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Abstract: The head and flow rate of a pump characterize the pump performance, which help deter-
mine whether maintenance is needed. In the proposed method, instead of a traditional flowmeter
and manometer, the operating points are identified using data collected from accelerometers and
microphones. The dataset is created from a test rig consisting of a standard centrifugal water pump
and measurement system. After implementing preprocessing techniques and Convolutional Neural
Networks (CNNs), the trained models are obtained and evaluated. The influence of the sensor loca-
tion and the performance of different signals or signal combinations are investigated. The proposed
method achieves a mean relative error of 7.23% for flow rate and 2.37% for head with the best model.
By employing two data augmentation techniques, performance is further improved, resulting in a
mean relative error of 3.55% for flow rate and 1.35% for head with the sliding window technique.

Keywords: standard water pump; operating point estimation; convolutional neural network

1. Introduction

Nowadays, pumping units are installed in many plants for a wide variety of applications.
Due to the long operating time, wear and tear such as erosion, abrasion and corrosion are
inevitable. The monitoring of operating points and a subsequent evaluation of the condition
of the pump may support the decision for required maintenance. Traditionally, flowmeter
and manometers are used to determine the operating point of the pump. The installation of
these sensors needs to be determined at the beginning of the pipe design—a later installation
will be more complicated and troublesome. While an accelerometer and microphone are
very flexible, an accelerometer is fixed on the desired surface magnetically, a microphone is
fixed by a bracket. The type, position and number of sensors can be easily changed at any
time. The idea is to use collected data from those flexible sensors to estimate the operating
point of the pump. The next phase of the project aims to extend the method to explore the
possibility of using the model trained on one pump to predict the operating state of another
pump. In addition, the use of accelerometers and microphones will have the added benefit of
being implemented for tasks such as fault identification, cavitation detection, etc., where the
conclusions cannot be obtained directly from flow and pressure measurements.

In recent years, convolutional neural networks (CNNs) have attracted widespread
attention and obtained huge success in various tasks, such as image recognition and nature
language processing. Neural networks have the extraordinary ability of automatic feature
extraction. More importantly, expert experience or background knowledge is not necessary
for this learning process. Monitoring pump operating point intelligently with CNNs can
improve the operation safety, and reduce unnecessary maintenance and personal cost.

Several researchers have applied this powerful tool into the field of hydraulic machin-
ery. ALTobi et al. implemented a Multilayer Feedforward Perceptron Neural Network
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(MLP) and Support Vector Machine (SVM) to realize the fault condition classification with
vibration signal [1]. The faults on the pump were created with a specifically designed test
rig. The classification rate reached 99.5% and 98.8%. He et al. combined CNN and a long
short-term memory (LSTM) network to conduct the classification of gradually changing
faults, reaching an accuracy of 98.4% [2]. Tang et al. proposed a fault diagnosis method for
axial piston pumps using a CNN model. The raw vibration signal is converted into images
through continuous wavelet transformation [3]. The classification accuracy for five fault
types on the test set achieved 96% in 10 trials. Zhao et al. developed an unsupervised
self-learning method for the fault diagnosis of centrifugal pumps [4]. Stacked denoising au-
toencoder (SDA) is implemented to extract features from non-stationary vibration. Wu and
Zhang use CNN to identify stall flow patterns in pump turbines [5]. The prediction of
stall flow in blade channels achieved an accuracy of 100%, which outperforms existing
methods. Look et al. built Auxiliary Classifier Generative Adversarial Networks to detect
the occurrence of cavitation in hydraulic machinery, reaching an accuracy of 95.1% for a
binary classification [6]. With modified objective function using additional I-divergence,
the accuracy was further improved to 98.1%. Cavitation is a common phenomenon in
hydraulic machinery, leading to damage of components and a loss of efficiency. Since visual
inspection is in many cases not possible, acoustic emissions are used as an alternative to
analyze the degree of cavitation erosion (Look et al., 2019) [7]. Harsch et al. implemented
an anomaly detection neural network to estimate the cavitation erosion damage using
acoustic emissions [8]. Sha et al. proposed a multi-task learning framework with a 1-D
double hierarchical residual network [9]. Using an emitted acoustic signal, this network
achieves cavitation detection and cavitation intensity recognition at the same time. Besides,
the influence of the sampling rate is investigated. Harsch and Riedelbauch proposed a
graph neural network model to directly predict the final steady state velocity and pressure
fields [10]. The method works well for different systems and does not need a priori domain
information. Inspired by those successful applications, the feasibility of the operating point
estimation of pumps with CNN is investigated. Gaisser et al. introduced a general-purpose
framework to analyze the acoustic emissions of various hydraulic machineries for cavita-
tion detection [11]. The unique advantage of the system is its exclusive training with data
from model turbines operated in laboratory settings, enabling it to be directly applied to
different prototype turbines in hydro-power plants.

Inspired by the various successful applications of neural networks in the field of hy-
draulic machinery, we choose the prediction of operating point as an initial goal. Moreover,
it is meaningful to compare the input signals in order to know which positions contain
more valuable information related to the operating state. High-quality input signal is the
basis for subsequent extension to more applications.

There are four main sections, including the introduction. In the second section, the
dataset including the details of the test rig and measurement conditions are introduced.
Additionally, the preprocessing of raw data, network structure and two data augmentation
methods are presented. The third section presents the experiment setup of neural network
training, evaluation metrics and the analysis of the results. The fourth section outlines the
conclusion and the outlook for further research. This manuscript is an extended version
of the ETC2023-160 meeting paper published in the Proceedings of the 15th European
Turbomachinery Conference, Budapest, Hungary, 24–28 April 2023 [12].

2. Methods
2.1. Dataset

Data are collected on the test bench shown in Figure 1. The pump unit is located
in an anechoic chamber, guaranteeing that the microphones only measure the sound of
the pump unit. The base is isolated from the metallic grid at the bottom by a rubber pad.
A thermometer, flowmeter and manometers are installed on the pipeline. To verify the
feasibility of the method, a relatively pure signal obtained from a well-isolated environment
is firstly used. In real industrial scenarios, there is inevitably some noise and the vibration
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brought from other facilities. How the signal with noise will affect the prediction result is
to be analyzed and discussed in the next stage of the project.

In the experiments, standard water pumps feature a specific speed nq = 15.6 with an
impeller diameter of 209 mm. The specific speed is defined as:

nq = n
√

Q

H
3
4

, (1)

where n is rotational speed (r/min), Q is flow rate (m3/s) at the point of best efficiency and
H is head (m) at the point of best efficiency.

A frequency converter is used for speed regulation of the pump. Data are measured
under six rotational speeds: 500, 950, 1160, 1500, 2100, 2400 r/min. When measuring
individual speeds, the valve opening is step-by-step adjusted to ensure that the pump unit
operates along its performance characteristics at different operating points. All measure-
ments are carried out without the presence of cavitation. Flow rate and pressure at suction
side and pressure side are collected. The head, a parameter not directly measurable, is
calculated as follows:

H =
pp − ps

ρg
+

1
2g

((
Q
Ap

)2 − (
Q
As

)2) + h, (2)

where pp/s is the static pressure at pressure side or suction side, Ap and As are correspond-
ing pipe cross-section areas, h is the height difference between the pressure sensors on both
sides. The measured flow rate and calculated head are fed into the neural network during
the training process as the target value.

Six accelerometers (Type KS74C and KS80D) are magnetically fixed on the surface of
the bearing house and base using a supplied holding magnet. The frequency range of the
KS74C type is 0.13–16 kHz, and the frequency range of the KS80D type is 0.13–22 kHz.
Vertical accelerometers measure the vibration parallel to the axis of the pressure pipe,
while the axial accelerometer measures the vibration parallel to the axis of the suction
pipe. The measurement locations and directions are chosen based on the standard ISO
10816-7:2009. Two microphones (Type MM210) with a frequency range from 3.5 Hz to
20 kHz are hung at both sides of the pump unit. The distance from microphone 1 to the
pump is 1 m; the distance from microphone 2 to the motor is 0.3 m. These locations are
chosen to ensure that the main sources of the microphones are the pump and the motor,
respectively. Devices, sampling rate, duration of the measurement and the locations of the
sensors are shown in Figures 1 and 2.

Figure 1. (Left): Schematic diagram of test bench (T: Thermometer, Q: Flowmeter, M: Motor, p,
∆p: Manometer); (Right): Details of measurements.
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Figure 2. Location of sensors.

2.2. Preprocessing

Instead of processing raw signals, including a huge amount of data points, convolu-
tional neural networks are better suited and more adept at handling image inputs. Hence,
the idea of preprocessing is to convert one-dimensional time signals into two-dimensional
representations, Figure 3. The middle part of the raw signal is trimmed to a length of one
second. After performing standardization, the data has a mean value of zero and a unit
standard deviation. Standardization is a re-scale operation that means subtracting the
mean and dividing by the standard deviation. Note that the values do not have a bounding
range now.

Figure 3. Process of preprocessing.

As a powerful time frequency analysis method, Short Time Fourier transform is
adopted to realize the transformation. The signal is divided into parts of equal length, and
a Fourier transform of each segment is separately computed. Therefore, the spectrogram
includes time and frequency information. Tukey windows of length 256 are implemented
with a shape parameter of 0.25 and 50% overlap. Based on the results of pre-experiments,
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converting the linear frequency axis of the spectrogram into a logarithm axis, i.e., Log-
Spectrogram, improves the performance of the network.

Although the duration of each signal is one second, the aspect ratio of the resulting
spectrogram varies due to different choices of sampling rate and window length. To make
it easier for possible subsequent multi-signal combinations and data augmentation, the
spectrogram of signals collected from various devices is uniformly resized to 224 × 224.
Before being fed into the neural network, the data are normalized into the range [0, 1] and
repeated three times in the first dimension.

2.3. Network Structure

To construct a typical CNN, there are three essential building elements in general: a
convolutional layer, pooling layer and fully connected layer [13]. The convolutional layer
consists of lots of filters, each of that being a group of parameters. During the training
process, those parameters are trained to accomplish feature extraction. The pooling layer
is used for dimension reduction; max pooling and average pooling are both commonly
used non-linear functions. The max or the mean value of the specific region is calculated
to represent this area. To realize the classification or regression tasks, the fully connected
layer is usually implemented as the last part of the neural network. It builds connections
between all neurons in the current layer and previous layer.

The residual nets (ResNets) are a special variation of CNN. He et al. proposed a frame-
work with residual blocks to solve a degradation problem in deep neural networks [14],
Figure 4. The first convolutional layer consists of 64 filters with the shape 3 × 3. The stride
is 2, which shrinks the image to half its previous size. After that follows 8 residual convo-
lutional blocks. The difference between the residual block and plain convolutional block
is the “skip connection”, which means the input of the block is added to the output of
the block. It is represented by the grey line located on the side. A dashed line means the
size needs to be halved, because in the corresponding block, the stride for one layer is 2.
A non-dashed line means keeping the original size. Different from the original network,
the output dimension of the fully connected layer is modified to two. The final output of
the network is a 2-dimensional vector, representing head and flow rate.

Figure 4. Network architecture.

2.4. Data Augmentation

When training a network with a small dataset, overfitting is always a problem. That
is, the network shows good performance on the train set, while on the test set, the result
is significantly worse. Mismatch between dataset size and trainable parameter number
lead the network to “memorize” the data instead of learning the features. To obtain a
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network with good generalization, a huge amount of data containing variations is necessary.
However, receiving such large amounts of data is unrealistic due to the economic cost
and time required. Hence, applying augmentation methods on the available train set with
limited data is often essential.

Sliding Window & Horizontal Flip

The sliding window method is an effective way to extend the dataset with factor
na, Figure 5. The idea is: it is desired that the network extracts the time-independent
features from different samples of one measurement. For instance, a two-second signal is
continuously measured under a stable operating point. The choice of 0–1 s, 0.5–1.5 s or
1–2 s should not affect the result of estimation.

Figure 5. Sliding window.

There is overlap between samples; the step to the next window is calculated as:

step =
Nt − Ns

na − 1
, (3)

where na is the extension factor, and Nt and Ns represent the number of data points in the
total signal and the single sample, respectively.

Another method is horizontal flip: the input images are to be horizontally mirrored
with a probability of 0.5. The decision of augmentation is made during the training process.

3. Verification and Result Discussion
3.1. Plausibility Analysis

In order to check the plausibility, a comparison of the measured vibration with stan-
dard ISO 10816 is conducted. ISO 10816 is a standard for evaluating vibration severity of
machines by measurements on non-rotating parts. The pump has a nominal power lower
than 15 kW, so it belongs to Class I (Small Machines).

The acceleration is converted into velocity using numerical integration [15]. After im-
plementing a highpass filter with a cutoff frequency of 5 Hz, the acceleration is cumulatively
integrated using the composite trapezoidal rule. The Root Mean Square (RMS) velocity of
each operating points is calculated, Figure 6 (left). For clarity, part of the sample numbers
and rotational speeds are marked in the overview diagram (e.g., sample 0: top right point
with 2400 r/min). The maximal RMS velocity of six sensors are listed in Table 1. In compar-
ison with the velocity range limits of standard ISO 10816, it is concluded that the pump
works in good condition. Besides, a comparison between the measured operating points
and the characteristic curves (Q-H curve) in the manual is performed. A good agreement
further ensures that the pump works in normal status and that the measuring devices in
the test rig is working properly.
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Figure 6. (Left): RMS velocity of accelerometers; (Right): Overview of operating points.

Table 1. Maximal RMS velocity and velocity range limits in ISO 10816.

Max. RMS Velocity (mm/s) Velocity Range Limits for Class I (mm/s)

axial vertical 1/2/3 horizontal 1/2
good: <0.71
satisfactory: <1.80

0.14 0.16/0.14/0.31 0.25/0.27
unsatisfactory: <4.50
unacceptable: >4.50

3.2. Experimental Setup

The experiments are conducted on GeForce GTX 1080 Ti with CUDA version 11.4.
The Adam optimizer with a learning rate of 5× 10−4 and weight decay of 8× 10−4 is
used [16]. The adopted loss function is MSE loss, which measures the mean square error
(squared L2 norm) between prediction ŷ and target y. It is described as:

l(x, y) = mean({l1, ..., li, ..., lN}T), li = (yi − ŷi)
2, (4)

where N is the batch size.

3.3. Baseline Experiments

For the baseline experiment, a single signal or a combination of three signals is fed into
the network, and no data augmentation methods are implemented. For each input signal,
the training process is repeated 20 times, and the final estimation of the operating point
is calculated as the mean value over all repetitions. The dataset consists of 182 samples
measured under different rotational speeds, and it is randomly split into train set (70%),
validation set (15%) and test set (15%). The validation set is used to choose the model with
the lowest loss during the training process, which avoids overfitting to a certain extent.
To ensure a fair comparison, the split of dataset remains the same in all experiments using
a specified random seed.

Table 2 shows the result of the baseline experiments. Besides the MSE loss, the mean
relative error of the estimation for flow rate and head are also listed. Notice that some
operating points lie near the zero point. For these points, although the absolute error is
small, the relative error is large. To avoid affecting the representativeness of the results,
those points (h < 0.1hmax or Q < 0.1Qmax) are not counted in the statistics. The mean
relative error is calculated as follows:

er =
1

NT

NT

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, ŷi = mean({ ˆyi,1, ..., ˆyi,20}T), (5)
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where NT is the number of samples in the test set after removing small values, yi is the
target and ŷi is the mean of 20 estimations.

The signal “vertical accelerometer 3” located on the base of the pump unit shows
the smallest MSE loss—almost half of the axial accelerometer. The mean relative error of
“vertical accelerometer 3” also outperforms other input signals: 7.23% for flow rate and
2.37% for head. The signal collected from the base includes more useful information for
the estimation of operating points. For all input signals, the mean relative error of head
(around 3%) is always smaller than that of flow rate (around 10%).

Table 2. Result of baseline experiment.

Signals MSE Loss Mean Relative Error of
Flow Rate/Head (%)

1 axial accelerometer 3.53 10.19/2.81

2 vertical accelerometer 1 3.45 11.61/3.68

3 vertical accelerometer 2 2.94 9.79/3.04

4 vertical accelerometer 3 1.69 7.23/2.37

5 horizontal accelerometer 1 3.38 9.33/3.49

6 horizontal accelerometer 2 3.00 9.53/2.17

7 microphone 1 2.48 10.29/3.22

8 microphone 2 2.43 10.47/3.87

9 1&4&6 2.42 7.55/1.81

10 4&6&8 1.76 7.46/2.26

11 4&7&8 1.83 7.32/3.09

The signal from the base is vulnerable to fixing methods and other pump units in
the laboratory that may exist in the further research. An over-reliance on such signals
may not provide a generalized and robust model. Hence, in addition to experiments with
a single signal, three combinations are also tested to explore if the fusion of data from
different sensors brings extra improvement of performance. The combination 1, 4 and 6
consists of signals from accelerometers in three directions, each of that showing the best
results in single signal experiments. The combination 4, 6 and 8 includes signals from
two accelerometers and microphone 2. The combination 4, 7 and 8 consists of signals from
microphones on both sides and the accelerometer on the base.

During preprocessing, instead of repeating the first dimension of a single signal
three times, three different signals are stacked to build the input matrix with shape (3, 224,
224). For experiment 9 and 10, although the MSE loss is not smaller than experiment 4, the
mean relative error represents a similarly good performance as experiment 4. In total, the
combination of single signals brings no significant improvement on the current result, but
considering the susceptibility of single signal, two combinations (No. 9 and 10) provide a
stable alternative of “vertical accelerometer 3” for future applications.

3.4. Data Augmentation

In applying the horizontal flip as an augmentation method, the comparison with
the baseline experiment shows that the losses for all input signals are reduced, Figure 7.
The left part shows the mean and the standard deviation of MSE loss among 20 repetitions.
For input signal “vertical accelerometer 1” (No. 2), the decline of MSE loss is insignificant.
The mean relative error of the flow rate dropped for almost all input signals.
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Figure 7. Comparison of results between the baseline experiment and using horizontal flip as a data
augmentation method (The numbering of the input signals is consistent with Table 2).

It is observed that for input signal “vertical accelerometer 1”, the relative error of the
flow rate rises from 11.6% to 12.3% after horizontal flip. It occurs because the reduction of
loss, which is a metric of absolute distance between prediction and true value, does not
always guarantee the reduction of the relative error. However, training of the network
using a loss measuring relative distance provides no improvement. The possible reason is
that the relative loss function makes the train process harder. The mean relative error for
head in the baseline experiment is already very small—it decreases slightly.

The result of applying a sliding window is presented in Figure 8. The size of the
dataset is expanded with factor 3. For all single signals and signal combinations, the MSE
losses and relative errors are significantly reduced. The standard deviation is smaller than
baseline experiments. This augmentation method works pretty well in our application.
The three best results are from experiments 4, 10 and 11, reaching a mean relative error of
3.55%/1.35%, 4.20%/1.36% and 4.37%/1.70% for flow rate and head, respectively. The pre-
dicted operating point (red) and true value (blue) of these best models are shown in Figure
9. For clarity, the operating points in the total dataset at six rotational speeds are plotted.
The grey line between red and blue points indicates the distance of the true operating
points and corresponding prediction.
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Figure 8. Comparison of results between baseline experiment and using sliding window as data
augmentation method (The numbering of the input signals is consistent with Table 2).

Figure 9. Prediction of operating points using input signal No.4, No. 10 and No.11 with a sliding window.

4. Conclusions

Vibration and acoustic signals are collected from a test rig. A suitable preprocessing
method for the raw time signal is chosen. The plausibility of the method is analyzed based
on the vibration velocity limit listed in ISO 10816. For baseline experiments, the modified



Int. J. Turbomach. Propuls. Power 2023, 8, 39 11 of 12

ResNet18 is trained using input signals from single sensors or a combination of different
sensors with 20 repetitions. The estimation result of the vertical accelerometer located on
the base outperforms other sensors, the MSE loss equals 1.69 and the mean relative error is
7.23% for flow rate and 2.37% for head. The result of the other two signal combinations
also represents similar performance. Considering that a single signal from the base can
easily be affected by the fixing method and the environment, the combination of signals
probably has more potential for further research.

Applying a sliding window and horizontal flip as a data augmentation method, the
result of estimation is further improved for all input signals. A sliding window with factor
3 shows significant reduction in MSE loss and relative error. The three best results from
experiments 4, 10 and 11 reach a mean relative error of around 4% for flow rate and 1.5%
for head. In the proposed plan for the next phase, it is intended to measure a bigger
dataset with a longer time series. In doing so, a comparative analysis between the data
augmentation and the bigger dataset will be carried out.

The proposed method indicates that the estimation of the operating point of the
pump using vibration and sound with the help of CNNs is feasible within the relative
error values obtained as results. The assessment whether the accuracy of the current
prediction of the operation points is sufficient for predictive maintenance will require
additional work. The current results were obtained in an anechoic chamber. Additionally,
there is no defect on the machine and other elements connected to it. But in real life,
degradation of machinery (blade erosion due to abrasive particles) and improper or delayed
maintenance exist. These will lead to the change of characteristics, even if only in a limited
way. Achieving a more robust estimation model for real-life applications still requires a lot
of subsequent research.

For further research, the pump unit will be moved out of the anechoic room, and the
influence of the noise from other facilities in the laboratory will be investigated. Besides,
more sensors will be implemented such as structure-borne sensors. To obtain a more
general model that performs well for different pumps, e.g., the same type with the same
size, same type with different size, and even different types, it is valuable to collect various
data and explore the transferability between pumps. In addition, the methodology that
has been presented for the estimation of the operating point possesses the potential to be
extended for the purpose of condition monitoring and fault diagnosis using acceleration
and noise.
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Nomenclature
The following symbols and abbreviations are used in this manuscript:

∆p Static pressure difference
H Head
Q Volume flow rate
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Ad/As Pipe cross-section area on the discharge/suction side
h Height difference
n rotational speed
N Batch size
NT Number of samples in test set
CNN Convolutional neural network
MLP Multilayer Perceptron
SVM Support Vector Machine
LSTM Long Short-Term Memory
SDA Stacked Denoising Autoencoder
STFT Short-time Fourier transform
RMS Root Mean Square
MSE Mean Square Error
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