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Abstract: Coronavirus disease 2019 pandemic spreads rapidly and requires an acceleration in the
process of drug discovery. Drug repurposing can help accelerate the drug discovery process by
identifying new efficacy for approved drugs, and it is considered an efficient and economical ap-
proach. Research in drug repurposing can be done by observing the interactions of drug compounds
with protein related to a disease (DTI), then predicting the new drug-target interactions. This study
conducted multilabel DTI prediction using the stack autoencoder-deep neural network (SAE-DNN)
algorithm. Compound features were extracted using PubChem fingerprint, daylight fingerprint,
MACCS fingerprint, and circular fingerprint. The results showed that the SAE-DNN model was able
to predict DTI in COVID-19 cases with good performance. The SAE-DNN model with a circular
fingerprint dataset produced the best average metrics with an accuracy of 0.831, recall of 0.918,
precision of 0.888, and F-measure of 0.89. Herbal compounds prediction results using the SAE-DNN
model with the circular, daylight, and PubChem fingerprint dataset resulted in 92, 65, and 79 herbal
compounds contained in herbal plants in Indonesia respectively.

Keywords: coronavirus disease 2019; drug repurposing; drug-target interaction; health; multilabel
classification; stack autoencoder-deep neural network

1. Introduction

Coronavirus infectious disease 2019 (COVID-19) is an infectious disease that causes
its victim’s fever, cough, respiratory problems, pneumonia, and even death [1]. COVID-19
is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [2]. On 11
March 2020, WHO declared COVID-19 a pandemic that has affected the world’s socio-
economic conditions globally. In addition, the highly contagious nature of the SARS-
CoV-2 virus also worsened the impact of COVID-19 [3]. As of 9 October 2021, COVID-19
cases reached 237,995,075 cases globally, with the death toll reaching 4,857,370 people
(https://www.worldometers.info/coronavirus accessed on 9 October 2021).

The COVID-19 pandemic has spread rapidly and requires an acceleration in the
process of drug discovery to fight this disease. Drug repurposing is one of the processes
that can help to accelerate the drug discovery process to fight COVID-19 [4]. In drug
repurposing, the drug discovery process is conducted by identifying new efficacy for
approved drugs, and it is considered an efficient and economical approach [5]. Research
in drug repurposing can be done by observing the interactions of drug compounds with
protein related to a disease (drug–target interaction or DTI), then predicting the new
drug–target interactions [3].

The search for potential drugs through drug repurposing should consider the ease
of access to medicinal ingredients to be more accessible by the public, especially for the
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people of Indonesia. In this case, exploring herbal compounds can be a good choice in
searching for potential drug candidates [6]. Indonesia is one of the countries with the
highest number of herbal plant species globally [7]. Herbal compounds provide better
efficacy, fewer side effects, and lower prices than conventional compounds [8]. Exploration
of herbal compounds candidates can be done by predicting DTI between herbal compounds
and proteins of diseases as well as in the drug repurposing process [3].

One of the newest approaches in predicting DTI in drug repurposing is the feature-
based chemogenomics approach. The feature-based chemogenomics approach utilizes
feature information of drug compounds and diseases proteins represented in a set of de-
scriptors to predict compound–protein interactions [9]. Research [10] used graph approach
to create DTI features by combining several information such as drug–drug similarity,
drug–disease association, protein–disease association, and protein–protein interaction to
construct a heterogenous graph and captures the topological properties of each graph node.
However, this method cannot predict the interaction of new drugs or targets. Another
method that can be used to create DTI features is using protein descriptors for protein fea-
tures and molecular fingerprint for compound features. Protein descriptors created protein
features by analyzing its amino acid sequences [11] while molecular fingerprint simplifies
chemical information in compounds by analyzing the molecular structure into a graph
and representing it through binary vectors [12]. Research [13] proposed a method called
DeepConv-DTI that applies convolutional neural network (CNN) in predicting binary
classification DTI using amino acid composition (AAC) as protein features and circular fin-
gerprints as compound features by analyzing compound’s molecule as a graph. Choosing
the right type of fingerprint to represent the features of the compound is important in the
process of searching for potential drugs [14].

Research related to DTI and the prediction of herbal compounds in COVID-19 cases
has previously been carried out by [3,6]. Research [6] conducted binary classification DTI
in COVID-19 case using several machine learning models such as SVM, MLP, and Random
Forest. The feature extraction process is done in the dataset using PubChem fingerprint for
compound features and dipeptide composition (DC) for protein features. This research’s
results indicated that using SVM, RF, and MLP models gives good results in the prediction
of binary classification DTI. The four models were used to predict herbal compounds and
resulted in 63 herbal compounds candidate that target 3CLPro, PLPro, and RdRp protein in
COVID-19 case. Research [3] conducted binary classification DTI in COVID-19 case using
Stacked AutoEncoder Deep Neural Network (SAE-DNN) model with chemogenomics
feature-based approach. The feature extraction process is done using PubChem fingerprint
for compound data and dipeptide composition (DC), autocorrelation descriptors (ACD),
and position-specific scoring matrix (PSSM) for protein data. This research identified that
fingerprint for compound features, and DC for protein features gave the best results for
predicting DTI with an accuracy of 94%, AUROC of 0.97, and F-measure of 0.82. Herbal
compounds prediction results showed that there were 929 interactions between herbal
compounds and COVID-19 target proteins.

There are several drawbacks to using binary classification in predicting DTI. First,
this method simplifies the DTI problem by modeling high-dimensional compound-protein
and their complex associations into a binary classification model without considering the
relationship between compounds or proteins [15]. Second, binary classification models
tend to have class imbalance problems where positive interaction data is much less than
negative interaction data [16]. Therefore, a balance is needed between positive and negative
interaction data to produce a good performance. The process of balancing this data is
done by taking a random sample of negative interaction data. This process can result in
false-negative rates and bias in the model results [15]. In addition, there is a paradigm in
DTI where a compound can interact with more than one target protein, and one target
protein can interact with more than one compound [17]. Binary classification models
tend not to pay attention to possible correlations between labels which may have vital
information to increase the accuracy of DTI predictions [18].
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Multilabel classification to predict DTI can be used to overcome binary classification
problems. In multilabel classification, the training process is conducted to produce a model
that maps input vectors to one or more classes. In the multilabel classification for DTI,
m compounds are samples, and n proteins are target classes. The sample is characterized
as an input vector which is then used to predict the target (protein) of the compound with a
multilabel learning algorithm [17]. The use of protein as a class label can reduce the dimen-
sions of the input because it no longer requires feature extraction of the protein. Prediction
of the target is only determined based on the pattern of the existing compound structure.
In addition, from a machine learning perspective, apart from being able to predict several
interactions at once, the multilabel classification model can also identify possible correla-
tions between class labels (proteins) to increase the performance of DTI predictions [18].
Research [17] shows that multilabel classification for DTI problems can outperform binary
classification with better computational speed, especially for large datasets.

Several studies related to the multilabel classification of DTI have been conducted
before. Research [19] conducted a multilabel DTI search using a deep belief network (DBN)
model with a binary relevance data transformation approach on protease and kinase data
taken from the DUD-E site. Feature extraction on compounds was carried out using the
PubChem fingerprint and Klekota-Roth fingerprint descriptors. As a result, the DBN
method can be used as a model to predict multi-target DTI with an accuracy range of
97–99% and an AUC range of 83–99%. Research [20] predicted multi-target DTI using
the ensemble tree model on the golden standard dataset from research [21]. First, the
data are reconstructed using the Neighborhood Regularized Logistic Matrix Factorization
(NRLMF) method to overcome the imbalanced data problem. The ensemble tree model
with data reconstruction using the proposed NRLMF produces good predictive ability in
multi-target DTI.

Research [3,6] that use a binary classification approach for DTI prediction in COVID-19
case simplified DTI problems and could bias the model. Therefore, it is necessary to
try using a multilabel classification approach to predict DTI in COVID-19. This study
conducted a multilabel classification approach to predict DTI using the SAE-DNN algo-
rithm. SAE is used as a pre-training model for DNN by unsupervised learning. DNN
uses an algorithm adaptation approach in solving multilabel classification problems
and has good performance in multilabel classification [22]. The feature extraction pro-
cess was conducted on the compound data using four compound fingerprints: Pub-
Chem fingerprint, daylight fingerprint, MACCS fingerprint, and circular fingerprint. The
trained SAE-DNN model is then used to predict herbal compounds. Then a search for
herbal plants containing predicted herbal compounds was made on the KNapSAcK site
(http://www.knapsackfamily.com/KNApSAcK/ accessed on 2 November 2021) [23].

2. Materials and Methods
2.1. Dataset

This study used three datasets: protein dataset, drug-target interaction dataset, and
herbal compound dataset. Protein dataset obtained from GeneCards [24], which yielded
1567 genes related to COVID-19. The data are filtered by selecting genes categorized as
protein-coding and producing a total of 1498 genes (proteins). Protein data can be seen
in Supplementary Spreadsheet 1. The drug–target interaction dataset obtained from the
SuperTarget [25] and DrugBank [26] site yielded 58,446 interactions. All of the drug–target
interaction data can be seen in Supplementary Spreadsheet 2. Herbal compound data were
obtained from HerbalDB [27], which consist of 403 herbal compounds. Data acquisition is
made on 12–13 July 2021. Feature extraction on the compound was carried out with four
fingerprints with two different types: substructural fingerprint (PubChem fingerprint [28]
and MACCS fingerprint (or referred as MDL keys [29]) and topological fingerprint (daylight
fingerprint [30] and circular fingerprint (ECFPs) [31]). In chemoinformatics, a fingerprint is
one way to represent the chemical structure [12].

http://www.knapsackfamily.com/KNApSAcK/


Big Data Cogn. Comput. 2021, 5, 75 4 of 19

2.2. Workflow

DTI multilabel prediction consists of three steps:

1. Data preprocessing step, which includes feature extraction on compounds and class
data transformation.

2. Multilabel modeling step using SAE-DNN model. Hyperparameter tuning is also con-
ducted to find the optimal parameter of SAE-DNN for all feature extraction datasets.

3. Post-processing step including model evaluation and herbal compounds prediction.

2.3. Data Preprocessing

The first stage of data preprocessing is the feature extraction on the compound. Feature
extraction aims to form a representation of compounds’ chemical structure. One of the most
commonly used feature extraction processes to represent compounds’ chemical structure
is molecular fingerprints. Molecular fingerprinting simplifies chemical information in
compounds by analyzing the molecular structure into a graph and representing it through
binary vectors [12].

The feature extraction process used four fingerprints with two different types,
substructure-based fingerprint (PubChem fingerprint [28] and MACCS (MDL) finger-
print [29]) and topological fingerprint (daylight fingerprint [30] and circular fingerprint
(ECFPs) [31]). In a substructure-based fingerprint, an array is formed to represent the
chemical substructure of a compound, with each substructure assigned to a specific loca-
tion in the array. For each substructure that occurs in the compound, the position of the
corresponding substructure in the fingerprint vector is 1; otherwise, the position of the
substructure is 0 [32]. Topology-based fingerprints are formed by analyzing the number of
molecular fragments that emerge from a specified path or radius of a molecule, then each
path or radius is encrypted with a hash. The bit value in topology-based fingerprint array
is 1 if there is a molecular fragment at a certain path length or radius; otherwise, it is 0 [33].

The illustration of the feature extraction process on compounds can be seen in Figure 1.
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Figure 1. (a) Illustration of the substructure-based fingerprint to represent the chemical structure of a compound. Bit
1 indicates that the substructures they represent are present in the molecule. In contrast, bit 0 indicates the substructure
is not present in the molecule (b) Illustration of the topological-based fingerprint to represent the chemical structure
of a compound. In this case, a linear path-based (daylight) fingerprint with a path length of 5. Every fragment found
from the starting point (circled) to a certain path length is hashed to the corresponding bit in the fingerprint. Circular
fingerprints follow a similar approach, but instead of using path length, it used the radius of the starting point to find the
molecule fragments.
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The feature extraction process is done using the following steps:

1. Identify each unique compound in the interaction data. There are 49,862 unique
compounds in the interaction data

2. Identify PubChem ID of each compound
3. Identify the SMILES (Simplified Molecular-Input Line-Entry System), which repre-

sents the chemical structure of each compound. SMILES data can be seen in Supple-
mentary Spreadsheet 3.

4. Form fingerprint of each compound according to the SMILES of each compound.
5. The fingerprint feature retrieval process produces a feature vector C (C = [c1, c2, c3, . . . ,

cn] with n = the number of substructures on the fingerprint), which will be used as
input to the DNN.

The compound feature extraction process produces 881 attributes for the PubChem
fingerprint, 1024 for the daylight fingerprint, 166 for the MACCS fingerprint, and 1024 for
the circular fingerprint.

The next step is transforming the class attributes from a single label to a multilabel
problem. The transformation is done by creating an array P (P = [p1, p2, p3, . . . , pm] with
m = many proteins). In each data row, the value of p in the P array is one of the compounds
in that row that interacts with the p protein and is 0 if the compound in the row does not or
is not known to have an interaction with the p protein.

It was transforming class data into a multilabel problem by first identifying the unique
protein in the interaction data. There are 467 unique proteins in the interaction data.
The formation of multilabel data resulted in 49,862 rows of data representing unique
compounds and 27 unique classes representing the set of proteins that interacted with
these compounds. The data are dominated by compounds that have only one protein that
interacts with the compound. Details of the number of compounds that interact with at
least one protein can be seen in Figure 2.
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The data are then separated into two forms: data table X, compound data containing
feature extraction results as predictor variables, and data table Y, a data class in the form of
multilabel. An example of all feature extraction data and multilabel class data can be seen
in Figure 3.

2.4. SAE-DNN Model

In the SAE-DNN model, SAE is used to pre-trained DNN model to initialize initial
weight for DNN. DNN used an algorithm adaptation approach to predict multilabel DTI.
Initial weight initialization using SAE training results on DNN modeling is carried out to
produce an optimal model compared to a model with random weights [34]. SAE-DNN
architecture can be seen in Figure 4. The Pre-training DNN process using SAE can be seen
in Algorithm 1 [34].
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In SAE architecture, the input data (x) that enters the encoder layer will be converted
to a new data representation form h which is formulated with Equation (1).

h = ∅(wex + be) (1)

where ∅ is activation function, we is weight, and be is bias at encoder layer. Then the
decoder layer will return the new data representation from the bottleneck layer to the initial
data form (x′) with Equation (2).

x′ = ∅(wdh + bd) (2)

where ∅ is activation function, wd is weight, and bd is bias at decoder layer.
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The AE model is trained to reduce errors in data reconstruction between x′ and h. The
error metric used is the mean squared error (MSE). In the SAE training process, the new
data representation at the current AE bottleneck is used as input for the next AE.

In DNN architecture, the learning process starts from the feed forward process where
the input data moves through the existing layers to the output layer. The hidden layer maps
the input from the layer to the output to be sent to the next layer according to Equation (3).

yj = f
(
xj
)
; xj =

N

∑
i=1

yiwi,j + bj (3)

where i is the current layer, j is the next layer, y is output from the layer, f (xj) is activation
function, x is input for layer, N is the number of nodes in the layer, wi,j is a weight that
connects i-th layer to j-th layer, and b is bias from the layer.

The backpropagation process is then carried out to update the weight and bias values
in the DNN architecture to reduce the error value in training. The weight update is carried
out using stochastic gradient descent, which aims to optimize the objective function and
the learning process of DNN. Equation (4) shows the formulation of the error value, and
Equation (5) shows the formulation of the stochastic gradient. Finally, the model training
process is repeated until the maximum iteration or results converge to a value.

ej = tj(n)− yj(n) (4)

∆w = α∆w(t− 1)− e f ′(C) (5)

where α is the learning rate, ∆w is the change in the weight value, t is the batch size of the
data, e is the error, and f ′(C) is the cost derivative function used during the backpropagation
process to calculate the error gradient.

The pre-training DNN process using SAE can be seen in Algorithm 1 [34].

Algorithm 1 pre-training DNN using Stacked AutoEncoder

INPUT: Feature vector C
OUTPUT: weight (we) and bias (be) for DNN hidden layers
1. Initialize Max Iteration, N as number of AutoEncoder (AE)
repeat

2. Train initial AE using C as input
for i = 1: N do:

3. Save weight (we) and bias (be) in AE encoder layer
4. Delete AE decoder layer
5. Retrieve data representation at AE bottleneck layer
6. Train next AE using retrieved data representation

end
until Max Iteration
7. Save weight (we) and bias (be) on all AE encoder layer

The number of autoencoder layers in SAE is adjusted to the number of hidden layers
in DNN. The weights and biases in the DNN hidden layer use the weights and biases from
the SAE training, while the weights and biases in the output layer are initialized randomly.
After getting the initial weights and biases for the DNN, the next step is to build the DNN
model. The DNN adaptation process in solving multilabel classification problems can be
done by adjusting the number of nodes in the output layer according to the number of
classes (proteins) in the data. Each node in the output layer uses a binary cross-entropy
loss function formulated by Equation (6).

Hp(P(y)) = − 1
N

N

∑
i=1

yi log(p(yi) + (1− yi) log(1− p(yi)) (6)
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DNN architecture applies batch normalization and dropout processes to improve
model performance [3]. Batch normalization normalizes the input from each layer by
making all inputs have a mean close to 0 and a standard deviation close to 1 to speed
up the DNN training process [35]. The dropout process can reduce the complexity of the
DNN architecture and prevent overfitting by temporarily eliminating several nodes in
the layer randomly during the model training process [36]. After the batch normalization
process, the dropout process is carried out to produce a more stable training process, faster
convergence, and better generalization [37].

Each node in the output layer will produce a class probability value from the input. If
the probability value of the class is above 0.5, then the input class is 1, otherwise, it is 0. The
output of the output layer is an array P̂ (P̂ = [ p̂1, p̂2, p̂3, . . . ., p̂m]) which is the prediction
result of each node in the output layer. SAE-DNN modeling uses the “TensorFlow-GPU”
library version 2.3 and uses GPU to speed up the training process.

The hyperparameter tuning process is carried out using Bayesian Optimization (BO).
BO builds a probabilistic model that selects the best hyperparameter from several possible
parameters and includes the best hyperparameter to search the other best hyperparameters
in the next iteration to speed up the search process for all the best hyperparameters [38].
The implementation of BO is carried out using the “Keras-tuner” library [39]. The hyperpa-
rameter search space can be seen in Table 1.

Table 1. The hyperparameter search space.

Hyperparameter Values

HL0 Node 100–2000
HLi Node 0.5 × (HL0)–0.75 × (HL0)

Hidden layer 1–6
Optimizer Adam, adagrad

Learning rate 0.01–0.1
Dropout rate 0.2–0.7

2.5. Postprocess Step

Model evaluation is carried out using iterative stratification, a modification of k-fold
cross validation that aims to balance the number of combinations of labels from multilabel
data in each fold [40,41] with a total fold of k = 5. The evaluation metrics used are accuracy,
recall, precision, and F-measure metrics. The accuracy value measures how well the test
data predict. Precision measures the percentage of positive predictions against a positive
class. Recall measures the accuracy of the positive prediction of the model. F-measure
measures the performance of the minority class [3].

Prediction of herbal compounds is made by predicting the set of proteins (classes)
that interact with the data of herbal compounds using the SAE-DNN model with optimal
hyperparameters. A set of proteins is considered to interact with herbal compounds if the
probability value of the prediction results is above 0.5. Prediction of herbal compounds was
carried out using two models, the SAE-DNN model trained with the PubChem fingerprint
feature and the best SAE-DNN model from the results of a comparison of four feature
extractions. Then a search for herbal plants containing predicted herbal compounds was
made on the KNapSAcK site (http://www.knapsackfamily.com/KNApSAcK/ accessed
on 2 November 2021).

3. Results

First, we present the comparison between SAE-DNN and DNN model without pre-
training (DNN only) for all feature extraction dataset using default parameter such as:
HL0 Node = 1024, HLi Node = 0.5, hidden layer = 3, Optimizer = Adam, activation
function = ReLU, learning rate = 0.01, dropout rate = 0.5. Second, we present the perfor-
mance comparison for all the feature extraction datasets using optimal hyperparameters.
Third, we show the herbal prediction result using the SAE-DNN model.

http://www.knapsackfamily.com/KNApSAcK/
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3.1. Performance Comparison between SAE-DNN and DNN Only

Model performance is presented with the mean and standard deviation of each metric.
Figure 5 shows the performance results of SAE-DNN and DNN without a pre-training
process for all feature extraction datasets.
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Figure 5. Performance results of SAE-DNN and DNN only for all feature extraction dataset.

SAE-DNN model produces slightly better performance than DNN without pre-
training with higher average values of accuracy, recall, precision, and F-measure than
the performance of DNN. This indicates that the SAE-DNN model is better able to pre-
dict multilabel classes (high accuracy), better at predicting the positive class of each label
(high recall), better at predicting positive each label (high precision), and able to recognize
minority classes well (high F-measure).

Even though SAE-DNN produces slightly better performance than DNN without
pre-training, the use of SAE for DNN pre-training has several advantages, including
preventing layer activation outputs from exploding or vanishing during the training of the
DL technique [42] and helping DNN achieve better convergence and better generalization
power [34]. One way to analyze the generalization performance of learning algorithms is
the stability of its prediction performance [43]. Figure 6 shows the standard deviation of
SAE-DNN and DNN without pre-training process metrics.
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Figure 6. Standard deviation for all metrics in SAE-DNN and DNN without pre-training results.

In general, SAE-DNN produced a lower standard deviation for all metrics compared
to DNN without pre-training. A lower standard deviation value indicates that the model’s
performance is more stable for each fold in the cross-validation process. These results
imply that the SAE-DNN model has better generalization power than the DNN without
pre-training.

3.2. SAE-DNN Performance Comparison for All the Feature Extraction Datasets

SAE-DNN model is trained using optimal hyperparameters from the hyperparameter
tuning process. Optimal hyperparameters can be seen in Table 2.

Table 2. Optimal hyperparameter for SAE-DNN model.

Hyperparameter
Model

PubChem Daylight MACCS Circular

HL0 Node 1500 2000 1024 2000
HLi Node 0.5 0.5 0.5 0.75
Hidden layer 2 2 3 2
Optimizer Adam Adam Adam Adam
Learning rate 0.01 0.01 0.01 0.01
Dropout rate 0.5 0.5 0.5 0.5

SAE-DNN comparison results for all the feature extraction datasets can be seen in
Table 3.
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Table 3. SAE-DNN comparison results for all the feature extraction datasets.

Metrics
Model

PubChem Daylight MACCS Circular

Accuracy 0.78747 ± 0.005 0.82814 ± 0.004 0.68272 ± 0.004 0.83160 ± 0.007
Recall 0.86178 ± 0.004 0.89306 ± 0.012 0.75462 ± 0.016 0.91836 ± 0.005
Precision 0.84641 ± 0.003 0.87854 ± 0.004 0.74407 ± 0.007 0.88848 ± 0.005
F-measure 0.84572 ± 0.003 0.87808 ± 0.006 0.74089 ± 0.010 0.89368 ± 0.005

Bold indicated the best results.

Topological fingerprints (daylight fingerprint and circular fingerprint) have better
performance than substructure-based fingerprints (PubChem fingerprint and MACCS
fingerprint). SAE-DNN model with the circular fingerprint feature produces the best
average metric value compared to other feature extraction processes, with an accuracy
value of 0.83160, recall 0.91836, precision 0.88848, and F-measure 0.89368. The standard
deviation of each metric in the circular, daylight, and PubChem models is also relatively
low, indicating that the model’s performance for each fold tends to be stable. The low
performance of the MACCS fingerprint can be assumed due to the lack of explanatory
features used, considering that the features extracted from the MACCS feature are only
166. Based on these results, it can be concluded that using the circular fingerprint feature in
the SAE-DNN model has the best performance compared to other models. Prediction of
herbal compounds was carried out using three SAE-DNN models, namely SAE-DNN with
PubChem fingerprint, daylight fingerprint, and circular fingerprint dataset. SAE-DNN
model with the MACCS fingerprint dataset was not used to predict herbal compounds due
to the low performance of the model.

3.3. Comparison with Other Approaches from the Literature

From a methodological point of view, some recent studies regarding DTI prediction
commonly used a binary classification approach. In our proposed method, DTI prediction
is done using the multilabel classification approach and takes several advantages over
using the binary classification approach. First, the proposed method does not require a
process of balancing data between positive data and negative data to achieve fair results,
whereas the existing binary classification approach needs to randomly sample the negative
DTI in order to balance the data, such as in research [3], which can result in false-negative
rates and bias in the model results [15]. Second, the proposed method does not require to
include a feature extraction process on protein data which can decrease data dimensions
and speed up the training process.

From a machine learning performance point of view, we compare the DTI predic-
tion performance between SAE-DNN and other deep learning models implemented in
research [44,45]. Although these studies used a binary approach to predict DTI, compar-
isons can be made by looking at the model’s performance in predicting positive classes.
In terms of DTI, only the positive class is considered validated information, while the
negative class cannot be validated due to the lack of experimental data on drug–target
pairs [46]. Therefore, the comparison is done using recall and f-measure metrics. SAE-DNN
outperforms other deep learning such as standard artificial neural network (ANN) and
deep belief network (DBN) method from Research [44] with the best f-measure of 0.89368
compared to standard ANN with f-measure of 0.88 and DBN with an f-measure of 0.885.
SAE-DNN also outperforms the proposed ComboNet method [45] with the best recall of
0.918 compared to the ComboNet recall of 0.8.

3.4. Herbal Compounds Prediction

The first prediction of herbal compounds was carried out using the SAE-DNN model
trained with circular fingerprint datasets. Since the herbal compound data are taken from
the HerbalDB website only contains the PubChem fingerprint feature, we must first search
for the PubChem ID of each compound. PubChem ID is used to determine SMILES and
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look for each herbal compound’s daylight fingerprint and circular fingerprint. PubChem
ID search for herbal compounds yields 305 herbal compounds that have PubChem ID.
Prediction results with the SAE-DNN model with circular fingerprint dataset produced
169 compounds interacting with COVID-19 proteins. Of the 169 compounds, 79 compounds
interacted with more than one protein, while the rest interacted with only one protein.
Details of the number of herbal compounds that interact with the protein set predicted by
SAE-DNN with the circular fingerprint feature can be seen in Figure 7.
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This study did not conduct molecular docking on the predicted results of compound-
protein interactions from the SAE-DNN model. Potential compounds for COVID-19 can
be determined from the relevance score of predicted proteins that interact with these
compounds which shows the value of the relevance of the protein to COVID-19 disease on
the GeneCards site. The relevance score is calculated based on several factors, including
how often the protein appears in a publication and disease pathways. Herbal plants search
results show that of the 169 compounds predicted to interact with the COVID-19 protein
according to the results of the SAE-DNN prediction with a circular fingerprint dataset;
there are 92 compounds contained in herbal plants in Indonesia with a total of 378 herbal
plants. Ten compound–protein interactions with the highest relevance score predicted
by SAE-DNN with the circular fingerprint dataset can be seen in Table 4. All compound–
protein interactions of SAE-DNN prediction results with circular fingerprint dataset can be
seen in Supplementary Spreadsheet 4.

Table 4. Ten compound-protein interactions with the highest protein relevance score of SAE-DNN prediction results with
circular fingerprint dataset.

Compounds Proteins Probability Protein Relevance Score Total Herbal
Plants Commonly Used Herbal Plants

Rutin DPP4, PTGS1 0.534, 0.628 12.445, 0.895 1 Carmellia sinensis (tea leaves)
Damnacanthal TNF 0.819 12.213 2 Morinda citrifolia L. (noni)

Ascorbic acid F3, TLR4, FURIN, PPT1,
PVR, PPARA, FADS2

0.998, 0.999, 0.909, 0.994,
0.863, 0.937, 0.969

11.928, 10.370, 4.519, 0.965,
0.965, 0.895, 0.653 5 Mangifera indica (mango) Carica

papaya (papaya)

Palmitoleic acid F3, TLR4, FURIN, PPT1,
PVR, PPARA, FADS2

0.997, 0.999, 0.961, 0.994,
0.915, 0.932, 0.982

11.928, 10.370, 4.519, 0.965,
0.965, 0.895, 0.653 4 Mangifera indica (mango) Punica

granatum (pomegranate)
Petunidin F3, TLR4, FURIN, PPT1,

PVR, PPARA, FADS2
0.997, 0.999, 0.961, 0.994,

0.915, 0.932, 0.982
11.928, 10.370, 4.519, 0.965,

0.965, 0.895, 0.653 1 Lagerstroemia indica
(crepe-myrtle)

Naringin F3, TLR4, FURIN, PPT1,
PVR, PPARA, FADS2

0.997, 0.999, 0.961, 0.994,
0.915, 0.932, 0.982

11.928, 10.370, 4.519, 0.965,
0.965, 0.895, 0.653 4 Punica granatum (pomegranate)

Citrus aurantium (bitter orange)
Malvidin F3, TLR4, PPT1, PPARA 0.996, 0.931, 0.883, 0.832 11.928, 10.370, 0.965, 0.895 3 Impatiens balsamina Melastoma

malabathricum
Sterculic acid F3, TLR4, PPT1, PPARA 0.996, 0.931, 0.883, 0.832 11.928, 10.370, 0.965, 0.895 2 Cassia fistula

Sterculia foetida
Ricinoleic acid F3, TLR4, FADS2, PPARA 0.975, 0.999, 0.999, 0.715 11.928, 10.370, 0.965, 0.895 2 Ganoderma lucidum

Ricinus communis (ricinus)

P-coumaric acid F3, FADS2, PPARA, PPT1,
ELOVL5 0.983, 0.99, 0.983, 1.0, 0.999 10.370, 0.965, 0.895, 0.653,

0.653 22 Mangifera indica (mango) Punica
granatum (pomegranate)

The scientific names of species are italicized. The genus name is always capitalized and is written first; the specific epithet follows the
genus name and is not capitalized.
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Based on the results in Table 4. Ten herbal compounds were predicted to have
interactions with four proteins with high relevance score, which is DPP4 (12.445), TNF
(12.213), TLR4 (11.928), and F3 (10.37) protein. According to research [47], DPP4 protein
can be a receptor for SARS-CoV-2 and help the hyper inflammation process in the body.
Rutin compound is predicted to interact with DPP4 protein with a probability of 0.534,
together with PTGS1 protein with a small relevance value (0.895) and a probability of 0.628.
In Indonesia, Rutin compounds are only found in the Carmellia sinensis plant (tea leaves).
TNF protein is also a protein that plays a role in the process of forming a cytokine storm in
acute COVID-19 patients [48]. It is predicted to interact with the Damnacanthal compound
with a probability of 0.819. Damnacanthal compounds are found in the Morinda citrifolia L.
(noni) plant. Research [49] stated that TLR4 protein could be a promising drug target in
COVID-19 cases because it contributes significantly to the pathogenesis of SARS-CoV-2,
and its over-activation can cause an exaggerated innate immune response. This protein is
predicted to interact with ascorbic acid, palmitoleic acid, petunidin, naringin, malvidin,
sterculic acid, and ricinoleic acid compounds with a high probability (0.975–0.998). Among
the seven compounds, ascorbic acid compounds are the compounds contained by most
herbal plants (5).

Next, predictions of herbal compounds were made using the SAE-DNN model with a
daylight fingerprint dataset. The prediction results of the SAE-DNN model with daylight
fingerprint dataset resulted in 119 compounds interacting with COVID-19 proteins. Of
the 119 compounds, 63 compounds interacted with one protein while the rest interacted
with more than one protein. Details of the number of herbal compounds that interact with
the protein set predicted by SAE-DNN with the daylight fingerprint feature can be seen in
Figure 8.

Big Data Cogn. Comput. 2021, 5, x FOR PEER REVIEW 14 of 21 
 

 
Figure 8. Details of the number of herbal compounds that interact with the protein set predicted by 
SAE-DNN with daylight fingerprint datasets. 

Herbal plants search results at the KNApSAcK site show that of the 119 compounds 
predicted to interact with the COVID-19 protein according to the results of the SAE-DNN 
prediction with a daylight fingerprint dataset; there are 65 compounds contained in herbal 
plants in Indonesia with a total of 272 herbal plants. Ten compound–protein interactions 
with the highest relevance score predicted by SAE-DNN with daylight fingerprint dataset 
can be seen in Table 5. All compound–protein interactions of SAE-DNN prediction results 
with daylight fingerprint dataset can be seen in Supplementary Spreadsheet 5. 

Table 5. Ten compound–protein interactions with the highest protein relevance score of SAE-DNN prediction results with 
daylight fingerprint dataset. 

Compounds Proteins Probability 
Protein Relevance 

Score 

Total 
Herbal 
Plants 

Commonly Used Herbal 
Plants 

Hyperoside EGFR 0.509 9.887 7 Mangifera indica (mango) 
Safrole TNFRSF1A 0.586 5.459 1 Cananga odorata 

Estradiol TNFRSF1A, 
CSNK2B, EIF3F 0.528, 0.923, 0.626 5.459, 0.965, 0.653 1 Punica granatum (pomegran-

ate) 
Tetrahydroxyfla-

vone 
TNFRSF1A, 

ALOX5 0.788, 0.537 5.459, 0.895 5 Cucumis sativus (cucumber) 

Myristic acid TNFRSF1A, 
ALOX5, EIF3F 

0.912, 0.509, 0.608 5.459, 0.895, 0.653 16 Mangifera indica (mango) 

Rhamnetin TNFRSF1A, 
ALOX5, EIF3F 

0.916, 0.526, 0.603 5.459, 0.895, 0.653 6 Averrhoa carambola (starfruit) 

A-terpinene TTR 0.564 2.638 20 
Cuminum cyminum L. (white 

cumin) 

Epicatechin AR 0.820 2.428 19 
Punica granatum (pome-

granat3) 
Proanthocyanidin 

a2 
AR 0.627 2.428 5 Garcinia mangostana (mango-

steen) 
Momordicilin AR 0.813 2.428 1 Momordica charantia 

The scientific names of species are italicized. 

Based on the results in Table 5, ten herbal compounds with the highest relevance 
score predicted by the SAE-DNN model with the daylight fingerprint feature interacted 
with seven proteins with four proteins having the highest relevance score, namely EGFR 
protein (9.887), TNFRSF1A (5.459), TTR (2.638), and AR (2.428). EGFR protein became the 
protein with the highest relevance from the prediction results of the SAE-DNN model 
with daylight fingerprint feature. Research [50] stated that EGFR protein is involved in 
the infection process in lung cells, triggers a proinflammatory response, and is a potential 

Figure 8. Details of the number of herbal compounds that interact with the protein set predicted by
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Herbal plants search results at the KNApSAcK site show that of the 119 compounds
predicted to interact with the COVID-19 protein according to the results of the SAE-DNN
prediction with a daylight fingerprint dataset; there are 65 compounds contained in herbal
plants in Indonesia with a total of 272 herbal plants. Ten compound–protein interactions
with the highest relevance score predicted by SAE-DNN with daylight fingerprint dataset
can be seen in Table 5. All compound–protein interactions of SAE-DNN prediction results
with daylight fingerprint dataset can be seen in Supplementary Spreadsheet 5.

Table 5. Ten compound–protein interactions with the highest protein relevance score of SAE-DNN prediction results with
daylight fingerprint dataset.

Compounds Proteins Probability Protein Relevance Score Total Herbal
Plants Commonly Used Herbal Plants

Hyperoside EGFR 0.509 9.887 7 Mangifera indica (mango)
Safrole TNFRSF1A 0.586 5.459 1 Cananga odorata

Estradiol TNFRSF1A, CSNK2B, EIF3F 0.528, 0.923, 0.626 5.459, 0.965, 0.653 1 Punica granatum (pomegranate)
Tetrahydroxyflavone TNFRSF1A, ALOX5 0.788, 0.537 5.459, 0.895 5 Cucumis sativus (cucumber)

Myristic acid TNFRSF1A, ALOX5, EIF3F 0.912, 0.509, 0.608 5.459, 0.895, 0.653 16 Mangifera indica (mango)
Rhamnetin TNFRSF1A, ALOX5, EIF3F 0.916, 0.526, 0.603 5.459, 0.895, 0.653 6 Averrhoa carambola (starfruit)



Big Data Cogn. Comput. 2021, 5, 75 14 of 19

Table 5. Cont.

Compounds Proteins Probability Protein Relevance Score Total Herbal
Plants Commonly Used Herbal Plants

A-terpinene TTR 0.564 2.638 20 Cuminum cyminum L. (white cumin)
Epicatechin AR 0.820 2.428 19 Punica granatum (pomegranat3)

Proanthocyanidin a2 AR 0.627 2.428 5 Garcinia mangostana (mangosteen)
Momordicilin AR 0.813 2.428 1 Momordica charantia

The scientific names of species are italicized.

Based on the results in Table 5, ten herbal compounds with the highest relevance
score predicted by the SAE-DNN model with the daylight fingerprint feature interacted
with seven proteins with four proteins having the highest relevance score, namely EGFR
protein (9.887), TNFRSF1A (5.459), TTR (2.638), and AR (2.428). EGFR protein became
the protein with the highest relevance from the prediction results of the SAE-DNN model
with daylight fingerprint feature. Research [50] stated that EGFR protein is involved in
the infection process in lung cells, triggers a proinflammatory response, and is a potential
drug target in the treatment of COVID-19. EGFR protein is predicted to interact with
Hyperoside compounds with a probability of 0.509. Hyperoside compounds are found in
seven herbal plants in Indonesia, one of which is Mangifera indica (mango). According to
the GeneCards website, the TNFRSF1A protein is a variant of the TNF protein and plays a
role in inflammatory processes in the body. The TNFRSF1A protein is predicted to interact
with safrole, estradiol, tetrahydroxyflavone, myristic acid, and rhamnetin compounds,
with the highest probability of rhamnetin compounds being 0.916. Rhamnetin compounds
are found in Syzygium aromaticum (cloves) and Averrhoa carambola (starfruit) plants.
The direct impact of the TTR protein on COVID-19 is not yet known. According to the
GeneCards website, the TTR protein is associated with respiratory failure, which may be
one of the effects of COVID-19. According to research [51], AR protein affects the severity
of COVID-19 in patients. AR protein regulates the transcription of the TMPRSS2 protein,
which is the host for the SARS-CoV-2 spike protein. AR protein is predicted to interact
with Epicatechin, Proanthocyanidin a2, and Momordicilin compounds. Epicatechin had
the highest probability of interacting with AR protein of 0.82.

Next, predictions of herbal compounds were made using the SAE-DNN model with
PubChem fingerprint dataset. The prediction results of the SAE-DNN model with the
PubChem fingerprint dataset resulted in 187 compounds predicted to interact with the
COVID-19 protein. Of the 187 interactions, 15 compounds interact with two proteins, while
172 interact with only one protein. Details of the number of herbal compounds that interact
with the protein set predicted by SAE-DNN with the PubChem fingerprint feature can be
seen in Figure 9.

Big Data Cogn. Comput. 2021, 5, x FOR PEER REVIEW 15 of 21 
 

drug target in the treatment of COVID-19. EGFR protein is predicted to interact with Hy-
peroside compounds with a probability of 0.509. Hyperoside compounds are found in 
seven herbal plants in Indonesia, one of which is Mangifera indica (mango). According to 
the GeneCards website, the TNFRSF1A protein is a variant of the TNF protein and plays 
a role in inflammatory processes in the body. The TNFRSF1A protein is predicted to in-
teract with safrole, estradiol, tetrahydroxyflavone, myristic acid, and rhamnetin com-
pounds, with the highest probability of rhamnetin compounds being 0.916. Rhamnetin 
compounds are found in Syzygium aromaticum (cloves) and Averrhoa carambola 
(starfruit) plants. The direct impact of the TTR protein on COVID-19 is not yet known. 
According to the GeneCards website, the TTR protein is associated with respiratory fail-
ure, which may be one of the effects of COVID-19. According to research [51], AR protein 
affects the severity of COVID-19 in patients. AR protein regulates the transcription of the 
TMPRSS2 protein, which is the host for the SARS-CoV-2 spike protein. AR protein is pre-
dicted to interact with Epicatechin, Proanthocyanidin a2, and Momordicilin compounds. 
Epicatechin had the highest probability of interacting with AR protein of 0.82. 

Next, predictions of herbal compounds were made using the SAE-DNN model with 
PubChem fingerprint dataset. The prediction results of the SAE-DNN model with the 
PubChem fingerprint dataset resulted in 187 compounds predicted to interact with the 
COVID-19 protein. Of the 187 interactions, 15 compounds interact with two proteins, 
while 172 interact with only one protein. Details of the number of herbal compounds that 
interact with the protein set predicted by SAE-DNN with the PubChem fingerprint feature 
can be seen in Figure 9. 

 
Figure 2. Details of the number of herbal compounds that interact with the protein set predicted by 
SAE-DNN with PubChem fingerprint datasets. 

Herbal plants search results at the KNApSAcK site show that of the 187 compounds 
predicted to interact with the COVID-19 protein according to the results of the SAE-DNN 
prediction with a PubChem fingerprint dataset; there are 79 compounds contained in 
herbal plants in Indonesia with a total of 454 herbal plants. Ten compound-protein inter-
actions with the highest relevance score predicted by SAE-DNN with PubChem finger-
print dataset can be seen in Table 6. All compound–protein interactions of SAE-DNN pre-
diction results with PubChem fingerprint dataset can be seen in Supplementary Spread-
sheet 6. 

Table 6. Ten compound–protein interactions with the highest protein relevance score of SAE-DNN prediction results with 
PubChem fingerprint dataset. 

Compounds Proteins Probability Protein Relevance 
Score 

Total Herbal 
Plants 

Commonly Used Herbal Plants 

Glucobrassicin EGFR 0.986 9.887 8 Raphanus sativus (radish) Brassica 
oleracea (wild cabbage) 

Cuminaldehyde EGFR 0.923 9.887 4 
Cuminum cyminum L. (cumin) Eu-

calyptus globulus 

Figure 9. Details of the number of herbal compounds that interact with the protein set predicted by
SAE-DNN with PubChem fingerprint datasets.

Herbal plants search results at the KNApSAcK site show that of the 187 compounds
predicted to interact with the COVID-19 protein according to the results of the SAE-DNN
prediction with a PubChem fingerprint dataset; there are 79 compounds contained in herbal
plants in Indonesia with a total of 454 herbal plants. Ten compound-protein interactions
with the highest relevance score predicted by SAE-DNN with PubChem fingerprint dataset
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can be seen in Table 6. All compound–protein interactions of SAE-DNN prediction results
with PubChem fingerprint dataset can be seen in Supplementary Spreadsheet 6.

Table 6. Ten compound–protein interactions with the highest protein relevance score of SAE-DNN prediction results with
PubChem fingerprint dataset.

Compounds Proteins Probability Protein
Relevance Score

Total Herbal
Plants Commonly Used Herbal Plants

Glucobrassicin EGFR 0.986 9.887 8 Raphanus sativus (radish) Brassica oleracea (wild cabbage)
Cuminaldehyde EGFR 0.923 9.887 4 Cuminum cyminum L. (cumin) Eucalyptus globulus

P-cymene EGFR 0.904 9.887 23 Mangifera indica (mango) Nigella sativa (black cumin)
Methyl cinnamate EGFR 0.895 9.887 1 Ocimum (basil)
Garcimangosone d EGFR 0.856 9.887 1 Garcinia mangostana (mangosteen)

Ethyl cinnamate EGFR 0.85 9.887 1 Durio zibethinus (durian)
Kaempferol EGFR 0.844 9.887 1 Carthamus tinctorius (safflower)

Cinnamic acid EGFR 0.817 9.887 3 Glycine max (soybean) Ocimum basilicum (basil)
P-coumaric acid EGFR 0.808 9.887 22 Mangifera indica (mango) Punica granatum (pomegranate)

Cinnamaldehyde EGFR 0.801 9.887 4 Carica papaya (papaya) Pogostemon cablin (patchouli)

The scientific names of species are italicized.

From the results in Table 6, ten compounds with the highest protein relevance score
interacted with the EGFR protein. Glucobrassicin compound has the highest probability to
interact with EGFR protein according to the prediction results of SAE-DNN with PubChem
fingerprint. This compound is found in eight herbal plants in Indonesia, with one of the
commonly used plants being Brassica oleracea (cabbage). Of the ten protein–compound
interactions with the highest relevance score predicted by SAE-DNN with PubChem
fingerprint, P-cymene compounds are the compounds contained by the most herbal plants,
which are 23 herbal plants.

There are similarities in the protein predicted by the three SAE-DNN models, namely
AR, EGFR, and PRKCA proteins, with relevance values of 9.887 (EGFR), 2.428 (AR), and
1.003 (PRKCA). The SAE-DNN model with circular fingerprint and PubChem fingerprint
both predicts EGFR protein interacting with P-cymene compound, while the SAE-DNN
model with daylight fingerprint predicts EGFR protein interacting with Hyperoside com-
pound. For AR proteins, the three models gave different predictions regarding the com-
pounds interacting with these proteins. As for PRKCA protein, the circular and daylight
feature SAE-DNN model predicts that this protein interacts with Catalpol and Sinigrin
compounds, while the PubChem feature SAE-DNN model predicts this protein interacts
with 31 different compounds.

There are also similar compounds that emerged from the prediction results of the three
SAE-DNN models, namely Hyperoside, Aloin, Garcimangosone d, Rhamnetin, Anisalde-
hyde, Laurotetanine, Momordin I, Isoquercetin, and Cycloeucalenone compounds. Details
of these compounds can be seen in Table 7.

Table 7. The details of the compounds that appear in the prediction results of the three SAE-DNN models.

Compounds
Protein Predicted by SAE-DNN Model

Species Activity References
Circular Daylight PubChem

Hyperoside AHR, AKT1 EGFR PRKCA Mangifera indica (mango) Served as an
anti-inflammatory [52]

Aloin MBL2 LGALS3 PRKCA Aloe vera Indicate to induce
anti-inflammatory [53,54]

Garcimangosone d RELA, NFKB1 RELA, NFKB1 EGFR Garcinia mangostana
(mangosteen)

Garcinia mangostana can
be used to cure
inflammation

[55]

Rhamnetin CSNK2B, ALOX5, EIF3F TNFRSF1A, ALOX5,
EIF3F PRKCA Averrhoa carambola

(starfruit)

Have good
anti-inflammatory

activity
[56]

Anisaldehyde
TXNRD1, PLOD1,

P4HA1, TFRC, PLOD3,
PLOD2

PLOD1, P4HA1, PLOD3,
PLOD2 EGFR Pimpinella anisum - -

Laurotetanine ACHE ADRB2 PRKCA Litsea cubeba
Possess

anti-inflammatory
properties

[57]

Momordin i PTGS1, TOP1 TOP1 PRKCA Basella rubra L. - -
Isoquercetin RAC1 RAC1 PRKCA Mangifera indica (mango) Have anti-inflammatory

properties [58]
Cycloeucalenone TOP1 TOP1 CSNK2A1 Musa sapientum - -

The scientific names of species are italicized.
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There are several similarities from the prediction results of the SAE-DNN model
using daylight fingerprint and circular fingerprint. These results can occur because both
fingerprints belong to topology-based fingerprints. The difference between these two
fingerprints lies in creating array fingerprints where daylight builds an array of fingerprints
based on a specified path of a molecule while circular builds an array based on the specified
radius of a molecule [33].

Regarding similar compounds that emerged from the prediction results of the three
SAE-DNN models, these compounds were predicted to have interactions with COVID-
19 proteins. This is supported by several literature studies showing that Hyperoside,
Aloin, Rhamnetin, Laurotetanine, and Isoquercetin compounds have anti-inflammatory
properties [52–54,56–58], which can help fight the hyper inflammation process in COVID-
19 patients. For Garcimangosone d, its efficacy on COVID-19 or the inflammatory process
in the body is not yet known. This compound is found in the Garcinia mangostana plant
which is a plant commonly used to treat various disease such as inflammation and fever in
several Asian countries [55]. Usually, certain databases such as DrugBank and Stitch [59]
(http://stitch.embl.de/ accessed on 27 November 2021) can be used to verify compound–
protein interaction based on the databases collection of knowledge compounds and their
known interactions with proteins. However, the herbal compounds from the prediction
results of the three SAE-DNN models in this study have not been found to have interactions
with predicted proteins in these databases, thus its compound–protein interactions still
cannot be verified. This is due to the lack of experiments related to herbal compounds.
Further research is needed to verify compound–protein interactions and determine the
potential value of herbal compounds from SAE-DNN prediction results in this study.

4. Conclusions

The multilabel classification approach to search for potential compounds that interact
with COVID-19 proteins using the SAE-DNN model has been successfully carried out.
The results showed that the SAE-DNN model was able to predict the interaction between
drug-target in cases of COVID-19 with a pretty good performance and outperformed DNN
without pre-training. The results also show that using the circular fingerprint feature as the
predictor variable of the model produces the best average metric value with an accuracy of
0.831, recall 0.918, precision 0.888, and F-measure 0.893.

The prediction results of herbal compounds using the SAE-DNN model with the
circular fingerprint dataset resulted in 92 herbal compounds contained in herbal plants in
Indonesia, while the prediction results for herbal compounds using the SAE-DNN model
with daylight fingerprint dataset resulted in 65 herbal compounds contained in herbal
plants in Indonesia and using SAE-DNN model with PubChem fingerprint dataset resulted
in 79 compounds contained in herbal plants in Indonesia. Hyperoside, Aloin, Rhamnetin,
Laurotetanine, and Isoquercetin are predicted to interact with COVID-19 proteins according
to prediction results of the SAE-DNN with circular, daylight, and PubChem dataset and
are known to have anti-inflammatory properties regarding several literature studies.

Supplementary Materials: The following are available online at https://ipb.link/supplementary-
files, Spreadsheet 1: protein data, Spreadsheet 2: DTI data, Spreadsheet 3: SMILES data, Spreadsheet 4:
SAE-DNN with circular fingerprint dataset herbal prediction results, Spreadsheet 5: SAE-DNN with
daylight fingerprint dataset herbal prediction results, Spreadsheet 6: SAE-DNN with PubChem
fingerprint dataset herbal prediction results.
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