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Abstract: In this paper, we present the design and optimization of a centrifugal fan with requirements
of maximizing the total-to-static pressure rise and total-to-static efficiency at two operating points
and the maximum torque provided by the motor power using a 3D inverse design method, a DOE
(design of experiment) study, an RSM (response surface model) and a MOGA (multi-objective genetic
algorithm). The fan geometry is parametrized using 13 design parameters, and 120 different designs
are generated. The fan performances of all the designs at two operating conditions are evaluated
through steady-state CFD simulations. The resulting design matrix is used to create an RSM based
on the Kriging method and MOGA is used to search the design space using the RSM and find the
optimal design.

Keywords: multi-point; multi-objective; optimization; centrifugal fans; inverse design method; DOE;
RSM; MOGA

1. Introduction

Centrifugal fans are used in many applications where a relatively high-pressure rise
is required in the compact size. The application can vary from household appliances [1]
to industrial to air-conditioning and data center cooling applications [2–6]. Hariharan
and Govarhan studied the effect of inlet clearance on the aerodynamic performance of a
centrifugal blower [7]. Singh et al. performed a parametric study of the effect of blade
number, TE blade angle and diameter ratio on the centrifugal fan performance based
on experiments and numerical simulations [8]. Jeon investigated the effects of design
parameters on the performance and noise of a centrifugal fan [9]. All the works mentioned
above have been focused on the fan performance at only one point, which is the design
point or BEP (best efficiency point), while for some applications the fans are required to
meet multi-point requirements in terms of pressure rise, flow rate and efficiency. To tackle
this kind of multi-point design and optimization problem, DOE and RSM approaches
have been widely used for pumps, turbines and compressors [10–12]. Behzadmehr et al.
carried out a parametric study of a backward-curved centrifugal fan using DOE using five
design parameters, and each design parameter had two levels of variation [13]. The main
drawback of this method is that a very small number of design parameters were used,
which means other more important parameters may have been missed. Qiu et al. performed
a multi-point design optimization of a high bypass ratio axial fan blade using DOE and
Kriging approximation [14]. The optimized design shows 0.1% efficiency improvement at
the design point but has a worse efficiency characteristic within the operation range. As it
can be seen that in the literature there is not much study on the aerodynamic multi-point
optimization of centrifugal fan blade shapes, this is the main reason that the authors would
like to publish this work.

In this paper, we started with the design of a baseline design which meets the pressure
rise requirements at two operating points using the 3D inverse design method. The fan
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aerodynamic performance (total-to-static (t-s) pressure rise and t-s efficiency) is evaluated
through steady-state CFD simulations. The meridional geometry and blade loading pa-
rameters are then parameterized using 13 parameters, and around 120 different blade
geometries are generated with a wide range of variation in these 13 design parameters.
T-s pressure rise and t-s efficiency values of these 120 designs are evaluated using CFD
simulations. A design matrix consisting of all the design and performance parameters of
these 120 designs is obtained. Kriging is used to create an RSM using the design matrix data
and MOGA is used to search the optimal designs in the design space based on RSM. The
final optimal design is selected from the Pareto Front and its performance is validated using
CFD simulations at two operating points. The flow chart of the design and optimization
process is shown in Figure 1.
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2. Blade Design
2.1. The 3D Inverse Design Method

The 3D inverse design method, also known as the Circulation Method in the literature,
is described in detail in [15]. It has been used in the design of different types of fans
including axial fans [16] and centrifugal blowers [17,18]. The blade geometry is calculated
iteratively based on the prescribed blade loading distribution ( ∂(rvθ)

∂m , the derivative of rvθ

along the meridional direction) on the meridional geometry; rvθ is the circumferentially
averaged bound circulation and is defined by Equation (1) below, where r is the radius, vθ

is the circumferential velocity and N is the blade number. For incompressible potential flow,
the blade loading (the pressure difference between the pressure surface and suction surface
of the blade) is defined by Equation (2), where p+ is the static pressure on the pressure side
and p− is the static pressure on the suction side.

rvθ =
N
2π

∫ 2π/N

0
r · vθdθ (1)

p+ − p− =
2π

N
ρWmbl

∂(rvθ)

∂m
(2)



Int. J. Turbomach. Propuls. Power 2023, 8, 8 3 of 12

2.2. Blade Parametrization

The main inputs for the inverse design method are meridional geometry, blade
thickness distribution, blade loading and stacking. The blade meridional geometry is
parametrized by eight parameters including the blade tip width (L), the hub radial length
(dRhub), the shroud radial length (dRshr), the TE angle (α), the hub angle (βhub), the shroud
angle (βshr), the LE curvature and the shroud curvature, as shown in the Figure 2. The blade
thickness distribution is defined as 5 mm constant and the number of blades is six. LE and
TE rvθ are used as inputs which will fix the work coefficient (specific torque/power) based
on Euler’s Turbomachinery Equation. The streamwise blade loading distribution ( ∂(rvθ)

∂m )
is defined using a three-segment method shown in Figure 3. The loading distribution is
defined by two curves at hub and shroud. For each curve, two points on the meridional lo-
cation (NC and ND) divide the curve into three parts. The first and last curves are parabolic,
and the middle curve is a straight line. The slope of the middle straight line is defined
by a parameter called SLOPE. The loading value at LE (m = 0, where m is the normalized
meridional coordinate) is defined by DRVT, which controls the incidence at the LE.
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The last input parameter required is the stacking condition, which is a spanwise wrap
angle distribution at a fixed streamwise location. For fans, it is common to stack at the TE.
Most of the centrifugal fans are made from sheet metal and the blade has to be 2D and axial
filament. However, development in additive manufacturing can make it easier to design
centrifugal fan blades with 3D geometry. The 3D inverse design method used in this study
makes it quite easy to design either in 3D or in 2D. In this paper, a 2D geometry is used for
the blade optimization and a zero stacking at TE is used for all the designs. Once all the
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inputs are specified, the 3D inverse design method computes the blade shape for a given
specified blade loading.

2.3. Design Specifications and Baseline Blade Generation

The design specifications are shown in Table 1. The fan is required to meet the
minimum pressure rise requirements at two operating points (OP1 and OP2). The maximum
torque is set by the motor provided and the main target is to maximize the efficiency at two
operating points. The geometrical constraints are that the fan diameter cannot exceed the
maximum value provided and the blade has to be 2D and axial filament.

Table 1. Design specifications and constraints.

Flow Coefficient
Loading Coefficient

RPM

0.22
0.39

≤RPMmax

Volume flow rate @ OP1 Q1
Pressure rise @ OP1 ≥∆p1

Volume flow rate @ OP2 Q2 = 117%Q1
Pressure rise @ OP2 ≥∆p2

Torque ≤τmax
Efficiency @ OP1 Maximize
Efficiency @ OP2 Maximize

Impeller diameter ≥Dmax
Blade 2D and axial filament

The meridional geometry of the baseline design is shown in Figure 4. The LE/TE
rvθ and streamwise blade loading are shown in Figure 5. It is noted that LE/TE rvθ is
normalized by the blade tip radius and tip speed. Once the solver is converged, the 3D
blade from the inverse design method is converted to a 2D/axial filament blade using axial
filament modification, which axially maps the wrap angle distribution of the hub to all the
other spanwise layers.
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3. CFD Simulation
3.1. Mesh Generation

The structured mesh was generated using ANSYS TurboGrid for the impeller blade
(around 500,000 hexahedra elements) and unstructured mesh was generated for the inlet
cone and inblock/outblock geometries (around 500,000 tetrahedra elements). The total
number of elements is around 1,000,000. The near wall element size is 0.03 mm for the
impeller and 0.05 mm for the inblock/outblock, which result in the maximum y+ value
on the walls of less than 1.0, well within the viscous sublayer; y+ is the non-dimensional
distance (based on local cell fluid velocity) from the wall to the first mesh node. The number
of prism layers for the inflation is 10. As can be seen in Figure 6, the gap between the
stationary inlet cone and the rotating impeller shroud casing is well resolved.
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3.2. CFD Setup

Steady-state CFD simulations (RANS) were performed by using commercial software
ANSYS CFX. The inlet boundary condition is the given mass flow rate, and the outlet
boundary condition is the opening with 1 atm static pressure. The impeller domain is
rotational with the fixed RPM. Periodic boundary conditions were used for all domains to
save the computational cost. The interface between the stationary domain and the rotational
domain is set as Frozen Rotor. The turbulence model used is shear stress transport SST k-ω.
A high-resolution (2nd-order) advection scheme was used. The convergence criteria for
the continuity and momentum equations were set as RMS < 1.0 × 10−4. The fan pressure
rise and torque values were monitored and reach to a constant value once the solution is
converged. The complete CFD model is shown in the Figure 7.
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3.3. CFD Results

Once the CFD simulations are converged, the pressure rise, torque and efficiency
values can be obtained for both operating points (OP1 and OP2) and are summarized
in Table 2. The total-to-static pressure rise is calculated as the difference between inlet
total pressure and outlet static pressure. It can be seen that the baseline design almost
meets the pressure rise requirements at both operating points and does not exceed the
maximum torque. The efficiencies for OP1 and OP2 are 57.7% and 44.2%, respectively.
After examining the detailed flow field, it was found that the flow behaves well at hub and
mid-span locations but separates near the shroud part of the blade at OP1 and OP2, which
can be seen in Figure 8.

Table 2. Baseline CFD results.

Variable Name OP1 OP2

RPM RPMmax RPMmax
Q Q1 Q2

∆pts 0.99 ∆p1 0.94 ∆p2
τ τmax 0.91τmax

ηts 57.7% 44.2%
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4. DOE and Optimization
4.1. DOE

To improve and obtain the best possible fan performance, a DOE study was performed.
In total there are 13 design parameters, including 8 meridional geometry parameters and
5 loading parameters (NC, ND, SLOPE, DRVT and RVT_TE). DRVT is the streamwise
loading value at LE, as shown in Figure 3, and RVT_TE is TE rvθ . The same values are
used for hub and shroud blade loading to obtain 2D/axial filament blades. For each of the
13 design parameters, a min and max value around the baseline value is carefully specified
which allows a large design space to be explored and has a good convergence rate to avoid
many diverged cases in the DOE. Latin Hypercube sampling (LHS) is a statistical method
which can be used to create a random sampling of multiple parameters. The number of
designs has to be equal to the number of levels for each design parameter and greater than
the number of the design parameters. The Optimal Latin Hypercube sampling (OLHS)
is a special LHS where all the design points are equally spaced [19]. The disadvantage
of OLHS is that it requires more time to generate the design matrix compared to LHS. A
total of 120 different designs were generated using the OLHS method. For each design, the
blade generation, meshing and CFD (two operating points) were performed automatically
in ANSYS Workbench, as shown in Figure 9.
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Once the CFD simulations were finished, a design matrix of 120 designs with all the
design parameters and performance parameters were obtained. All the CFD results are
shown in Figure 10. It can be seen that a number of designs in the DOE meet the minimum
pressure rise requirements at both operating points with good efficiencies compared to
the baseline design. The torque values of almost all the DOE designs do not exceed the
maximum constraint.

4.2. Optimization

The terms response surface model (RSM), surrogate model, approximation model and
meta model are used as synonyms in the literature. The RSM is a mathematical model
and constructed based on data from known designs (usually from DOE) that provides
fast approximation and evaluation of objectives for different design parameters at new
design points.
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Figure 10. CFD results (pressure rise, efficiency and torque) of DOE designs.

Kriging is a method of interpolation which was first proposed by a South African
statistician and mining engineer Danie G. Krige and is used to predict the location of
unknown mineral resources. The basic idea of Kriging is that the value at an unknown point
should be the average of the known values at its neighbors, weighted by the neighbor’s
distance to the unknown point (Chung and Siller [20,21]).

MOGA (NSGA-II, non-dominated sorting genetic algorithm-II) is a multi-objective
genetic algorithm which was first proposed by Deb et al. [22]. It is well-suited for highly non-
linear design spaces; each objective is treated separately and a Pareto Front is constructed
by selecting feasible non-dominated designs.

All the DOE results can be used to create a RSM using the Kriging approximation
method. The calculated CoP (Coefficient of Prognosis) of the output parameters for the
Kriging RSM is around 0.85. The optimization was performed by searching the design
space with the given constraints and objectives and the performance of different designs,
can be quickly evaluated through the Kriging RSM model. The constraints and objectives
used in the optimization are listed in the Table 3. It is noted that ‘Angle’ is defined by
Equation (3). This parameter is used to control the fan p-Q curve slope (shape) and should
be kept as close as possible to the target value, which is around −5◦.

Angle = tan−1
(

∆p1 − ∆p2

Q1 − Q2

)
(3)
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Table 3. Optimization constraints and objectives.

∆p @ OP1 ≥∆p1

∆p @ OP2 ≥∆p2
τ @ OP1 ≥τmax
τ @ OP2 ≥τmax
Angle ≥−5.5◦ & ≤−4.9◦

ηts @ OP1 Maximize
ηts @ OP2 Maximize

A total of 100,000 designs were generated using MOGA (NSGA-II), and the resulting
Pareto Front and the selected optimal design are shown in the Figure 11. An obvious
trade-off between the efficiencies at two operating points can be observed.
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The CFD performance of the optimal design is compared with the baseline and
shown in Figure 12. The pressure rise of the optimal design is improved significantly at
both operating points compared to the target and baseline values while maintaining the
desirable p-Q slope (shape). The efficiencies of the optimal design are improved by around
20 percentage points at both operating points compared to the baseline design. The torque
values are reduced and do not exceed the maximum constraint.

The comparison of the meridional geometry and the streamwise blade loading between
the optimal design and the baseline is shown in Figure 13. The comparison of the 3D
geometries of the baseline and the optimal design is shown in Figure 14.

The improvement in efficiencies can also be explained by comparing the flow fields of
the two designs (Figures 7 and 15). In particular, the flow near the shroud of the optimal
design is improved significantly and now fully attaches on the blade surface compared to
that of the baseline design.
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5. Conclusions

In this paper, a systematic optimization methodology using the inverse design method,
DOE and MOGA is presented and used to optimize the aerodynamic performance of a
centrifugal fan at two operating points. The total-to-static pressure rise and total-to-static
efficiencies at two operating points are improved significantly, and the improvement is
validated using steady-state CFD simulations.
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