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Abstract: The outbreak of the COVID-19 led to a burst of information in major online social networks
(OSNs). Facing this constantly changing situation, OSNs have become an essential platform for
people expressing opinions and seeking up-to-the-minute information. Thus, discussions on OSNs
may become a reflection of reality. This paper aims to figure out how Twitter users in the Greater
Region (GR) and related countries react differently over time through conducting a data-driven
exploratory study of COVID-19 information using machine learning and representation learning
methods. We find that tweet volume and COVID-19 cases in GR and related countries are correlated,
but this correlation only exists in a particular period of the pandemic. Moreover, we plot the changing
of topics in each country and region from 22 January 2020 to 5 June 2020, figuring out the main
differences between GR and related countries.

Keywords: COVID-19; online social media; spatio-temporal analysis; topic modelling; pandemic
information; Twitter

1. Introduction

The outbreak of COVID-19 led to an outbreak of information in major online social
networks (OSNs), including Twitter, Facebook, Instagram, and YouTube [1]. Facing this
massive COVID-19 outbreak and constantly changing situation, OSNs have become an
essential platform for people to seek up-to-the-minute and local information. Moreover,
due to physical isolation and social distancing, people spend much more time on OSNs—
engaging in expressing opinions, encouraging others, openly lambasting mismanagement,
and voicing vitriol, etc. Discussions on OSNs can be a reflection of reality, and topics
about the pandemic mirror the public concerns in real-time. A growing number of research
links OSNs activities to COVID-19. Existing literature has already demonstrated that posts
about the pandemic on OSNs can be a leading indicator of COVID-19 daily cases [2,3],
related discussions on OSNs can be categorised into multiple specific topics [4–6], and
OSNs may help to design more efficient pandemic models for social behaviour and thus the
government can implement more responsive communication strategies [1,7,8]. However,
there are three main problems within the existing research. First, research with geographic
data are based on coarse-grained processing of the location information [2,9]. Second, the
existing topic modelling studies mostly focus on different topics in a relatively long period
(weeks or months) [1,5] and general characteristics of user concerns, which cannot provide
a precise representation of how topics change on a daily basis. Third, shared information
on OSNs over the global or nations [2,9,10] are too general in terms of geographic dividing.

When analysing the COVID-19 information on Twitter by geographic locations, it
cannot be ignored that the movement of population shapes the spatio-temporal patterns of
the pandemic [11]. Population mobility plays an important role in the spread of COVID-
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19. In other words, in terms of regions with highly frequent and mobile cross-border
commuters, research only concerning political sovereign states are biased.

To fill this gap, we introduce the concept of the “relational cities”. Relational cities
are defined as regions that “constituted through globally critical flows of capital, goods,
and ideas, and whose economies are dedicated to intermediary services such as offshore
banking, container- and bulk-shipping, and regional re-exportation” [12]. In a nutshell,
relational cities are a specific set of cities that exhibit spatial transformations due to the
influence of advanced capitalism, and it can be transnational. To be more specific, these
cities tend to be located in cross-border regions, influenced by different linguistic, cultural,
and political systems, and rely heavily on exchange economy, with a large number of
cross-border workers. The high mobility of cross-border workers brings high risks of virus
spreading. Studies have shown that lockdown in relational cities is likely to have more
severe impact on economy than in cities of traditional concept [13]. However, up to the
present time, there is no data-driven analysis of OSNs COVID-19 information about any
relational cities yet. The Greater Region (GR), a cross-border region within Europe with the
Grand Duchy of Luxembourg at its centre and adjacent regions of Belgium, Germany and
France (i.e., Wallonia, Saarland, Lorraine, Rhineland-Palatinate and the German-speaking
Community of Belgium) are a set of typical relational cities. For ease of presentation, we
define the countries mentioned above as the related countries of the GR. This region has
a long history of cooperation between cities of different countries. A large number of
cross-border workers choose to work in Luxembourg, but live in related countries where
residential prices are cheaper compared to Luxembourg [14]. These structural differences
including incomes, prices, living condition and other factors make the region become a set
of typical relational cities with the highest number of the cross-border worker in Europe,
approximately 250, 000 works per day with a dominant orientation from the neighbouring
cities to the Grand Duchy of Luxembourg [15]. This high mobility and cooperation make
the GR a particular and outstanding example: virus spreads due to its high mobility, as the
whole business model in the GR requires a large number of cross-border workers to sustain.
With the implementation of a set of policies including border closures and the progression
of the pandemic, the GR is affected in the economy, daily life, travel, and other aspects.

This study focuses on two dimensions, tweet volume (see Section 4) and tweet text (see
Section 5) to analyse Twitter information in the GR and related countries about COVID-19.
The following two main questions are addressed in the corresponding section.

RQ1 Whether there is a strong correlation between tweet volume and COVID-19 daily
cases in the GR and related countries, and, if so, whether tweet volume can help
predict COVID-19 daily cases?

RQ2 How do the categories of topics discussed change over time in each country and
region? Does the changing scenario of the topic categories in the GR differ from that
of other countries?

We collected 51, 966, 639 tweets from Twitter, which are posted by 15, 551, 266 Twitter
users all over the world from 22 January 2020 to 5 June 2020. Among them are 1, 643, 308
posts posted by 41, 690 users in the GR and its related countries. To investigate RQ1,
basic reproductive rate R0 and effective reproductive rate R(t) in epidemiology [16] are
introduced to slice the pandemic periods, and correlations between tweet volume and daily
cases in each period are calculated by Pearson Correlations (PC). A novel topic modelling
method combing Bidirectional Encoder Representations from Transformers (BERT) [17]
and the Latent Dirichlet Allocation (LDA) topic modelling method [18] is introduced, and a
supervised Support Vector Machine (SVM) [19] for classifying topics into given categories
is trained to study RQ2.

The main contributions in this paper are threefold.

(I) We screen a novel Twitter dataset of 22 January 2020 to 5 June 2020 which contains data
from users with locations labelled in the GR, and related countries including Luxembourg,
France, Germany and Belgium, and the COVID-19 related tweets from Chen et al’s
dataset [20]. This dataset will be shared with the public to advance related research.
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(II) Spatio-temporal analysis is carried out to showcase how the COVID-19 daily cases
are correlated with tweet volume in a long period. We find that tweet volume and
COVID-19 daily cases in the GR and related countries are correlated, and tweet
volume can help predict COVID-19 daily cases, but this strong correlation only exists
during the early period of the pandemic.

(III) We plot the daily discussions on different topic categories by country and region. It
is found that users in the GR show more concern in anti-contagion and treatment
measures before COVID-19 reaches its peak, and have a higher level of interest in
policy and daily life before R(t) < 1 than the related countries.

This study sheds light on how the Twitter users in the GR and related countries react
differently over time through an interdisciplinary approach. It may, therefore, help to
understand changes in public concerns on Twitter during the pandemic, and in particular,
the distinctive characteristics of topics in the GR, a relational city with high mobility.

2. Related Work

Since the pandemic of social media panic spreads faster than COVID-19 outbreak [21],
research has been conducted based on social media platforms to investigate relations
between them. Existing results showed that social media conversations could be a leading
predictor of new pandemic cases and tweets increase in volume before the number of
confirmed cases increases [3,22] and Shen et al. [23] predicted COVID-19 case counts
with reports of symptoms and diagnoses on social media. Moreover, studies showed
that anti-contagion policies could significantly and substantially reduce the spread of
COVID-19 [24–26]. Park et al. [27] demonstrated that information with medically oriented
thematic framework had a broader spillover effect on COVID-19 issues in a Twitter context.
The effect of policies on the mitigation of spread varies, influenced by factors including
culture, demographic information, socio-economic status and national health systems,
where changes in public knowledge may affect the impact of the policies. If the public
adjusts their behaviour in response to information from sources that are not policy-related,
it may change the spread of COVID-19 [24].

Research of public behaviour patterns of the pandemic were conducted based on data
from smart devices [7], search index [28,29], and COVID-19 related conversations on Twitter.
Bento et al. [8] mentioned that, there was a spike in searches for basic information about
COVID-19 when the first case was announced in each state in the United States, but the
first case report did not trigger discussions about policy and daily life. Lwin et al. [30] and
Samuel et al. [31] provided globally insights of the public sentiments and an overview of
public awareness. Topic modelling, an unsupervised approach that detects latent semantic
structure [4], is widely used to analyse the public behaviour patterns. Cinelli et al. [1]
extracted topics with word embedding on a global scale, making the conclusion that social
media may help to design more efficient epidemic models for social behaviour and to
implement more timesaving communication strategies. The LDA model was used by
Abd-Alrazaq et al. [32] and Medford et al. [5] to analyse the topics in the early period of the
pandemic. Zamani et al. [33] proposed a dynamic content-specific LDA topic modelling to
identify COVID-19 related discussion. However, LDA, a bag-of-words approach, which is
widely used to identify latent subject information in a large-scale document collection or
corpus, has some drawbacks: it needs large corpus to train, ignores contextual information
and performs mediocrely in handling short texts [34]. As a result, these studies extracted
the topic over certain time periods, and the time granules were too coarse to accurately
reflect the trend of the topics.

3. Data Description

In this section, we briefly describe how we screened COVID-19 tweets from Chen et al.’s
dataset [20] to build our dataset of GR and the related countries, and how we obtained
information on COVID-19 daily cases for these region and countries.
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3.1. Twitter Data Collection

Twitter, one of the most prominent online social media platform, has been used
extensively during the pandemic. In this study, 51,966,639 tweets posted by more than
15 million Twitter users from 22 January 2020 to 5 June 2020 are hydrated from Chen et al.’s
dataset [20] via the Twitter Streaming API. This COVID-19 Twitter dataset collects tweets
with specific keywords including ‘COVID-19’, ‘coronavirus’, ‘lockdown’, etc. Attribute
with * in Table 1 is contained in the dataset. To comply with Twitter’s Terms of Service,
they only publicly released the tweet ids of the collected tweets. To compose our dataset,
we first collect raw data via the API based on the tweet ids they provided, which included
tweet id, full text, user id and user-defined location information.

Secondly, as the user location information we collected so far is user-defined, nether
accurately revealing a true location nor machine-parseable, we processed the fuzzy location
context into real location information by leveraging geocoding APIs, Geopy (https://bit.ly/
3gfW2PP) and ArcGis Geocoding (https://bit.ly/3f9OUDa). In more detail, user-defined
locations in many cases, detailed country locations are not included, usually just a city or an
abbreviation of a state. If user-defined locations are matched directly based on characters,
users who fill in this kind of context will be ignored. Geopy, a Python client for geocoding
services and ArcGIS Geocoding, a geo graphic information services system, geocode a
fuzzy string into a complete address of a fixed format including state and country. For
example, ‘Moselle’ in Table 1 would be geocoded as ‘Moselle, Lorraine, France’.

As a widely used service on gecoding [35,36], AicGIS has been validated for its accuracy.
Data from past research show that although 16–18% of Twitter users have blank user-defined
location information [37] and 8.03–8.10% of invalid or generic location information (e.g., earth,
heaven). However, for non-blank and general (e.g., country, state,region) data, the geocoding
approach can achieve an accuracy of 80.46–88.50%, regardless of whether the user’s location at
the time of tweeting is different from their user-defined location [38].

Once the location information has been geocoded, users located in the the GR, Luxem-
bourg, France, Germany, and Belgium are screened by character matching. Table 1 gives an
example in the final dataset, and Table 2 shows the summary of the collected tweet data of the
GR, Luxembourg, France, Germany, Belgium and globally. Figure 1 contains two heatmaps of
user locations in the GR and the related countries for a better understanding of this study.

© 2020 Mapbox © OpenStreetMap

(a) The GR

© 2020 Mapbox © OpenStreetMap

(b) The related countries

Figure 1. User location heatmap of the Greater Region (GR) and the related countries.

https://bit.ly/3gfW2PP
https://bit.ly/3gfW2PP
https://bit.ly/3f9OUDa
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Table 1. A sample of our COVID-19 Twitter dataset.

Attribute Description Example

Tweet_id A unique identifier for a Tweet 12319668395******

Full_text Text of a tweet
RT @******:
The Diamond princess is
a UK ship managed by the US.
UK should Be Responsible.
#DiamondPrincess #coronavirus

User_id Unique identifier for this user u9181074902*****

User_geo_orginal User-defined location information Moselle

User_geo Geocoded user location Moselle, Lorraine, France

Table 2. Summary of our COVID-19 Twitter dataset.

Region/Country Tweet Volume USer Volume

Twitter 51,966,639 15,551,266
The GR 35,329 7894
Luxembourg 7512 1545
Belgium 119,467 31,446
France 1,050,312 288,009
Germany 430,688 87,796

3.2. COVID-19 Data Collection

The dataset published by the European Center for Disease Prevention and Control [39]
allows us to obtain COVID-19 data including daily cases, deaths and locations for the
country we selected. As there is no official COVID-19 data published for the GR, which
is composed of Luxembourg, Wallonia in Belgium, Saarland and Rhineland-Palatinate
in Germany and Lorraine in France, we add up all the data for the cities and regions
mentioned above from the datasets [40–42] published by corresponding countries as the
final the GR data when counting daily cases and deaths in the GR. It should be noted
that as the number of daily new cases in France is not available at the regional level, and
deaths, hospitalisations, departures data have been published only since 18 March 2020,
data for Lorraine is counted as zero until 18 March 2020, and the sum of hospitalisations,
hospital departures and deaths is considered as the total number of cases on that particular
day. Figure 2 shows the daily tweet volume and COVID-19 new cases of each country
and region.
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Figure 2. Daily tweet volume and COVID-19 new cases (On 3rd June, France published a revision of data that
lead to a negative number of new cases, see [42] for the original news).
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4. Correlation between COVID-19 Daily Cases and Tweet Volume

To explore the correlation between tweet volume and COVID-19 daily cases in GR and
the related countries, we introduce basic reproductive rate R0 and effective reproductive
rate R(t) in epidemiology to slice the periods of the pandemic, and a spatio-temporal anal-
ysis of the correlation between tweet volume and daily cases in each period is conducted
by Pearson Correlations (PC).

4.1. R(t)-Based Time Division

R0 is the expected number of cases arising directly from a single case in a population
where all individuals are susceptible to infection [16] and R(t) represents the average
number of new infections caused by an infected person at time t. If R(t) > 1, the number
of cases will increase, e.g., at the beginning of an epidemic. When R(t) = 1, the disease
is endemic, and when R(t) < 1, the number of cases will decrease. For the calculation of
real-time R(t), we use a Bayesian approach [43] with Gaussian noise to calculate the time-
varying R(t) based on daily new cases, which is also the official method for calculating
R(t) in Luxembourg [44]. While the study of calculating R0 of COVID-19 have not reached
a consensus conclusion [45–48], we use R0 estimated by WHO [49]. with 1.4 ≤ R0 ≤ 2.5, in
this study. The results of time-varying R(t) for the GR, Luxembourg, Belgium, France, and
Germany are shown in Figure 3.
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Figure 3. Effective reproductive rate (R(t)).

The relationship between R0 and the R(t) indicates the spreading ability of the virus.
As the estimation of R0 values is a range, we discuss R0 here as a range as well. When
R(t) > max(R0), it indicates that the virus is spreading at a higher rate than natural
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transmission, and the number of cases is about to reach a peak. When min(R0) ≤ Rt ≤
max(R0), the virus spreads within the basic reproductive rate R0 range, which implies
that the effectiveness of the containment measures is not yet reflected in R(t). In short,
the virus is still spreading freely at its natural transmission. When 1 ≤ Rt < min(R0), it
means that the virus is spreading at a rate lower than R0, the transmission is impeded, and
the containment measures are in effect. When Rt < 1, the virus spreads slowly, and can
eventually die out.

Here, we divide the pandemic into four periods based on the above analysis, which
are: Pre-peak period (if R(t) peaks for the first time on day t0 and begins to decrease, with
R(t) < 2.5 on day t1, (t1 ≥ t0), then the pre-peak period is the 30-day period before t1).
Free-contagious period (1.4 ≤ Rt ≤ 2.5); Measures period (1 ≤ R(t) < 1.4); Decay period
(R(t) < 1). It should be noted that the second wave of the pandemic did not begin at
the time when this study was conducted, so this division of intervals only applies to this
time period, i.e., from 22 January 2020 to 5 June 2020. The precise time duration of these
pandemic periods for each country and region is summarised in Table 3.

Table 3. Time duration of the four pandemic periods for the GR, Luxembourg, Belgium, France and Germany.

Pre-Peak Free-Contagious Measures Period Decay Period

The GR 2/14–3/15/2020 3/15–3/21/2020 3/21–4/17/2020 4/17–6/05/2020
Luxembourg 2/19–3/20/2020 3/20–3/24/2020 3/24–4/01/2020 4/01–6/05/2020
Belgium 2/04–3/05/2020 3/05–3/25/2020 3/25–4/18/2020 4/18–6/05/2020
France 2/05–3/06/2020 3/06–3/30/2020 3/30–4/23/2020 4/23– 6/05/2020
Germany 1/29–2/28/2020 2/28–3/24/2020 3/24–4/02/2020 4/02–6/05/2020

The exact numbers of days of each pandemic period are shown in Figure 4 for the
region and countries. The Free-contagious period in Luxembourg and the GR is particularly
shorter (4 and 6 days) compared to other countries (24–20 days). Being a relational city
characterised by high mobility, it may be relatively difficult to control the pandemic. The
reason why the GR and Luxembourg, has a shorter Free-contagious period instead, will be
discussed in Section 5 in terms of the public concerns that reflected by tweet text.

GR Luxembourg Belgium France Germany
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Figure 4. Total days for each pandemic period.

4.2. Research Question RQ1

To answer RQ1, we test the following hypotheses:

H1 There is a strong correlation between tweet volume and COVID-19 daily cases in the
GR and related countries.
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H2 Tweet volume can help predict COVID-19 daily cases.

We calculate the correlation between tweet volume and COVID-19 daily cases by PC,
where a PC with a large absolute value means greater relation strength. The results are
shown in Figure 5. A lag refers to the tweets occurring after the cases; a Lag = −5 days
means that we match the daily cases with the tweet volume from five days earlier, in other
words, a 5-days lead.

(a) Pre-peak (b) Free-contagious (c) Measures (d) Decay

Figure 5. PC (Pearson’s correlation) between tweet volume and COVID-19 daily cases with different lags.

Pre-peak period. As shown from Figure 5, there is a clear trend of strong correlation
(PC > 0.8, p < 0.05) with lags during the Pre-peak period, reaching its’ maximum at −5 or
−6days, indicating that a correlation exists between tweet volume and COVID-19 daily
cases and tweet volume can help predict COVID-19 daily cases in this period. This is highly
consistent to the conclusions presented in the existing studies [2,3,22,50].
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Free-contagious period. There is no clear trend of correlation with lags except the value
of Luxembourg, indicating that tweet volume cannot help predict the daily cases in the
Free-contagious period. The period only lasted for 4 days in Luxembourg, which is too
small to make PC a reflection of the correlation. However, the PC values show a highly
negative correlation between tweet volume and daily cases. This indicates that there is a
short downward trend in the discussion of the pandemic after it reached its peak, even
though the number of cases continued to rise rapidly. This result validates the conclusion
of Smith et al. [51] from our dataset, who noted that public concerns of disease decline
sharply after the peak even though the infection rates remain high. In other words, the
public concerns of the pandemic decline after the Pre-peak period.

Measures period. There is a clear trend of correlation with lags, tweet volume begins to
level off, with a 0 or 1-day-lag moderate correlation (0.8 > PC > 0.3, p < 0.05) to the daily
cases. Tweet volume cannot help predict daily cases here because it fluctuates with the
number of cases on the current or previous day. It is worth noting that Pearson’s coefficient
is sensitive to outliers and is not robust. With too few dates included, a single outlier can
change the direction of the coefficients. This period existed for only 8 days in Luxembourg,
resulting in an anomaly value (PC = −0.903). It is assumed here that fluctuating changes
in tweet volume during this period are influenced by local news and policies, and further
discussion will take place in Section 5.

Decay period. The correlations between tweet volume and daily cases occur in two ways.
One is weakly correlated, the other reveals a correlation, but the trend of correlation with
lags is insignificant. Both ways demonstrate that it is not possible to estimate daily cases
with the help of tweet volume during this period.

In summary, with the Spatio-temporal analysis of the correlation between tweet
volume and COVID-19 daily cases during the four periods of the pandemic, we reject the
hypothesis that there is a strong correlation between tweet volume and COVID-19 daily
cases in the GR and related countries (H1) and tweet volume can help predict COVID-19
daily cases (H2). More accurately, H1 and H2 can only be confirmed during the Pre-peak
period. In this period, regardless of the time at which R(t) peaks, there is a 5–6 day lead
between tweet volume and COVID-19 daily cases. Moreover, before the pandemic strikes,
there is a high level of tweet volume regarding the pandemic. On the particularity of the
GR, we find that the Free-contagious period in the GR and Luxembourg are exceedingly
shorter (6 and 4 days, respectively), during the Measures period.

5. Topic Modelling and Classification of Tweets

In the previous section, we conduct an overarching preliminary analysis of tweet
volume, but without the in-depth discussion of tweet text. In this section, we build a
workflow to analyse tweet text as shown in Figure 6. This workflow includes tweet text
pre-possessing, topical modelling, and classification of the generated topics, each part is
described in details below. We perform topical modelling on the tweet text to extract the
main topics discussed every day in each region and country. After extracting the tweet
text topics, we generally followed the pipeline of previous studies [52,53]. However, the
number of topics extracted in previous studies was relatively small, so the topics were
classified by manually labelling. The number of topics we extract is relatively large. Hence,
we take a supervised learning approach and train a classifier to distinguish these topics
into 7 categories in order to observe and analyse the changes in the topics discussed in each
region and country during different periods of the pandemic. In parallel, we observe and
investigate the changes of topic categories, and focus on the differences that exist in the GR.
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Figure 6. Workflow of topic modelling and classification.

5.1. Text Pre-Processing and Topic Modelling

Text pre-processing. Prior to topical modelling, the tweets data needs to be pre-
processed. All text are lower-cased, while URLs that mention usernames and ‘RT’ are
removed as well. Besides, punctuation and numbers are filtered out, typos are corrected
by Symspel [54] and stop words are removed. Since the tweets are collected based on
the keyword search, each tweet contains keywords such as “coronavirus”, “koronavirus”,
“corona”, “covid-19”, and “covid”. As these frequent subject-specific words are unlikely to
assist for classification and topic modelling [55] and result in a large number of topics in
the final result containing these words, rather than a more precise topic about COVID-19.
In detail, if these general high-frequency keywords are not removed, these words will
be ranked high in the results of topic modelling. As a consequence, this will make the
final extracted topics not well represent the topics of the clusters of tweet text. Therefore,
we considered these words as subject-specific stop words and remove them following
Älgå et al.’s work [56].

Topic modelling. Aiming to identify the latent topics of the tweets posted by the
public in the GR and related countries, we adopt the general structure of contextual topic
embedding method (CTE) [57] to extract daily topics and get a more accurate picture of
topic trends. CTE mainly consists of two components, LDA and BERT, to extract different
information from sentences to embedding.

LDA, a bag-of-words approach which is widely used to identify latent subject infor-
mation in a large-scale archives or corpus has its drawback: it needs large corpus to train,
ignores contextual information and performs mediocrely in handling short texts [34].

BERT utilises bidirectional transformers for pre-training on a large unlabelled text
corpus, taking both left and right context into account simultaneously, which compensates
for the shortcoming of LDA. Also, BERT is a method available for sentence embedding,
thus we concatenate the generated tokens of each tweet text as input sentences for BERT
to obtain sentence embedding vectors. CTE combines the sentence embedding vector
generated by BERT with the probabilistic topic assignment vector generated by LDA with
a hyper-parameter γ. After obtaining the concatenated vector in high-dimensional space,
CTE uses an autoencoder to learn a low-dimensional latent space representation of the
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concatenated vector with more condensed information. Then k-means [58] is implemented
for clustering, and the number of clusters k, that is, the number of topics, reserved as a
hyper-parameter. We extract the word frequency in each cluster, sort and then take the
top ten as the representative topics of that cluster. In terms of visualisation, Uniform
Manifold Approximation and Projection (UMAP) [59] is used for low-dimensional latent
space degradation, which is the state-of-the-art visualisation and dimension reduction
algorithm.

The CTE rather than a single LDA model is chosen as our topical modelling approach
due to the fact that LDA is designed for monolingual contents and lacks the structure
necessary to generate effective multilingual topics [60]. The GR, as a relational city, are
multilingualism. CTE includes BERT, a sentence embedding model that can handle multi-
language, can tackle this problem. Two adjustments are therefore made to the original
CTE. For one, we adopt the BERT-based multilingual model as the pre-trained model
in BERT [17] In addition, some words appear less frequent than in English which is
predominantly spoken and are easily overlooked in LDA. Thus, we adopt the TF-IDF
model to determine word relevance in the documents [61]. We further feed the generated
corpus by TF-IDF to LDA, instead of simple bag-of-words corpus.

Average coherence score [62,63] and average silhouette score [64] are utilised as the
metrics of CTE. We calculated an average coherence score by calculating the topic coherence
for each topic individually and averaging them. The hyper-parameters are tuned to obtain
the best results. The value of k is chosen from {1, 2, . . . , 15} and the value of γ is chosen
from {0.1, 0.2, . . . , 0.9}. The model arrive at the optimal with k = 7 and γ = 0.5.

The results are shown in Table 4 and a sample of clustering result from UMAP is
shown in Figure 7. It can be observed from Table 4 and Figure 7 that the results generated
by CTE are coherent and can be observed as well-separated clusters.

Table 4. Average coherence score and average silhouette score of contextual topic embedding
method (CTE).

Country Coherence Score Silhouette Score

The GR 0.432 0.893
Luxembourg 0.474 0.894
France 0.351 0.590
Belgium 0.377 0.864
Germany 0.336 0.655

We extract topics by day for 137 days from the text of each country’s tweets and
region and get a total of 4795 topics. Since the essence of CTE is to cluster the tweet
text’s embedding vectors and extract the top ten words with the highest frequency in
the tweet text corresponding to all vectors in each cluster as the final topic. The clusters
containing too few tweets and their corresponding topics do not convey information well,
so we remove the topics containing no more than 2 tweets from the clusters and end up
with 4763 topics. Then we randomly selected 51% (2435 in total) of the topics from each
country and region for manual labelling following the central idea existing work [65,66].
We used three annotators to label these topics and only labels that are agreed by at least
two annotators can be used as the final label.
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Figure 7. A sample of Uniform Manifold Approximation and Projection (UMAP) clustering results.

5.2. Topic Classification

We classified the 2435 topics manually into the following 7 categories:

1. ‘Wuhan and China’: Topics about Wuhan and China.
2. ‘Measures’: Topics about basic information including symptoms, anti-contagion and

treatment measures of COVID-19.
3. ‘Local news’: Topics about local COVID-19 news, including daily new cases, deaths,

etc.
4. ‘International news’: Topics about international COVID-19 news
5. ‘Policy and daily life’: Topics about COVID-19 related policies encompass lockdown,

closure of borders, limits on public gatherings and the impact of the policies on daily
life.

6. ‘Racism’: Topics about racism.
7. ‘Other’: Other topics.

The division of these 7 categories is based on the classification of COVID-19 related
Twitter topics analysis in existing studies [32], and is determined empirically on the basis
of common knowledge and the status quo.

These manually classified topics are used to train a Support Vector Machine (SVM) [19]
for supervised classification. The reasons for training a classifier instead of manually
labelling all the topics are, on the one hand, the classifion of all the topics manually is
time-consuming, and, on the other hand, the classifier can be used in further studies.

Words of each topic are converted to word frequency vectors with TfidfVectorizer
and country are encoded with Label Encoder [67]. The feature vector is consisted by these
two elements. Since our manually labelled dataset is imbalance in classification, Synthetic
Minority Oversampling Technique [68] is utilised for oversampling imbalanced the dataset
and mitigate imbalances. The dataset is split, 80% of which is the training dataset and
20% the test dataset. Grid search with 10-fold cross-validation is deployed on training
dataset to find the optimal hyper-parameter, and the final SVM model is obtained with the
entire training set Table 5 shows the precision, recall, F1 score, support and Macro-average
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F-Score of the trained classifier for each topic category. Then, the obtained SVM model
classifies the rest of topics. Table 6 shows the number of topics of each category for each
country and region.

The categories with higher percentages are topics of Wuhan and China and policy
and daily life. In general, the number of topics about policy and daily life is much higher
in Luxembourg (56.6%) than in other countries (ave = 33.0%). France, on the other hand,
shows a high level of interest in local news (30.2%), compared with other countries (9.4%).
In terms of the overall data of the GR, however, it does not show particular differences
compared with other countries. Note that as there may be cases where the cluster for
a topic contains no more than two tweets, we treat such topics as the invalid topic and
remove them. This leads to a different total number of topics in each country. Next, we
introduce dates to plot the changes in categories over time.

Table 5. Metrics of the classification results.

Category Precision Recall F1-Score Support

1 0.89 0.77 0.82 163
2 0.92 0.93 0.93 166
3 0.80 0.79 0.80 155
4 0.74 0.86 0.80 155
5 0.73 0.68 0.71 149
6 0.99 1.00 0.99 157
7 0.97 1.00 0.98 142
Macro avg 0.86 0.86 0.86 1087

Table 6. Topic volume for each category/country (region).

Category The GR Luxembourg Belgium France Germany Total

1 245 168 287 202 315 1217
2 64 34 48 65 41 252
3 99 44 109 285 110 647

%midrule 4 134 77 114 52 167 544
5 353 525 370 250 295 1793
6 23 7 23 31 15 99
7 41 72 15 60 23 211

Total 959 927 966 945 966 4763

Figure 8 shows the tweet volume contained in each category demonstrated in the form
of percentage of the total tweet volume on that day (CR), with the darker red representing
higher CR. The interval colored in white represents the period from 22 January to the
start of Pre-peak period, other regions in different colours indicate, in sequence, Pre-peak
period, Free-contagious period, Measures period, and Decay period. The black dotted line
illustrates the date on which the first case appeared. The figure shows an interval between
the date of the first case and the date of consecutive cases every day in the GR. The solid
black line indicates the date that new cases appear every day since that date. For ease of
discussion, we name the day as ‘outbreak day’ (OD).
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Figure 8. Topic categories in the GR and related countries. 1: Wuhan and China; 2: Measures; 3: Local news; 4: International
news; 5: Policy and daily life; 6: Racism; 7: Other.

5.3. Research Question RQ2

In this section, we aim to answer RQ2, i.e., how do the categories of topics discussed
change over time in each country and region? Does the changing scenario of the topic
categories in the GR differ from that of other countries?

Figure 8 reveals that initially, the main topic in all the countries and region is about
China, but over time the categories of topics change. In France, Germany and Belgium, the
appearance of the first case trigger only a small amount of discussions about the protective
measures, and related discussions do not start to increase until OD. In other words, the
public concerns in these region and countries do not really heed the protective measures
until OD, when the virus is already spreading. The change in topic is at odds with the
conclusion of Bento et al. [8] that the announcements of the first case have the greatest
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impact on the public concerns for searching basic information about COVID-19 and its
symptoms.

Moreover, the report of first case does not stimulate discussions about policies and
daily life as well, and discussions about it do not emerge frequently until OD. This may
be explained by the existence of a large interval between the date of the first case and OD
(27.3 days on average) in France, Germany, and Belgium. During this interval, sporadic
cases may not attract enough public concerns, and the public’s concerns is still focused on
China-related news.

The situation is different in the GR, a relational city, and in Luxembourg, its centre.
Figure 8 shows that the public in Luxembourg and the GR start to have discussions about
measures 1–2 days before the first case appears. Furthermore, during the Pre-peak period,
the CR of measures is much higher in the GR (3.41%) and Luxembourg (7.62%) than in
France (1.90%), Belgium (1.84%) and Germany (0.0%). It should be noted that discussions
of measures are not totally non-existent in Germany, but the tweet volume may be too
small to be recognised as separate topics during the topic modelling process. By comparing
the topics discussed in other countries of the same time, this may be explained by the late
occurrence of the first case in Luxembourg and the GR, where the other three countries have
already passed OD, the outbreak in other countries may have attracted public concerns
in the GR and Luxembourg. Concurrently, the results indicate that the GR exhibits a
high level of interest in policy and daily life with 47.1% of total tweet volume during
the Free-contagious and the Measures period, while for Luxembourg, this rate is 66.1%.
Figure 9a shows boxplots of the distribution of the CR on policy and daily life during the
Free-contagious and the Measures period. This shows that the public is more responsive
to policies as a region that relies on foreign labour and has high mobility than Belgium,
France and Germany.

The reason why Free-contagious is a period more transient in Luxembourg and the
GR compared with other regions is still unclear, but part of the reason may stem from
the fact that the public concerns to the virus itself during Pre-peak period led to better
responsiveness to the anti-contagion policies in these region and countries. Interestingly,
in Luxembourg, the discussion about policies and daily life persisted before the first case
is announced and increased immediately after then. A word cloud of the topics from 22
January to 1 March (date of the first case) of Luxembourg is depicted in Figure 10, this
shows that the topics are mainly travel-related. This may be explained by the fact that the
proportion of foreign residents in the Luxembourg region is 47.4% [69], and residents are
more concerned about travel-related policies in Luxembourg and other countries.

In addition, Figure 9b illustrates that the Free-contagious and Measures periods
coincided with the France municipal election, and thus the public concerns in local news
among French is higher. In the end, during the Decay period, while there is a downward
trend (p < 0.05) in the total daily tweet volume, there is a upward trend (p < 0.05) in the
CR of policy and daily life, except in Luxembourg, where the rate is consistently high.

(a) Policy and daily life (b) Local news

Figure 9. Distribution of proportion of tweets on ‘policy and daily life’ and ‘local news’ during
Free-contagious and Measures period.
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Figure 10. Word cloud of Luxembourg Tweets from 22 January 2020 to 1 March 2020.

6. Conclusions and Discussion

In this paper, we studied the information related to COVID-19 on Twitter, introduced
the concept of relational city and chose the GR and its related country for our exploratory
study. Our analysis has focused on two dimensions of pandemic information on Twitter,
i.e., tweet volume and tweet text.

Based on the Spatio-temporal analysis of the correlation between tweet volume and
COVID-19 cases during the four periods of the pandemic, our answer to RQ1 is that tweet
volume and COVID-19 cases in the GR and related countries are correlated, but this strong
correlation only exists during the Pre-peak period of the pandemic. Regardless of the time
at which R(t) peaks, there is a 5–6 day lead between tweet volume and COVID-19 cases.

For RQ2, we found out the categories of topics discussed change over time about
COVID-19 concerned by Twitter users from different countries and region. While a common
topic on China was shared initially among all analysed regions, in all the countries and
regions, the main topic was about China, the region and countries reacted differently on
the topic after the first case emerged. In France, Germany, and Belgium, the first case did
not attract much attention to anti-contagious and treatment measures, policies and local
news, until a complete outbreak. Whereas the GR, as a relational city with a large number
of cross-border workers, has shown high interest in policies since the first case, even if
no lockdown policy has been implemented at that time. At the same time, Luxembourg,
which has a foreign resident population of 47.4%, has shown a great concern for policies
including travel from the beginning of the pandemic, which is not found in the other
analysed countries.

We speculate that the reason for this can be explained by the fact that in these countries
there was not an immediate outbreak of the pandemic after the first case, but rather after
an interval of an average of 27.3 days. Thus, there may be an underestimation of the
severity of the pandemic by the public in these countries during the Pre-peak period.
We tentatively suggest that a possible explanation for this phenomenon is optimism bias,
which makes people believe their exposure risk to disease is low [70]. During a pandemic,
people often exhibit an optimism bias, a cognitive bias that causes someone to believe that
they will be less likely to get involved in negative events [71]. Here, we offer a speculative
interpretation that even though these countries have shown sustained and long-term
concern about COVID-19 occurring in China on Twitter, optimism bias emerged when
COVID-19 appeared, causing the public to ignore the emergence of the cases and to pay
little attention on anti-contagious measures and government policies [72]. Further analysis
of this issue will be undertaken in future studies.
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Our results in the current paper can be used to understand topics being discussed
on Twitter, and the differences exhibited in the GR, the relational city, when facing the
pandemic. At the same time, we make a speculative conclusion of the ideal point of time to
conduct the pandemic precaution advocacy which help to provide policy support.

There are still some limitations of our study. First, in our dataset, we did not detect
misleading information posted by bots, which can lead to a possible bias in topical mod-
elling and classification. For our initial exploration of topic categories, we chose SVM
to build a baseline method for topic classification. We will utilise other state-of-the-art
text classification methods to refine the classification in further study. Second, our case
study has some statistical limitations. Data from more countries will be included in future
studies to ensure the statistical significance of the conclusions. Third, more research can be
performed based on our dataset. For example, in future, we will conduct sentiment analysis
on the tweets of different categories at each pandemic period to find out the changing in the
public’s sentiment about the pandemic and how it differs between the GR and other coun-
tries. And for RQ2, multi-class sentiment analysis with BERT will be conducted to figure
out whether and to what extent people are optimistic or pessimistic about being affected
by a pandemic during the Pre-peak period. Finally, during the writing of this article, the
second wave of COVID-19 emerges in Luxembourg and other studied countries. In a future
study, we will conduct a comparative study focusing on the regions that have the second
wave. Sentiment analysis and text classification with the state-of-the-art method will be
deployed to investigate whether OSNs information impact public attitude and behaviour.
We will attempt to identify topics that may help to predict the second wave, such as laxity
or resistance to policies and anti-infection measures. Such timely indicators are potentially
useful for making appropriate policy adjustments to avoid a new pandemic outbreak.
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