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Abstract: In recent decades, the crime rate has significantly increased. As a result, the automatic
video monitoring system has become increasingly important for researchers in computer vision. A
person’s baggage classification is essential in knowing who has abandoned baggage. This paper
proposes a model for classifying humans carrying baggage. Two approaches are used for comparison
using a deep learning technique. The first approach is based on categorizing human-containing
image regions as either with or without baggage. The second approach classifies human-containing
image regions based on the human position direction attribute. The proposed model is based on the
pretrained DenseNet-161 architecture. It uses a "fit-one-cycle policy" strategy to reduce the training
time and achieve better accuracy. The Fastai framework is used for implementation due to its super
computational ability, simple workflow, and unique data cleansing functionalities. Our proposed
model was experimentally validated, and the results show that the process is sufficiently precise,
faster, and outperforms the existing methods. We achieved an accuracy of between 96% and 98.75%
for the binary classification and 96.67% and 98.33% for the multi-class classification. For multi-class
classification, the datasets, such as PETA, INRIA, ILIDS, and MSMT17, are re-annotated with one’s
direction information about one’s stance to test the suggested approach’s efficacy.

Keywords: deep learning; human-carrying baggage classification; transfer learning; fit one cycle
policy; direction attribute; video surveillance

1. Introduction

Crime has expanded drastically, posing a threat to human life and property. These
circumstances often occur when explosive chemicals are transported in carry-on or unclaimed
baggage. Hence, detecting humans carrying baggage is a critical issue for preventing theft,
identifying criminal conduct, and preventing bombings in an intelligent surveillance system.

Detecting humans carrying baggage can be accomplished conceptually by studying
their looks. This approach might be a preliminary step in establishing the abandoned
baggage owner [1]. The detection system monitors the threat and alerts the security team by
deploying cameras in public areas such as buses, airports, railway stations, building lobbies,
schools, etc. These public areas potentially impact numerous intelligent surveillance
systems that require knowledge management and integration [2,3].

The detection technique faces many difficulties due to lighting circumstances, compli-
cated backgrounds, articulate positions, and outside scenarios [4]. Moreover, one of the
big problems is feature extraction. Several features were extracted, including histograms
of oriented gradients (HOG) [5], local binary pattern (LBP) [6], scale-invariant feature
transform (SIFT) [7], and gray-level co-occurrence matrix (GLCM) [8]. However, the two
most common ways to obtain information about images are SIFT and GLCM. In addition,
several machine learning techniques have been used in the classification step, such as
support vector machines [9] and random forest [10].
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Convolutional neural networks (CNN) [11] or deep learning techniques have recently
demonstrated a significant and distinct ability to extract image features automatically. They
are a solution to the challenge of extracting image features [12,13]. Consequently, they
have been applied and have demonstrated success in various fields, including computer
vision [14,15]. CNN tries to identify patterns in images by applying several convolutions.
These convolutions can learn simple features such as lines and diagonals in the first few
layers and then integrate these pieces in subsequent layers to learn deeper features. Using
the patterns discovered in the previous layers, the models learn significant structures such
as doors, arms, cats, and dogs in the final layer.

However, training deep architectures with millions of parameters by applying the
random weights initialization technique can take days and weeks. A vast amount of
data and powerful computer hardware (GPUs) are necessary to train CNN from scratch.
“Transfer learning” is frequently employed to resolve these issues [16]. A CNN model is
trained on a massive dataset, such as ImageNet, and becomes a pretrained model. The
features learned by this pretrained model are transferred to the new model. In the transfer
learning technique, the fully connected layer of the model is erased, and the remaining
layers of the architecture are employed as a feature extractor for the new job. Thus, only
the dense layers of the proposed model are trained.

Furthermore, setting hyperparameters is a significant challenge in CNN [17] that
faces any researcher and requires many years of experience to tune these parameters [18].
The solution is the fit-one-cycle policy, a technique for reducing training time, increasing
performance, and adjusting all hyperparameters of deep learning models, such as learning
rate and weight decay [19]. Hence, the fit-one-cycle policy yields training outcomes superior
to those obtained using the usual learning rate.

The following is a succinct summary of the contributions of this work:

1. We exploited pretrained models such as DenseNet-161, which were first applied to the
problem of classifying humans who are carrying bags. We built a reliable model that
can classify humans carrying bags in binary and multiclass classification. The binary
classification classifies humans as either carrying baggage or not. The multiclass
classification classifies humans into six classes depending on the human’s viewing
region: front-view, back-view, and side-view with or without carrying baggage in
each view.

2. We manually re-annotated the datasets with direct information about human posture
to evaluate the multi-classification performance of the proposed model. This will be
essential in determining the type of bag to use in future work.

3. We used the new fit-one-cycle policy method to reduce the number of epochs and
iterations in the model, allowing it to be used with large-scale data.

4. We performed many experimental validations of the proposed model across all public
datasets. Our model outperformed the other methods in the literature, as demon-
strated by the results.

The remaining sections of the paper are structured as follows. In Section 2, we will
provide a literature review. In Section 3, we will describe the proposed model. Then,
experimental results and discussions will be presented in Section 4. Finally, the conclusion
and future work will be discussed in Section 5.

2. Related Works

Carried-object detection has become a subject of interest in recent years. Consequently,
there is a growing interest in detecting objects carried in video sequences. Several ap-
proaches have been proposed in the literature to detect carried baggage.

The Backpack by Haritaoglu et al. [20] was one of the subject’s earliest treatments.
It detects carried objects by analyzing the symmetry and mobility of a person’s body. It
is based on the presumption that the human body is symmetrical around a vertical axis
and that the limbs exhibit periodic motion when the individual is walking without objects.
A temporal template dynamic model is created by matching and averaging a person’s
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foreground blobs in brief video sequences. Next, the non-symmetric regions of the temporal
templates are separated by computing a vertical symmetric axis using principal component
analysis (PCA) and analyzing the distance between the silhouette pixels and the body axis.
The non-symmetric regions are subjected to periodicity analysis to differentiate between
limb and object-carrying regions.

Javed et al. [21] noted that calculating the central axis using PCA is not an effective
tool for estimating the vertical symmetry axis because the shape of the silhouette is warped.
Thus, the symmetry axis shifts when a person carries an object. They propose that the
vertical line passing through the head’s centroid is a more suitable choice for the axis
of symmetry. The recurrent motion image (RMI) feature vector has been introduced to
estimate the recurrent motion of a person’s body. Non-symmetric regions exhibiting
periodic signals in the RMI are identified as limbs, while the other regions are categorized
as carried objects. As the silhouette shape represents the human object class, several studies
have explored the use of prior information about the human body shape to distinguish it
within a foreground blob and to elucidate the remaining foreground aspects in terms of
carried objects.

Using a dynamic shape model of human motion, Lee et al. [22] detected carried objects
as outliers in the extracted foreground using a dynamic shape model. Using kinematic
manifold embedding and kernel mapping, they represent the dynamic shape deformations
of various individuals from different viewpoints. Comparing a person’s silhouette with the
best-matching dynamic shape model reveals that carried objects are mismatched.

In Chayanurak et al. [23], a star skeleton represents the human silhouette. The authors
discovered individuals carrying objects by analyzing a time series of extracted skeletal
limb movements. Tracked limbs that stay still or move with the rest of the body are called
“carried objects”.

Tzanidou and Edirisinghe [24] suggested a strategy for detecting and classifying
baggage by predicting the direction of motion of a human that is carrying baggage and
aligning a temporal human-like template with the best-matched view-specific exemplars.
They used a classification scheme based on human body parameters with significant
drawbacks to classify baggage.

Shahbano et al. [25] created a method for carrying baggage detection and classifica-
tion by utilizing a scalable histogram of oriented gradients (SHOG) and joint scale local
binary patterns (JSLBP) to extract features of human parts and baggage. SHOG achieved
high precision by permitting the selection of highly discriminative features and achieved
an accuracy score of 95.4% on binary classification using INRIA, ILIDS, and MSMT17
datasets [26–28]. Then, Shahbano et al. [29] proposed a novel technique by integrating the
three-dimensional link between pixels and applying a local tridirectional pattern descriptor
to acquire information about the local intensities and produce an accurate feature descrip-
tion and size and achieved an accuracy score of 95% on binary classification using INRIA
and MSMT17 datasets [26,28].

Damen et al. [30] proposed a technique for detecting objects in a human region based
on constructing a spatial-temporal template from a series of human areas while walking.
The template was matched with view-specific offline examples to obtain the optimal match.
As a carried object, the temporal protrusion between them was acknowledged. Tzanidou
et al. [31] augmented the method used in [30] by integrating color information to precisely
pinpoint and move an object’s location. However, the technique presupposes that those
parts of carried objects extend beyond body silhouettes. Due to its dependence on the
protrusion, the method cannot detect carried objects that do not protrude.

Wahyono et al. [32] devised a human-baggage detector to overcome the protruding
issue by modeling the human region as several body parts, including the head, torso,
leg, and baggage. Using a mixed model, carried object detection was accomplished by
combining feature extraction and training on each component and merging them. Without
expecting the carried object to be a protrusion part, Ghadiri et al. [33] provided a collection
of contour exemplars of humans in various standing and walking positions. The carrying
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object is identified by studying the contour alignment between the hypothesis mask and
contour exemplars. However, the approaches rely primarily on human detection outcomes,
rendering them impractical since we must construct both human and object detectors.

Recently, Wahyono et al. [34] used custom CNN layers, which have proven to be
practical classification applications. Moreover, they proposed a framework for classifying
human-carrying objects that can be directly applied to all possible candidate regions. It
is based on a convolutional neural network with a transfer learning strategy using the
human viewing direction attribute. It achieved an average F1 score of 0.91 on multiclass
classification using the PETA [35] dataset.

From previous literature, we found that the pretrained models were not used for classi-
fying human-carrying objects. However, the results of the pretrained models outperformed
the custom CNN layers [36]. As a result, we will build a classification model for humans
carrying baggage using the DenseNet-161 pretrained model and the fit-one-cycle policy
method for binary and multiclass classification.

3. Proposed Model

This section discusses the design of the proposed model, shown in Figure 1. Input
images for datasets are processed in advance, as indicated in the following subsection.
Then, they are passed to the training phase, as clarified in the second subsection. The last
subsection describes the evaluation criteria used to assess the model.
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3.1. Data Preprocessing

This subsection illustrates the preprocessing performed on different datasets for re-
annotation and resizing.

3.1.1. Re-annotation datasets

Since the camera is positioned at a fixed angle and location, the candidate regions may
comprise individuals from several viewing orientations, either front, back, or side views. Thus,
the viewing direction of a person is considered part of the target. Using human features, such
as viewing order, has improved the accuracy of person re-identification [37,38]. We extend the
number of targets for multi-class classification to six different classes, namely, front, back, and
side views with baggage, and front, back, and side views without baggage. In Section 4, we
will show several samples of images of humans in different views from all the datasets used
in the experiment.

3.1.2. Resize Images

As a result of using many datasets, such as PETA, INRA, ILIDS, and MSMT17 that have
different image sizes, all the input images are processed by resizing them to 224 × 224 pixels
to fit the input of our model.

3.2. Training Phase

This subsection discusses our training phase. Firstly, we present the DenseNet-161
architecture used for our model. Then, we discuss the training method to optimize our
model’s run-time and performance.

3.2.1. DenseNet-161 Architecture

It is essential to highlight that the proposed model is based on the pretrained DenseNet-
161 architecture.

Huang et al. [39] created dense convolutional networks (DenseNet) that achieved
the greatest classification performance in 2017 on massive datasets such as ImageNet and
CIFAR-10. ResNets acquire duplicate feature maps and have many parameters, making
training challenging. Instead, DenseNet contains very thin layers and learns a small number
of feature maps, where each layer feeds information to adjacent layers. Figure 2 illustrates
the connecting mechanism of multiple convolutional layers in a dense block of DenseNet.
These feed-forward connections raise the total number of layers from L to L (L+1)/2. As
a result, the network’s training becomes more efficient, overfitting is reduced, and the
model’s performance improves. DenseNet-161 consists of four dense blocks with (6, 12,
36, 24) sub-blocks, respectively. Each sub-block consists of two convolution layers, which
leads to a total of 156 layers (in dense block) plus five convolution layers with a growth
rate of k = 48, where k is referred to as feature maps. Figure 3 depicts a block diagram
of DenseNet-161. The transition layer plays a role in model compression. If the number
of channels of the output feature map from the dense block module is m, we allow the
following transition layer to construct [θm] output feature maps, where 0 < θ≤ 1 is referred
to as the compression factor. When θ = 1, the number of feature mappings across transition
layers remained constant. The model is suitable for embedded devices because of its thick
connectivity and compressibility.
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Using DenseNet-161 as a pretrained model, we transferred the knowledge (weights
value) of the fundamental structures learned in the first and middle layers to the proposed
model. The essential parameters, that pretrained models have learned to classify various
objects in the ImageNet dataset, are used to classify images of humans carrying baggage.
Therefore, transfer learning accelerates the training process and the development of new
CNN models.

Figure 1 explains applying DenseNet-161 as the final stage in obtaining the binary and
multiclass classification results. Still, the last “fully connected” layer is modified according
to our proposed model from 1000 classes to 2 classes for binary classification and from
1000 types to 6 classes for multi-classification. DenseNet-161 is applied and trained using
the fit-one-cycle method.

3.2.2. The Fit-One-Cycle Method

Tuning hyper-parameters such as learning rate (LR) and momentum is crucial. There
is a problem with a high learning rate; the optimizer might increase training loss rather
than decrease it. Having a low learning rate not only slows down the training process but
can also lead to training errors that are difficult to correct. To find the correct LR, you must
conduct numerous trials and be patient.

Smith [19] established a new way of setting the learning rate called the fit-one-cycle
method, which is used in this paper. The training starts with a specified learning rate and
momentum. During the first half of the training, the learning rate is increased up to a
fixed maximum value while the momentum is decreased. Near the end of the training, the
learning rate is reduced while the momentum is increased. This strategy yields more stable
results and requires fewer epochs to train our model to completion

Smith’s article “Super-Convergence” [40] demonstrated the improvement in validation
accuracy when comparing the standard learning rate policy and the one-cycle policy. In
Smith’s article, we saw that the training accuracy changes quickly as the learning rate (LR)



Big Data Cogn. Comput. 2022, 6, 108 7 of 19

goes up, oscillates when the learning rate is very high, and then jumps to a very high level
of accuracy.

3.3. Evaluation Criteria

The evaluation criteria are used to evaluate the classification model’s performance,
including accuracy, macro-F1, micro-F1, precision, recall/sensitivity, and specificity. As
shown in Equation (1), accuracy takes the sum of true positive and negative elements as the
numerator and the sum of all the confusion matrix entries as the denominator. Equation
(2) defines precision by dividing the total number of true positives across all classes by
the total number of true positives and false positives across all classes. In Equation (3),
recall/sensitivity is calculated by dividing the total number of true positives across all
classes by the total number of true positives and false negatives across all classes. Equation
(4) defines the F1-score as the harmonic average between precision and recall. Macro-F1
is calculated by averaging the precision and recall of each type. Micro-F1 is the sum of
all the classes’ true positives, false positives, and negatives. In Equation (5), specificity is
calculated by dividing the total number of true negatives by the sum of true negatives and
false negatives.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(1)

Precision =
TP

TP + FP
(2)

Recall/Sensitivity =
TP

TP + FN
(3)

F1 − Score =
2 × (Precision × Recall)

Precision + Recall
(4)

Specificity =
TN

TN + FP
(5)

4. Results and Discussion

In this section, we first describe the collection of data used. Next, the experimental
setting of our proposed model is presented. Then, the various results of our experiments
are mentioned for binary and multi-class classification. Finally, a comparison is made
between our model’s outcomes and the previous literature’s consequences.

4.1. Dataset Description

The datasets used in our research are the PETA [35], INRIA [26], ILIDS [27], and
MSMT17 [28] datasets. We used a part of each dataset that included people with and
without baggage, taken from different camera orientations with direct information regard-
ing one’s position in each dataset. Then, these images are divided into two classes for
binary classification and six for multi-classification. Therefore, the datasets were manually
re-annotated to suit our experiments. Figure 4 shows samples from each dataset used in
the experiment.
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4.1.1. PETA Dataset

The PETA [35] dataset consists of 19,000 images ranging in resolution from 17-by-39 to
169-by-365 pixels. These images represent 8705 individuals. We used 6000 images: 1000
images in each class, as shown in Table 1.

Table 1. PETA dataset distribution.

Viewing Direction Carrying Baggage Without Baggage

Front view 1000 1000
Back view 1000 1000
Side view 1000 1000

Total 3000 3000
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4.1.2. INRIA Dataset

The INRIA [26] person dataset is a collection of images of individuals used for pedes-
trian detection research and consists of 902 person detections. We used 112 images: 67 of
individuals carrying baggage and 45 not carrying baggage, as shown in Table 2.

Table 2. INRA dataset distribution.

Viewing Direction Carrying Baggage Without Baggage

Front view 26 19
Back view 22 15
Side view 19 11

Total 67 45

4.1.3. ILIDS Dataset

The ILIDS [27] dataset is a human re-identification dataset featuring 300 different
pedestrians observed from two unique camera perspectives in public open spaces. It
comprises 600 images of 300 unique individuals and a set of image sequences from two
camera views for each person. There are 43,060 images overall in the dataset. We used
4688 images, as shown in Table 3.

Table 3. ILIDS dataset distribution.

Viewing Direction Carrying Baggage Without Baggage

Front view 809 773
Back view 788 766
Side view 781 771

Total 2378 2310

4.1.4. MSMT17 Dataset

MSMT17 [28] is a multi-scene and multi-time person re-identification dataset. The
dataset includes 180 hours of video collected by 12 outdoor and three indoor cameras
during 12 intervals. It contains 126,441 image sequences of 4101 different individuals. We
used 6600 images: 3451 images for carrying baggage and 3149 not carrying baggage, as
shown in Table 4.

Table 4. MSMT17 dataset distribution.

Viewing Direction Carrying Baggage Without Baggage

Front view 1264 1046
Back view 1147 1101
Side view 1040 1002

Total 3451 3149

4.2. Experimental Settings

The Fastai framework [41] was used for model construction. It is a cutting-edge
PyTorch-based framework primarily used for object identification, image segmentation,
and image classification. It provides faster computations than competitors and includes
data cleansing widgets, offering a highly user-friendly workflow and simplifying the
debugging process. In addition, we performed our experiments using Google Colab [42].

4.3. Classification Results

Four datasets are used to test the proposed model and compare our results with the
literature. Some experiments used the same number of sample images used in the literature
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for comparison. The other experiments used 1000 sample images per class in binary or
multiclass classification, which is the recommended rule of thumb [43].

In all experiments, the datasets are randomly divided into a 65% training set, a 15%
validation set, and a 20% testing set. For binary classification, the model is trained for
40 epochs, and for multi-classification, it is trained for 60 epochs with a 32-batch size
for both.

4.3.1. Binary Classification

The suggested approach for binary classification was initially analyzed to catego-
rize human-containing image regions as either with or without baggage. The samples
that contain carry baggage are positive, while those that do not have carry baggage are
negative samples.

PETA Dataset Results

Using our model, we used 1000 positive and 1000 negative sample images to categorize
areas. All the classification results are listed in Table 5, and the obtained accuracy is 98.5%.
Figure 5 shows the loss curve and the confusion matrix of the experiment.

Table 5. The evaluation results on the PETA dataset.

Network Accuracy Precision Recall/Sensitivity Specificity

Dense-Net 161 98.50% 97.99% 98.98% 98.03%
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INRIA and MSMT17 Datasets Results

This experiment used part of the INRIA and MSMT17 datasets. We conducted two
experiments with different sample images. The first experiment uses 500 positive and 500
negative sample images. All the classification results are listed in Table 6, and the obtained
accuracy is 96%. Figure 6 shows the loss curve and the confusion matrix of the experiment.

Table 6. The evaluation results of the first experiment on INRIA and MSMT17 datasets.

Network Accuracy Precision Recall/Sensitivity Specificity

Dense-Net 161 96.00% 95.83% 95.83% 96.15%
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In the second experiment, we used 1000 positive sample images and 1000 negative
sample images as the rule of thumb. All the classification results are given in Table 7, and
the obtained accuracy is 97.25%. The loss curve and the confusion matrix are shown in
Figure 7.

Table 7. The evaluation results of the second experiment on INRIA and MSMT17 datasets.

Network Accuracy Precision Recall/Sensitivity Specificity

Dense-Net 161 97.25% 98.99% 95.63% 98.97%
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INRIA, ILIDS, and MSMT17 Datasets Results

This experiment used part of the INRIA, ILIDS, and MSMT17 datasets. We conducted
two experiments with different sample images. The first experiment uses 500 positive
and 500 negative sample images. All the classification results are listed in Table 8, and
the obtained accuracy is 97%. Figure 8 shows the loss curve and the confusion matrix of
the experiment.

Table 8. The evaluation results of the first experiment on INRIA, ILIDS, and MSMT17 datasets.

Network Accuracy Precision Recall/Sensitivity Specificity

Dense-Net 161 97.00% 98.96% 95.00% 99.00%
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In the second experiment, we used 1000 positive sample images and 1000 negative
sample images as the rule of thumb. All the classification results are given in Table 9, and
the obtained accuracy is 98.75%. The loss curve and the confusion matrix are shown in
Figure 9.

Table 9. The evaluation results of the second experiment on INRIA, ILIDS, and MSMT17 datasets.

Network Accuracy Precision Recall/Sensitivity Specificity

Dense-Net 161 98.75% 98.99% 98.50% 99.00%

Big Data Cogn. Comput. 2022, 6, x FOR PEER REVIEW 12 of 19 
 

Network Accuracy Precision Recall/Sensitiv-
ity 

Specificity 

Dense-Net 161 97.00% 98.96% 95.00% 99.00% 

 

 
(a) (b) 

Figure 8. The loss curve and confusion matrix of the first experiment on INRIA, ILIDS, and MSMT17 
datasets: (a) The loss curve, (b) the confusion matrix. 

In the second experiment, we used 1000 positive sample images and 1000 negative 
sample images as the rule of thumb. All the classification results are given in Table 9, and 
the obtained accuracy is 98.75%. The loss curve and the confusion matrix are shown in 
Figure 9. 

Table 9. The evaluation results of the second experiment on INRIA, ILIDS, and MSMT17 datasets. 

Network Accuracy Precision Recall/Sensitiv-
ity 

Specificity 

Dense-Net 161 98.75% 98.99% 98.50% 99.00% 

 

 
(a) (b) 

Figure 9. The loss curve and confusion matrix of the second experiment on INRIA, ILIDS, and 
MSMT17 datasets: (a) The loss curve, (b) the confusion matrix. 

  

Figure 9. The loss curve and confusion matrix of the second experiment on INRIA, ILIDS, and
MSMT17 datasets: (a) The loss curve, (b) the confusion matrix.

4.3.2. Multi Classification

The suggested approach for multi-classification was analyzed to categorize human-
containing image regions based on the human position direction attribute (for example,
front, back, and side views) as either with or without baggage. The samples containing
a carrying bag with any direction attribute are positive, while those that do not have a
carrying bag with any direction attribute are negative.

PETA Dataset Results

Using our model based on the human position direction attribute, we used part of the
PETA dataset to categorize areas. In the first experiment, we chose sample images of 2673
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(same as in [34]), distributed as shown in Table 10. All the classification results are listed in
Table 11, and the obtained accuracy is 97%. Table 12 shows precision, recall, and F1 scores,
whereas Figure 10 shows the experiment’s loss curve and confusion matrix.

Table 10. PETA dataset distribution for multi-classification for the first experiment.

Viewing Direction Carrying Baggage Without Baggage

Front view 330 562
Back view 318 605
Side view 325 533

Total 973 1700

Table 11. The evaluation results of the first experiment on the PETA dataset.

Network Accuracy Macro F1 Micro F1

Dense-Net 161 97% 96.29% 97%

Table 12. Precision, recall, and F1-score for the first experiment on the PETA dataset.

Precision Recall F1-Score

FV-Pos 1.00 0.99 1.00
FV-Neg 0.88 0.96 0.92
BV-Pos 0.98 0.94 0.96
BV-Neg 0.90 0.92 0.91
SV-Pos 0.99 1.00 1.00
SV-Neg 1.00 1.00 1.00

Average 0.96 0.97 0.97
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In the second experiment, we used 6000 images (1000 per class) as the rule of thumb.
All the classification results are listed in Table 13, and the obtained accuracy is 98.25%.
Table 14 shows precision, recall, and F1 scores. Figure 11 shows the loss curve and the
confusion matrix of the experiment.
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Table 13. The evaluation results of the second experiment on the PETA dataset.

Network Accuracy Macro F1 Micro F1

Dense-Net 161 98.25% 98.28% 98.25%

Table 14. Precision, recall, and F1-score for the second experiment on the PETA dataset.

Precision Recall F1-Score

FV-Pos 1.00 1.00 1.00
FV-Neg 0.99 0.94 0.97
BV-Pos 0.98 1.00 0.99
BV-Neg 0.98 0.99 0.98
SV-Pos 0.98 1.00 0.99
SV-Neg 0.97 0.97 0.97

Average 0.983 0.983 0.983
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INRIA and MSMT17 Datasets Results

We used a part of the INRIA and MSMT17 datasets. We used 6000 images, 1000 for
each class. All the classification results are listed in Table 15, and the obtained accuracy is
96.67%. Table 16 shows precision, recall, and F1 scores. Figure 12 shows the loss curve and
the confusion matrix of the experiment.

Table 15. The evaluation results on INRIA and MSMT17 datasets.

Network Accuracy Macro F1 Micro F1

Dense-Net 161 96.67% 96.69% 96.67%

Table 16. Precision, recall, and F1-score for INRIA and MSMT17 datasets.

Precision Recall F1-Score

FV-Pos 0.98 0.96 0.97
FV-Neg 0.94 0.96 0.95
BV-Pos 0.99 0.95 0.97
BV-Neg 0.96 0.98 0.97
SV-Pos 0.96 0.97 0.97
SV-Neg 0.97 0.97 0.97

Average 0.967 0.965 0.967
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INRIA, ILIDS, and MSMT17 Datasets Results

We used a part of the INRIA, ILIDS, and MSMT17 datasets. We used 6000 images,
1000 for each class. All the classification results are listed in Table 17, and the obtained
accuracy is 98.33%. Table 18 shows precision, recall, and F1 scores. Figure 13 shows the
loss curve and the confusion matrix of the experiment.

Table 17. The evaluation results on INRIA, ILIDS, and MSMT17 datasets.

Network Accuracy Macro F1 Micro F1

Dense-Net 161 98.33% 98.26% 98.33%

Table 18. Precision, recall, and F1-score for INRIA, ILIDS, and MSMT17 datasets.

Precision Recall F1-Score

FV-Pos 0.97 1.00 0.99
FV-Neg 0.97 0.98 0.98
BV-Pos 1.00 0.95 0.98
BV-Neg 0.99 0.99 0.99
SV-Pos 0.98 0.99 0.99
SV-Neg 0.99 0.98 0.99

Average 0.983 0.982 0.987
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4.4. A Comparison between the Proposed Model and the Existing Models

This section compares the results of our model based on DenseNet-161 with the
literature on different datasets. Accuracy, precision, recall/sensitivity, and specificity are
terms of comparison for binary classification. In contrast, accuracy and the average of
these metrics (precision, recall, F1-score) are terms of difference for multi-classification.
The comparison of binary classification is shown in Table 19, and the comparison of multi-
classification is shown in Table 20. The evaluation of the results of our model indicates
that it achieved the best results by applying a method in training called fit-one-cycle with
a small number of batches and the fewest number of epochs. This helped us reduce the
training time and achieve better accuracy than the alternative research techniques described
in our research paper.

Table 19. Comparison of binary classification.

Dataset Number of Images Method Accuracy Precision Recall/Sensitivity Specificity

INRIA and
MSMT17

500 per class Our Method
DenseNet-161

96% * 0.9583 0.9583 * 0.9615 *

1000 image per class 97.25% 0.9899 0.9563 0.9897

500 per class
Local

Tridirectional
Pattern [29]

95% 0.9889 0.9511 0.8333

INRIA, ILIDS,
and MSMT17

500 per class Our Method
DenseNet-161

97% * 0.9896 * 0.9500 0.9900 *

1000 image per class 98.75% 0.9899 0.9850 0.9900

500 per class Joint Scale LBP
[25] 95.4% 0.9889 0.9511 0.8333

PETA 1000 images per class Our Method
DenseNet-161 98.50% 0.9799 0.9898 0.9803

Note: The numbers with “*” in the table are the best results by comparing the same number of images with other
methods in the literature.

Table 20. Comparison for multi-classification.

Dataset Number of
Images Method Accuracy Av. Precision Av. Recall Av. F1-Score

PETA

2673 images Our Method
DenseNet-161

97% 0.96 0.97 0.97

1000 per class 98% 0.98 0.98 0.98

2673 images CNNR + DA + TL [34] − 0.93 0.90 0.91

2673 images CNNR [34] − 0.94 0.64 0.76

2673 images CNN + BA + TL [34] − 0.95 0.68 0.79

2673 images CNN + DA + RF [34] − 0.90 0.69 0.78

2673 images CNN + BA + SVM [34] − 0.86 0.50 0.63

2673 images CNN [34] − 0.93 0.55 0.70

INRIA and
MSMT17

1000 per class Our Method
DenseNet-161

96.67% 0.97 0.97 0.97

INRIA, ILIDS,
and MSMT17 98.33% 0.98 0.98 0.99

4.4.1. Comparison of Binary Classifications

We have compared our model based on DenseNet-161 against two models from the
literature [25,29] for classifying humans carrying baggage. We recorded the experimental
results in Table 19. The first row of Table 19 shows the results of our model on INRIA and
MSMT17 datasets, in addition to the results of recent work by Shahbano et al. [29] using
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the local tridirectional pattern method. These results show that our model achieved better
accuracy by 1% using the same number of images and by 2.25% using 1000 images per class.
In the second row of Table 19, we show the results of our model on INRIA, ILIDS, and
MSMT17 datasets, and the results of Shahbano et al. [25] using the joint scale LBP method.
These results show that our model achieved better accuracy by 1.6% using almost the same
number of images and by 3.1% using 1000 images per class. To ensure the effectiveness of
our model on different datasets with different variations in illumination and resolution, the
third row of Table 19 shows the results of our model on the PETA dataset. These results
indicate that our model achieved an accuracy rate of 98.5% using 1000 images per class.

By comparing the same number of images, our model is better on almost all measures
(asterisk results). However, the results for 1000 images are the best of all models.

4.4.2. Comparison of Multi Classifications

We have compared our model based on Densenet-161 against the six methods of CNN
experimented with by Wahyono et al. [34] for classifying humans carrying baggage. We
recorded the experimental results in Table 20. The first row of Table 20 shows the results of
our model on the PETA dataset, in addition to the results of [34], using various methods.
Among the six methods, "CNNR + DA + TL" has the highest F1 score, which [34] considers
the best method. Our model achieved a better average for these metrics (precision, recall,
and F1-score) than the best method by 3% for precision, 7% for recall, and 6% for F1-score
using the same number of images. In addition, our model achieved a better average than
the best method by 5% for precision, 8% for recall, and 7% for F1 score by using 1000 images
per class, and to ensure the effectiveness of our model on different datasets by using 1000
images per class. The second row of Table 20 shows the results of our model on the INRIA
and MSMT17 datasets. It achieves 0.97 for the average F1 score. Furthermore, the third row
shows the results for the INRIA, ILIDS, and MSMT17 datasets, as it reaches 0.99 for the
average F1 score.

Based on these results, we conclude that our model is reliable over different datasets,
including various challenges.

5. Conclusions and Future Work

This research proposed a model for classifying people carrying baggage. We em-
ployed pretrained DenseNet-161 to perform a reliable model for binary classification and
multi-classification. In addition, this proposed model utilizes a fit-one-cycle to reduce the
number of cycles required to train the CNN and enhance the proposed model’s accuracy.
Additionally, to assess the multi-classification performance of the proposed model, we
re-annotated the datasets used with direct information regarding one’s position. The ex-
periments were performed on the PETA, INRA, ILIDS, and MSMT17 datasets, and the
results were evaluated using several performance metrics. After extensive experiments on
different datasets, the proposed model for binary classification showed a classification that
reached an accuracy rate of 98.75%. Additionally, multi-classification shows a classification
that reached an accuracy rate of 98.33%. We observed that binary classification gives better
accuracy than multiple classifications, which is normal due to the increased number of
classes. However, multi-classification techniques can handle baggage detection when
baggage is heavily obscured, and objects cannot be visually distinguished. It can also be
used as a starting point to determine the type of bag a person is carrying based on viewing
direction attributes.
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