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Abstract: Understanding the ways different people perceive and apply acquired knowledge, espe-
cially when driving, is an important area of study. This study introduced a novel virtual reality
(VR)-based driving system to determine the effects of neuro-cognitive load on learning transfer. In
the experiment, easy and difficult routes were introduced to the participants, and the VR system is
capable of recording eye-gaze, pupil dilation, heart rate, as well as driving performance data. So,
the main purpose here is to apply multimodal data fusion, several machine learning algorithms,
and strategic analytic methods to measure neurocognitive load for user classification. A total of
ninety-eight (98) university students participated in the experiment, in which forty-nine (49) were
male participants and forty-nine (49) were female participants. The results showed that data fusion
methods achieved higher accuracy compared to other classification methods. These findings high-
light the importance of physiological monitoring to measure mental workload during the process of
learning transfer.

Keywords: cognitive load; learning transfer; multimodal fusion; physiological measures; virtual
reality; driving simulator

1. Introduction

Psychologically, learning is the change in behavior resulting from individual experi-
ence. A subject is said to have learned when it perceives and changes its behavior [1]. The
processes of learning and mainly remembering depend on relative changes in the nervous
system. The effects of learning are first retained in the brain, after which a more permanent
neural change takes place.

However, the piece of information to be learned can be either simple or complex.
Educational research describes that simple information can be learned and understood
easily. Likewise, a simple task can be solved within the shortest period. This is not true for
complex information and complex tasks. Learning transfer is not likely to happen when
subjects are overwhelmed with complex learning materials [2]. According to [3], learning is
always hampered whenever the learning task requires too much cognitive workload. This
working memory is considered volatile or short-term and limited, whereas it is infinite
if it is long-term. So, the idea here is that knowledge should be moved to long-term
memory so that when the subject is presented with new material, they can retrieve it from
memory [4]. However, if the subject cannot recover it from memory, the working memory
becomes overloaded, leading to memory failures [4]. Students find it difficult to recall
previous pieces of information, especially complex ones, without prior knowledge [5]. This
is because the working memory is insufficient; it can only deal with limited information
at a time [6]: only about seven meaningful units of information can be stored in it at any
given time [7].
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The study of cognitive mechanisms has excellent potential for giving modified content
from a mental point of view [8]. Cognitive load (CL) is a multidimensional construct
representing the load that performing a particular task imposes on the learner’s cognitive
system when solving a given problem [9,10]. Cognitive load theory consists of a design of
instructional methods that efficiently use people’s limited mental processing capacity to
apply acquired knowledge and skills to new situations [10]. As mentioned in [10,11], the
total cognitive load of an individual is an amalgamation of at least two of the following
factors: an intrinsic cognitive load, which is a natural difficulty of the material itself
and over which instructors have no control over, an extraneous cognitive load which
is produced as a result of the method used in introducing the material, and a germane
cognitive load, which is the load related to processes that contribute to the construction
and automation of schemas. If these factors combined exceed the participant’s working
memory capacity, it would result in a cognitive memory overload that hampers their
learning. At the same time, when a participant’s knowledge surpasses the task’s difficulty,
time and energy would be wasted in solving the task, and in the end, nothing would be
learned. Thus, the task’s difficulty should be equal to the subject’s proficiency to facilitate
effective learning [12].

Cognitive load can be determined by either subjective or objective measures [13].
Subjective measures include self-reported mental effort, perceived difficulty, or stress
level, while objective measures include physiological, performance-based, and brain ac-
tivity measures [13]. Even though general limitations exist in measuring cognitive load,
the specific method is currently regarded as predominant in measuring the cognitive
load [14,15]. In this study, estimating real-time cognitive workload has been explored
using psychophysiological metrics such as eye gaze, pupil dilation, heart rate, and task
performance modality.

VR technology is a platform that helps incorporate cognitive and functional ap-
proaches to learning [16,17]. The function of VR is to provide immersive, sensorimo-
tor, engaging content, and at the same time simulate an array of real or imagined tasks
and environments [16].

Driving is one of the most ubiquitous, cognitively demanding, and dangerous ac-
tivities of our daily lives [17]. Thus, safe driving requires continuous synchronization
of processes such as reaction time, attention, visuospatial skills, planning, and execution
function. VR provides rehabilitation and safety assessment of driving-related skills at the
true limits of the individual’s capabilities [17,18].

We plan to develop a VR-based driving system that would help us analyze the effects
of neuro-cognitive load on learning transfer. In this paper, multimodal data fusion methods,
several machine learning classification algorithms, and strategic analytic methods were
explored for cognitive load measurement.

Related Research

Our study explored measuring real-time cognitive workload using psychophysiologi-
cal metrics such as eye gaze, pupil dilation, heart rate, and performance measures. Each of
these metrics has been deliberated concerning cognitive workload measurement. Pupil
dilation has been used in Human–computer Interaction for measuring cognitive load [19].
Pupil dilation is well known for responding quickly to changes to the brightness in the
visual field and a subject’s cognitive load while performing an assigned task [20]. Eye
trackers are used in generating eye-gaze coordinates, which can be used and evaluate
pupillary data in real-time. Such metrics can be used in assessing the cognitive load, which
can be utilized to assist users when a high cognitive load is detected [19].

Moreover, several types of research of numerous cognitive tasks have shown that
increased heart rate is connected with increased cognitive load [21–23]. According to
Jorna and Peter GAM [24], there was a significant increase in heart rate when participants
were subjected to more challenging multi-task conditions than single-task conditions.
Heart rate and blood pressure have been shown to increase with increasing cognitive
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demand or workload in a range of environments [25–27]; the most comprehensive work
has been carried out in aviation [28,29]. Brookhuis et al. explained that an increase in task
demand increases heart rate, such as entering a traffic circle, and it dropped when task
demands decreased, for example, driving on a two-lane highway. Lenneman et al. [26]
reported that a number of cardiovascular parameters were measured during four different
conditions: baseline, during single-task driving, while subjects drove and engaged in a
mildly challenging working memory task, and while engaged in a more complex version of
the same active memory task. The authors discovered that heart rate increased continuously
as the conditions became cognitively demanding.

Task driving performance metrics are another common method to measure cognitive
load [10]. In a VR-based driving system, driving behavior such as how well a subject used
the brake and accelerator during driving, and performance metrics such as how the number
of times a subject failed the assigned task and the number of scores obtained during the
driving task, are associated with cognitive load [30].

As far as we know, there is no single article in the literature that used the multimodal
data fusion method to measure the cognitive load on learning transfer using the virtual
reality-based driving system; however, the data fusion method to measure cognitive
load has been used in different applications [31–34]. Zhang X et al. [34] used 46 distinct
photoplethysmogram features to enhance the cognitive workload’s measurement accuracy.
Barua S et al. [31] employed the multimodal fusion method by applying machine learning
(ML) in detecting and classifying various driver’s cognitive states, such as sleepiness,
stress, and cognitive load, based on physiological data. Putze F et al. [33] reported a case
where a simple majority voting fusion method was applied in combining skin conductance,
respiration, EEG, and pulse to categorize cognitive load in visual and cognitive tasks.

2. Materials and Methods
2.1. Hypotheses

This study was designed to determine the effects of neuro-cognitive load on learning
transfer from a novel VR-based driving system. Psychophysiological metrics were used to
assess responses to different levels of difficulty experienced by the participants and how
those responses affected the transfer of learning. There are easy and difficult routes, and
thus, we have the following hypotheses:

a. The addition of several turns, intersections, and landmarks on the difficult routes
would elicit increased psychophysiological activation, such as increased heart rate,
eye gaze, and pupil dilation.

b. Due to an increase in psychophysiological activation, participants would make more
mistakes when driving on difficult routes.

c. An increase in cognitive load combined with the more cognitively demanding route
difficulty would increase response level.

2.2. Participants

A total of 98 university undergraduates of Fudan University participated in the
experiment. Out of this number, 49 were male participants and 49 were female participants.
All the participants had no real-life driving experience. There were two categories in
the study: easy and difficult routes. There were two sessions with the same difficulty
level of each category. Thus, we had 196 data points (98 subjects* 2 sessions). However,
some of the data were missing, which was the result of the unexpected movements of
a participant’s head above the sensors’ detection range. This resulted in the removal of
11 subjects’ data (7 females and 4 males) at the preprocessing stage. Hence, we were left
with 185 data entries. The participants were recruited through an in-house advertisement.
All the volunteers were briefed about the nature of the experiment and its protocols. The
experiment was conducted after the participants filled out the informed consent form and
were approved by Fudan University. All the experiments were conducted under relevant
guidelines and regulations.
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2.3. System Design

In this work, a virtual reality-based driving system was designed to measure and
determine the effects of neuro-cognitive load on learning transfer. The two main compo-
nents of the system were: a VR-driving system and a data capture system, as depicted
in Figure 1.
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Figure 1. The structure of the VR driving system.

Vive Pro Eye was used for tracking eye gaze data. The VR driving system used in
the experiment is given in Figure 2. A Logitech G27 steering-wheel controller was used
to control the virtual agent vehicle in the driving environment. Important landmarks
in the driving environments such as traffic lights, roadways, intersections, vehicles, and
buildings were designed with the Autodesk Maya [35] and ESRI CityEngine [36], while a
Unity3D [37] was used for developing the game platform.
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The simulation schema was developed to reduce the effect of contextual changes on
physiological arousal. The driving route consisted of a city roadway that consists of long
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straightaways, several turns, and intersections, and landmarks (composed of a Basketball
Court, McDonald’s, Convenience Store, Gas Station, Post Office, Church, and Walmart) to
provide minimal stimulation and reduce monotony.

The data capture system keeps track of the different psychophysiological metrics
while the participant was engaged in driving. All psychophysiological measures were
recorded concurrently throughout the experiment. For tracking eye gaze, a Vive Pro Eye
tracker [38] recorded the eye gaze data at 50 Hz. Gaze origin and pupil dilation were among
the recorded data. A heartbeat recording device designed in our lab was used to record the
user’s heart rate at 500 Hz while driving the virtual environment. The participant’s task
performance was measured in the virtual environment.

The difficulty levels were easy and difficult routes. We had two (4) different levels
of difficulty. At each level, there are two different tasks developed for the VR-based
driving system.

2.4. Experimental Setup

There were two groups in the experiment: easy (group A) and difficult (group B)
routes. There were two sessions (A1, A2 and B1, B2) with the same difficulty level for each
group, as shown in Figure 3. The easy routes comprised three (3) turns and intersections,
7 landmarks, and 3 traffic lights, while the difficult route had five (5) turns and intersections,
7 landmarks, and 5 traffic lights. A participant was either assigned to group A (easy route)
or group B (difficult route): this is carried out arbitrarily. Additionally, each session lasted
approximately 20 min (including a tutorial).
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Before the commencement of the first session of each group, an informed consent
form was obtained. Then, the baseline data were collected for the psychophysiological
and performance metrics in a quiet environment. A participant was asked to practice
driving. This is where they would be asked to move forward, make a reverse, apply a
brake, and turn left and right, in accordance with the requirement of the main study. At
the same time, a pre-recorded route video tutorial concerning the experiment was then
given to the participant before the commencement of the exercise. The tutorial would
introduce the participant of each group (A or B) to the routes they would follow, and turns,
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intersections, landmarks, and traffic lights they would see along the routes that would
help them complete the task. This entire video was only played once. The participant
was asked to try memorizing the routes in the video. The researchers set up the heartbeat
and eye-tracking sensors on the participant’s body. Before recording, all the sensors were
checked to make sure all signals were in good shape and working perfectly. Afterward,
the participant was then asked to carry out two pre-selected driving assignments (one at
a time) from the starting point to the destination according to the route they just watched.

Moreover, there were several landmarks that a participant would use to locate the
right turn to take to reach the destination. So, whenever a participant makes a wrong
turn, they would be dragged to the starting point, re-watch the pre-recorded video guide
and start driving all over again. Throughout this exercise, the researchers examined the
heartbeat and eye-tracking data to ascertain its quality.

The practice and tutorial sessions were included to assess the system and improve a
subject’s driving performance. However, we did not consider the performance of these
sessions in analyzing the data of this article.

3. Data Acquisition

All physiological features (such as heart rate, eye gaze, pupil dilation) and driving
performance data were extracted from each experiment session. Before the start of each
session, the baseline data of the sensors were recorded for about 20 min both for the
psychophysiological metrics and for the driving performance, in a quiet environment. In
total, 11 of the 196 subjects’ data were dropped from the analysis at the preprocessing stage
because of the motion artifacts that made it impossible to obtain an accurate quantification
of the selected analysis.

The eye gaze data were preprocessed, and the noise level was reduced using the
median value method [39]. The preprocessed eye-tracking data extracted the pupil dilation,
fixation rate, saccade rate, and blink rate. The eye closure duration range used for the blink
rate was from 75 to 400 ms, according to [40].

For the eye gaze and pupil dilation data, after preprocessing, we extracted 10 fea-
tures [30,41]: fixation rate, blink rate, Mean (M), and Standard Deviation (SD) of blink
duration, M and SD of fixation duration, M and SD of pupil dilation, and M and SD of
saccade duration. Likewise, we extracted M and SD for the heart rate.

Different data were measured for the participant’s task performance based on the
ability to transfer knowledge and task performance. The ability to transfer knowledge
included the number of times a participant made a right turn during one driving assign-
ment. The task performance determined the efficiency of the participant in completing the
task; this includes the time (in seconds) a participant completed the driving, the number of
collisions on the edge of the road. The driving performance measures and their meanings
are shown in Table 1. We extracted 10 features here: Mean (M) and Standard Deviation
(SD) of Gametimer, M and SD of WrongCount, M and SD of BarricadeCollider, M and SD
of IntersectionCount, and M and SD of RedLightCount.

Table 1. Performance Features and their Descriptions.

Driving Measures Meaning

Gametimer Task completion time (seconds).
WrongCount The total number of wrong turns.

BarricadeCount The total number of collisions on the edge of the road.
IntersectionCount The total number of red lights at intersections.

RedLightCount The total number of red lights running.

A set of analyses were invoked to determine the differences in response to completing
the Easy Category and the Difficult Category and differences between Male Category
and Female Category related to the VR-based driving system. An Analysis of Variance
(ANOVA) was applied to each dependent psychophysiological variable to determine
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whether the participant was experiencing a challenging working memory. Significant
results were reported when p < 0.05.

After acquiring all the data for both the psychophysiological and performance metrics,
the results of the data analysis are presented in the next section.

4. Results

The primary target of the research is to determine the effects of neuro-cognitive load on
learning transfer. This can be achieved by evaluating the differences in psychophysiological
response patterns associated with driving on easy routes versus going on difficult routes.
As anticipated, the difficult routes elicited an increase in psychophysiological activation
(i.e., increase in pupil dilation and heart rate). The results show that the increase in cognitive
load was associated with the conditions of the more cognitively demanding routes that led
to the rise in response level.

4.1. Analytic Strategy

An Analysis of Variance (ANOVA) was employed to determine the differences in
response to completing both the easy and difficult routes. The following sub-sections
discussed the application of this analytic strategy on both the psychophysiological and
performance measures.

4.1.1. Physiological Measures

An ANOVA method was applied to each dependent psychophysiological variable
and a significant effect appears across all the measures: pupil dilation (F(1, 176) = 321.81,
p < 0.05), heart rate (F(1, 178) = 34.91, p < 0.05). Table 2 shows the average physiological
response of the two measures. Pupil dilation increased significantly by 0.51 mm and then
by an additional 1.41 mm while driving on easy and difficult routes. Generally, pupil
dilation increased by 1.92 mm from the baseline through the difficult routes as depicted
in Figure 4.

Table 2. Average Physiological Response Measures.

Pupil Dilation (mm) Heart Rate (bpm)

Baseline 3.61 (0.12) 70.6 (10.8)
Easy Routes 4.12 (0.66) 72.6 (7.6)

Difficult Routes 5.53 (0.29) 75.0 (12.7)
Note: The entries are means and the standard deviations in parentheses.

The incremental increase in heart rate was also significant from the baseline to the
easy routes and from easy routes to the difficult routes. In these two transitions, heart rate
increased by 2.0 bpm and 2.4 bpm, respectively. Thus, heart rate increased by an average
of 4.4 bpm from the baseline through the difficult routes (Figure 4).

Additionally, as predicted in the hypotheses, participants that drove the difficult routes
committed more mistakes. The main effect of difficulty level was shown with the ANOVA,
resulting in higher Gametimer, WrongCount, IntersectionCount, and BarricadeCollider, and
a significant interaction was obtained between the aforementioned performance features
(F(3, 540) = 38.14, p < 0.05).
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4.1.2. Driving Performance

Table 3 gives a summary of the driving performance features. Just like all the physio-
logical measures with considerable changes, the performance measures associated with
the task level were also significant. Generally, a statistically significant difference emerges
across all the three levels of the task (F(5, 1080) = 38.11, p < 0.05), and the interaction
between these terms was also significant.

Table 3. Summary of Driving Performance Features.

Driving Performance Baseline Easy Route Difficult Route

Gametimer 138.76 (30.65) 148.98 (32.94) 253.55 (155.23)
WrongCount 0.13 (0.34) 0.18 (0.46) 0.82 (1.50)

BarricadeCollider 0.13 (0.61) 0.19 (0.67) 0.45 (1.14)
IntersectionCount 6.67 (0.98) 7.52 (1.42) 13.12 (7.80)

RedLightCount 3.21 (1.57) 3.95 (1.68) 6.88 (4.20)
Note: The entries are means and the standard deviations in parentheses.

As shown in Table 3, there was a remarkable increase in all the driving performance
features across the three levels of the task. The Gametimer increased by a modest 10.22 s
and then by a significant 104.57 s from the baseline to easy and easy routes to difficult
routes, respectively. WrongCount increased by a modest 0.05 and by a significant 0.64
from the baseline to the easy routes and easy routes to difficult routes. Likewise, incre-
mental increases in BarricadeCollider, IntersectionCount, and RedLightCount were also
substantial from the baseline to the easy route and from the easy route to the difficult
route. During these periods, BarricadeCollider increased by 0.06 and 0.26, respectively, and
IntersectionCount increased by 0.85 and 5.6, respectively, while RedLightCount increased
by 0.74 and 2.93, respectively. Across all the performance features, all the increases from
the baseline to the easy route were minimal and not statistically significant. The statistically
significant results obtained during the easy route and difficult route tasks may indicate the
number of efforts made by the participants in the combined demands of driving as well as
an increase in psychophysiological activation which led to an increase in cognitive load.

4.1.3. Female Participants versus Male Participants

It is also observed that female participants paid more attention to landmarks (F(3, 720) = 5.64,
p < 0.05) and drove slower than their male counterparts as depicted in Figure 5. This made
them spend much time to complete the exercise (F(1, 180) = 39.79, p < 0.05).
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4.2. Data Fusion Methods

As part of cognitive load evaluation, different measures from the recorded data were
supplied into the classifiers. Five well-known ML algorithms were used in determining
the cognitive workload classification. These algorithms include Discriminant Analysis, K-
Nearest Neighbors (KNN), Decision Trees, Artificial Neural networks (ANN), and Support
Vector Machine (SVM).

Much information can be combined in three approaches [42]: feature-level fusion,
decision-level fusion, and hybrid-level fusion. The structures of the three-level fusion
approaches are given in Figure 6.

Figure 6a depicts the structure of a feature-level fusion. The features obtained from
different modalities composed of pupil dilation, eye gaze, heart rate, and user performance
features were input into the “preprocess” module. In this module, all the features would be
normalized and have their dimensions reduced using principal component analysis (PCA).
The input to the classifier is the preprocessed vector, while the output is the level of CL.

The classifier takes the preprocessed vector as input and outputs the level of cognitive
load (CL).

Figure 6b depicts the structure of decision-level fusion. In this case, all the features
from each modality mentioned in feature-level fusion were preprocessed independently
and then passed to the different classifiers. Each of these classifiers produces a CL as a
sub-decision (S).

The final decision (CLfinal) is calculated from the weighted average of the sub-decision
vectors in the data fusion module, as shown in (1).

CLfinal = w1S1 + w2S2 + w3S3 + w4S4. (1)

For the hybrid-level fusion, all the processes of feature-level and decision-level fusions
are combined. There are different ways of making this combination; however, Figure 6c
shows the hybrid-level fusion adopted for this work. The feature-level fusion part takes
features (pupil dilation and heart rate in this case) as input and produces a level of CL as
a sub-decision, while the other sub-decisions would be computed bypassing the feature
vector into a classifier as discussed under decision-level fusion. The overall decision is the
weighted average of all sub-decisions.
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4.2.1. Feature-Level Fusion versus Single Classification Algorithms

All the classifiers listed in Table 4 were applied in feature-level fusion and single
classification algorithms. For comparison, their accuracies were also presented in Table 5.
As shown in the table, the best accuracy of each of the algorithms is written in bold and
their average accuracies were also shown in the table. The best accuracy of feature-level
fusion, 96.56%, is bigger than the best accuracy of each single classification algorithm. The
best accuracies of the two features, performance features and pupil dilation, were from
the SVM algorithm, while for heart rate and eye gaze, their best accuracies were obtained
from the K-Nearest Neighbor. The best result achieved from the single classification
algorithm, 94.72%, for the feature-level fusion was obtained from the SVM algorithm. This
shows that the feature-level fusion outperformed all the single classification algorithms.
These findings also suggest that the data fusion method can perform better than single
classification algorithms by producing higher accuracy in CL measurement.
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Table 4. Machine Learning Classifiers.

Classifier Index Algorithm Parameters

1 Decision Tree Complex tree
2 Medium tree
3 Simple tree
4 SVM Linear SVM
5 Quadratic SVM
6 Cubic SVM
7 Sigmoid SVM
8 Gaussian SVM
9 Polynomial SVM
10 Discriminant Analysis Linear Discriminant Analysis
11 Quadratic Discriminant Analysis
12 KNN Fine KNN
13 Medium KNN
14 Coarse KNN
15 Cosine KNN
16 Cubic KNN
17 Weighted KNN

18 ANN Levenberg–Marquardt algorithm with 10
hidden neurons

19 Conjugate Gradient Backpropagation
and with 10 hidden neurons

20 RPROP algorithm and with 10 hidden
neurons

21 Gradient Descent with momentum
and with 10 hidden neurons

22 Gradient Descent and with 10 hidden
neurons

Table 5. Feature-Level Fusion and Accuracies of Single Classifiers (%).

Classifier
Index

Pupil
Dilation Heart Rate Eye Gaze Performance

Features
Feature
Fusion

1 74.30 90.61 87.32 92.94 94.92
2 94.71 87.22 78.56 79.43 95.32
3 85.32 91.72 83.34 90.73 92.78
4 93.71 81.71 73.43 94.60 90.23
5 76.10 91.10 84.32 90.73 94.34
6 74.73 87.81 83.72 89.62 87.89
7 47.12 77.81 80.65 68.92 79.04
8 94.72 86.11 67.43 88.53 90.43
9 92.00 87.8 78.76 87.42 91.03

10 93.00 84.42 86.51 68.32 91.56
11 90.61 90.00 87.97 67.21 87.65
12 83.21 92.20 76.43 87.43 85.43
13 93.1 88.31 81.00 86.9 89.67
14 92.71 70.00 79.31 65.62 88.98
15 84.12 81.70 90.45 86.93 87.96
16 94.70 87.81 89.00 85.23 86.89
17 91.90 90.64 73.65 88.00 90.87
18 73.98 89.31 84.76 94.00 94.87
19 93.42 87.91 67.78 82.91 95.76
20 89.40 90.80 84.34 56.01 96.56
21 91.61 71.24 78.84 61.34 94.00
22 82.81 62.23 90.43 55.23 93.43

Average 85.79 84.93 81.27 80.37 90.89
Note: Bold font means best accuracies of each algorithm.
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4.2.2. Decision-Level Fusion versus Single Classification Algorithms

The resultant decision-level fusion is the weighted average of the four (4) sub-decisions
indicated in Figure 6b. For every sub-decision, various weights have been tested to
determine the best accuracy for a particular algorithm. All the classifiers in Table 4 were
applied for each of the sub-decisions. The best decision-level fusion accuracy was 94.67%,
which was comparable to the best accuracy of the feature-level fusion.

4.2.3. Hybrid-Level Fusion versus Single Classification Algorithms

Hybrid-level fusion performed better than the feature-level and decision-level fusions
with the highest accuracy of 97.14%. The best accuracy was realized when pupil dilation and
performance were combined for sub-decision one with the SVM algorithm, heart rate for
sub-decision two with the KNN algorithm, and eye gaze for sub-decision three with KNN.

5. Discussions of Results

The primary target of the research is to determine the effects of neurocognitive load
on learning transfer from a novel VR-based driving system. As predicted, the addition of
several turns, intersections, and landmarks on the difficult routes elicited an increase in
psychophysiological activation, such as an increase in pupil dilation, heart rate, and eye
gaze. Thus, our discussions would be as follows.

5.1. Psychophysiological Response Patterns Associated with Cognitive Load

These findings of an increase in heart rate with the increase in cognitive demand are
supported by several studies. Task difficulty elicits an increase in psychophysiological
activation, such as heart rate [21,43,44]. Heart rate increases while the overall Heart Rate
Variability decreases when mental effort increases [45]. As Verway et al. [46] reported,
in a case of participants subjected to cognitive tasks while driving compared to those in
control in which no cognitive task was performed, the results showed that participants
indicated increased heart rate and reduced HRV when performing the cognitive task.
Moreover, Mohanavelu et al. [47] presented a cognitive workload analysis of fighter pilots
in a high-fidelity flight simulator environment during different flying workload conditions.
The results showed that HRV features were significant in all flying segments across all
workload conditions.

Our findings related to pupil dilation and the cognitive load were also supported by
Pomplun et al. [20]. In this study, they came up with a gaze-controlled human–computer
interaction (HCI) task that ran at three different speeds with three different levels of
task difficulty. Each of these levels of task difficulty was combined with two levels of
background brightness, making six different trial types. Each type was shown to each
of the participants four times. Before the commencement of the experiment, participants
were asked not to let any blue circle reach its full size. The results showed that the pupil
diameter was significantly affected by the task difficulty. In another study, Palinko et al. [48]
evaluated the driver’s CL associated with pupil diameter measurements from a remote eye
tracker. They compared the CL estimates based on the physiological pupillometric data
and participant’s performance data. The results obtained show that the performance and
physiological data largely agree with the task difficulty.

The use of performance features is a fundamental assessment of cognitive load [49].
Important features, such as intersection [50], wrong count, and speed [51], are considered
to be performance indicators for a cognitive load. Speed has been shown to decrease as
workload increases [51]. According to Engström J et al., entering into uncertain situations
such as a complex non-signalized intersection increases a cognitive load [50]. All the
aforementioned results are in agreement with our findings.

5.2. Multimodal Data Fusion

As shown in Table 5, the feature-level fusion outperformed all the single classification
algorithms in CL measurement. This can be seen as their best accuracy, and the average
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accuracy is shown in the table. Several types of research that use data fusion are in
existence in the literature [31,34]. Barua S et al. [31] employ ML’s data fusion method
to detect and classify different driver states based on physiological data. They used
several ML algorithms to determine the accuracy of sleepiness, cognitive load, and stress
classification. The results show that combining features from several data sources improved
performance by 10–20% compared to using features from a single classification algorithm.
In another development, X Zhang et al. [34] proposed an ML method using 46 kinds
of photoplethysmogram (PPG) features to improve the cognitive load’s measurement
accuracy. They tested the method on 16 different participants through the classical n-back
tasks (0-back, 1-back, and 2-back). The accuracy of the machine learning method in
differentiating different levels of cognitive loads induced by task difficulties can reach
100% in 0-back vs. 2-back tasks, which outperformed the traditional HRV-based and single-
PPG-feature-based methods by 12–55%. Even though these studies were not designed to
evaluate the effects of neurocognitive load on learning transfer, the results obtained in our
study are in agreement with what is available in the existing results in measuring cognitive
load using the data fusion method.

Putze F et al. [33] applied a simple majority voting fusion in combining skin con-
ductance, EEG, respiration, and pulse to categorize CL in visual and cognitive tasks. The
results revealed that the decision-level fusion outperformed the single modality method in
one task, while it was surpassed in other tasks.

In another study by Hussain S et al. [32], they combined the features GSR, ECG, Eye,
and RESP from physiological sensors into a classification model, and participant’s task
performance features were applied to different classification models; sub-decisions were
then combined using majority voting. This hybrid-level fusion approach improved the
classification accuracy by 6% compared to single classification methods.

6. Conclusions and Future Work

Learning transfer is of paramount concern for training researchers and practitioners.
However, whenever the learning task requires too much cognitive workload, it makes
it difficult for the transfer of learning to occur. The main contribution of this paper is
to systematically present the cognitive workload measurements of individuals based on
their heart rate, eye gaze, pupil dilation, and performance features obtained when they
used the VR-based driving system. Data fusion methods were used to accurately measure
the cognitive load of these users. Easy routes and difficult routes were used to induce
different cognitive loads. Five (5) well-known ML algorithms were considered in classifying
individual modality features and multimodal fusion. The best accuracies of the two features
performance features and pupil dilation were obtained from the SVM algorithm, while for
the heart rate and eye gaze, their best accuracies were obtained from the KNN method. The
multimodal fusion approaches outperformed single-feature-based methods in cognitive
load measurement.

Moreover, all the hypotheses set aside in this paper have been achieved. One of
the goals of the experiment was that the addition of several turns, intersections, and
landmarks on the difficult routes would elicit increased psychophysiological activation,
such as increased heart rate, eye gaze, and pupil dilation. In line with the previous studies,
the VR platform was able to show that the increase in difficulty level found in tasks such
as the difficult routes directly induce autonomic changes in psychophysiological arousal.
We also showed that due to an increase in psychophysiological activation, participants
committed more mistakes when driving on difficult routes. Making more mistakes was
found to be associated with difficult routes. Moreover, increased difficulty was shown to
cause an increase in psychophysiological responses.

To this end, it might be beneficial to consider the data fusion approach when dealing
with physiological data such as the ones used in this article. The methods used in this
writeup could provide significant benefits in developing a knowledge-based or decision
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support system that could provide a reasonable means for physiological sensor signal-
based applications.

Our recommendations for future work are based on the results and limitations of the
work described in this article:

a. Among the limitations of this work is the use of the data collected from a driving
simulator. Even though the data collected from driving simulators are controllable
and reproducible, and it is also possible to encounter dangerous driving conditions
without the risk of physical injury, there are challenges attached, such as motion
sickness, driving a simulator can be boring, it can be more demanding to stay alert,
and participants can be biased towards a false sense of safety. Thus, there is a need
to use the data collected in real-world driving situations in future work and evaluate
the proposed approaches.

b. The correlation among physiological measures such as heart rate, pupil dilation,
and driving performance data would be considered and used as a reference mea-
sure in future work. This will help in reducing the complexity of measuring these
physiological measures in real driving situations.

c. In combining the sub-decisions for the final decision in the data fusion method, other
methods, such as majority voting and classification algorithms, would be considered
instead of the weighted average method. These and other different approaches could
be explored in future work.

d. There is also a need to consider the effects of neuro-cognitive load on gender-based
learning using a VR driving system.
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