knowledge is also required
for selecting parameters for the number of epochs, learning rate, and to regularize strength.
As a result, automatic optimization methodologies for various DL architecture parts for
specific DM datasets and additional clinical datasets may be introduced.

Future Research Direction: Explainable artificial intelligence (XAI).
Recent developments in DL techniques have aroused interest in using AI technology in

every field; however, the method’s opacity has raised concerns regarding its use in security
applications. The “explainability” component is critical since it demonstrates how black-
box methods operate and provides accountability and accessibility aspects that regulations,
consumers, and network operators care about. Explainable artificial intelligence (XAI) is
indeed a collection of technologies and methodologies for transforming so-called black-box
AI algorithms into white-box algorithms, wherein the outcomes of the methodologies and
the variables, parameters, and measures adopted by the algorithm show up in such results
have been transparent and straightforward [170]. There are three dimensions to evaluate
when analyzing the comprehensiveness of AI models, as stated below.

Explainability is a learning model feature that allows the model’s processes to be
explained in detail. The strategy is to make the learning model’s internal workings increas-
ingly transparent. It is worth mentioning that sensitive applications necessitate explanation
ability for both scientific interest’s purpose and since the danger component takes priority
over other factors whenever human lives are threatened. A learning model’s interpretability
is a factor that helps people to understand and make logical sense of it, as opposed to ex-
plainability. Transparency is typically associated with understandability; a learning model
is said to be transparent in it can be understood without the need for an interface. The term
“transparent” is defined as a communication paradigm that may be comprehended without
additional elements.

For the objective of categorizing DR severity using color fundus photography, G.
Quellec [151] describes explanatory artificial intelligence (XAI), which achieves the same
level of performance as black-box AI (CFP). The algorithm learns to segment and categorize
lesions in images, and the final image-level classification is derived directly from these
multivariate lesion segmentations. The peculiarity of this explanatory framework is that
similar to black-box AI algorithms, it is trained from the beginning to the end with only
image supervision; the notions of lesions and lesion categories develop independently. Se-In
Jang1 [171] describes a classification model of a neural-symbolic learning-based explainable
DR (ExplainDR). To accomplish explainability, the authors develop a human-readable
symbolic representation that follows a taxonomy style of DR characteristics connected to
eye health issues. The disease prediction then incorporates human-readable information
gained from the symbolic representation. There are various XAI models such as LIME, the
What-If-Tool, DeepLIFT, Skater, SHAP, AIX360, Activation Atlases, Rulex Explainable AI,
and GradCAM [172]. The XAI model’s shapley additive explanations (SHAP) with guided
backpropagation (GBP), and the inception-V3 framework have been used for ophthalmic
diagnosis [173]. Diagramatic explanation of DR using XAI is shown in Figure 13.

Challenge 2: Insufficient and unlabeled data availability.
Future Research Direction: For training, DL algorithms often require a large amount

of labeled diabetes data, hence there is a need to develop labeled and sufficient datasets
for training. When the training range is restricted, it is impossible to achieve sufficient
precision. This problem can be approached in two ways. To begin, low-learning algorithms
were used to collect training data. Second, various enhancement techniques were used,
including cropping, rotating, flipping, and color casting. More research is needed to
generate more precise training data so that the DL design with more consistency and
distinguishing features.
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Challenge 3: Practitioners, especially ophthalmologists, prefer making decisions by
referring to OCT, fundus, and other modalities. Hence, using multimodality in DR will
help in detecting the severity of DR.

Future Research Direction: Recently, images such as fundus are used to diagnose eye-
related disorders, such as DR and glaucoma, and OCT is used to detect other eye-related
disorders such as diabetic macular edema and age-related macular degeneration, etc. [174].
There are many scopes to develop a similar architecture that is extensible enough to
accommodate fundus images and OCTs for DR identification. Most available investigations
used a single modality to build a DR detection model. In the future, however, a multi-modal
concept can be used to view DR detection from more than one data perspective. This will
boost the practitioner’s confidence in detecting DR early.

Challenge 4: Lack of self-supervised or unsupervised approaches.
Future Research Direction: Domain adaptation applies a technique learned inside

one domain to a new target domain. Duy M. H. Nguyen [175] tackles the topic of domain
adaptation for DR grading by creating a novel self-supervised task based on retinal vascular
image reconstructions inspired by medical domain knowledge to learn invariant target-
domain features. Then, a benchmark of current state-of-the-art unsupervised domain
adaptation approaches is offered on the DR problem. It has been demonstrated that their
method outperforms other domain adaptation methodologies. In [176], Ruoxian Song
proposed a domain adaption for multi-instance learning for DR grade, which organized
weakly supervised DR grade as a multi-instance learning issue. Cross-domain produces
tagged examples to filter out irrelevant examples in the target domain. To model the
link between suspicious occurrences and bag labels, multi-instance learning with only
an attention mechanism can collect location information of highly suspected lesions and
predict the grade for DR. The proposed technique is tested on the Messidor dataset. The
results showed an average accuracy of 0.764 and an AUC value of 0.749. Domain adaptation
in DR is diagrammatically shown in Figure 14.
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Challenge 5: The need for improved data efficiency, less overfitting through common
representations, and fast learning using auxiliary information in DR is required.

Future Research Direction: Multi-task learning (MTL) is a subfield of ML in which
a shared model learns many tasks simultaneously. Improved data efficiency, less overfit-
ting through common representations, and fast learning using auxiliary information are
advantages of such techniques. On the other hand, simultaneous learning of many tasks
poses modern design and optimization issues, and deciding which tasks should be learned
together is a non-trivial problem in and of itself [177]. Although DL for DR screening
has demonstrated incredible healthcare accuracy of referable versus non-referable DR,
extra fine-grained grading of the DR severity level and automated segmentation of lesions
(if any) in retina images will still be necessary. To conduct the DR grading and lesion
segmentation tasks, A. Foo and W. Hsu [178] used a multi-task learning strategy using
MTUnet. They proposed a semi-supervised learning technique to acquire segmentation
masks for enormous datasets due to the lack of ground truths for lesion segmentation
masks. A. Foo and W. Hsu [178] discovered that the DR severity level of an image could
be influenced by the existence and prevalence of several lesions. Experimentation was
performed on publicly accessible datasets and records, and data produced via screening
programs indicate the efficacy of the multi-task approach over the state-of-the-art network.

Challenge 6: There seems to be currently no unified standard for assessing and
validating AI algorithms. The testing sets used in numerous studies vary substantially. A
few other studies did not use independent external testing sets but instead used internal
validation sets to test the algorithm’s sensitivity, specificity, and AUC. Various studies’
sensitivity, specificity, AUC, and other indicators just were not comparable. As a result,
standard testing is necessary to analyze each algorithm.

Future Research Direction: The need for a standard testing technique to analyze algorithms.
Challenge 7: In the most recent findings, one AI system can only identify one disease,

implying that a patient can only be evaluated for a single issue during a fundus examination.
However, if we consider the fundus image modality, almost all retinal vascular diseases
can be examined through it, unless the media is hazy, so the image is not clear [35].
The eye examination process will be greatly simplified if an AI system can diagnose
multiple diseases. Detection of other eye diseases during DR screening has been reported
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in studies, which can detect age-related macular degeneration, as well as other diseases, at
the same time.

Future Research Direction: The need for a simplified AI system to diagnose multi-
ple diseases.

9. Discussion

A total of 178 studies were reviewed for this survey. All of the studies discussed
mention work in DR screening systems using artificial intelligence techniques. There is
a substantial need for automated, reliable systems for DR screening due to a substantial
increase in DR patients worldwide. Studies considered publications published between
January 2014 and June 2022. This study discusses various AI tools for DR followed by ML
and DL techniques in DR. The numerous studies that created their own CNN framework
versus others that usually use existing structures with transfer learning, such as VGG,
ResNet, or AlexNet, are slightly different. Creating a CNN from scratch takes time and
resources; however, employing transfer learning makes it easier and faster. The overall
performance of its own CNN architecture is greater than that of the systems that used
existing structures. This point should be taken into consideration by researchers, and
further research should be conducted to differentiate between the two tendencies. Implicit
and explicit feature extraction techniques are discussed, which help develop a model
with reduced feature vector size and less machine effort, leading to better performance
and speed. Publicly available datasets are discussed in detail with different properties.
Performance measures serve as a matrix to evaluate the quality and accuracy of the research.
They play a vital role in determining whether the research is desired. The availability of a
robust DR detection technique capable of detecting all sorts of lesions and DR stages leads
to a better follow-up strategy for DR patients, thereby avoiding loss of vision. This lack
of technologies that might predict the five DR levels and detect DR lesions was a gap that
needed to be filled. The above point could be viewed as a contemporary research question
for researchers to pursue.

10. Conclusions

Automated methods for DR identification play a significant role in the early diagnosis
of DR. A detailed review has been carried out, including 178 research studies found in
Scopus, WOS, ophthalmology journals, Jama, PubMed, etc., to find the primary studies
using the PRISMA approach. This review critically focuses on publicly available datasets,
classification techniques used in ML and DL, and various traditional and currently used
feature extraction methods, followed by various performance metrics used in DR. Tra-
ditional and novel biomarkers used in DR are highlighted. This study discovered and
reported on several publicly available datasets with distinctive properties. In ML-based
techniques, better performance is given by statistical-based characteristics also followed
by shape and structure. ANN gives better performance for classification over SVM and,
in the case of ML techniques, ensemble classifiers perform better. When this concerns
DL, CNN was primarily applied to automatically extract and categorize the DR images.
Accuracy, sensitivity, specificity, and area under the curve are the widely used performance
metrics in DR. This review also described four novel research challenges in the DR detec-
tion field. This comprehensive review provides a profound overview of the topic of DR
detection approaches and helpful insights to researchers working in this field. The scope of
the evaluation can be expanded in the future to overcome limitations. Concepts such as
transfer learning, ensemble learning, explainable AI, multi-task learning, and domain adap-
tation can be widely used in the future to detect DR at its early stages. Intelligent health
monitoring technologies decrease the time to detect diagnoses, sparing ophthalmologists’
time and cost, and allowing patients to communicate more quickly. The authors strongly
believe that scientists and medical practitioners working in DR detection would benefit
from this review. The readers of this article will gain the desired knowledge and obtain
future research directions to extend their research work.
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