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Abstract: Data analysis is an important part of aero engine health management. In order to complete
accurate condition monitoring, it is necessary to establish more effective analysis tools. Therefore, an
integrated algorithm library dedicated for engine anomaly detection is established, which is PyPEFD
(Python Package for Engine Fault Detection). Different algorithms for baseline modeling, anomaly
detection and trend analysis are presented and compared. In this paper, the simulation data are used
to verify the function of the anomaly detection algorithms, successfully completing the detection of
multiple faults and comparing the accuracy algorithm under different conditions.

Keywords: data mining; aero-engine; algorithm library; anomaly detection; baseline construction

1. Introduction

Predictive maintenance mainly addresses the reliability problem of the engine, en-
suring that the aero-engine has the ability to operate normally under specified conditions.
This is an important prerequisite for aircraft safety, because failures of safety-critical sys-
tems such as aircraft engines can cause significant economic disruptions and even major
accidents with a potential loss of human lives. Therefore, the prediction of the engine
failure is of great importance for maintaining the functionality of safety-critical systems,
which puts forward higher requirements for engine performance status monitoring [1–3].
The trend within the aerospace maintenance industry is searching for new technologies,
such as predictive maintenance systems based on health monitoring, to detect degradation
earlier and proactively schedule maintenance activities in order to reduce the unscheduled
maintenance events. Therefore, the prediction of the engines failure is of great importance
for maintaining the functionality of safety-critical systems, which puts forward higher
requirements for engine performance status monitoring [4].

Advanced sensor technology has led to the development of condition monitoring
technologies. For industrial applications, the frontier issue of multi-modal data analysis
should be the combination of applicable data mining methods [5]. Nowadays, data-driven
techniques have been reported in the literature for health monitoring of gas turbine engines.
Those algorithms can be divided into classification, clustering, regression, dimensional-
ity reduction, etc. William R. et al. proposed a fault detection framework, combining
Gaussian mixture model and Hidden Markov model to perform state determination of
VSVA (variable stator vane actuator) system used in aero-engine [6]; Consumi et al. estab-
lished a Bayesian inference method to execute turbojet engines gas path analysis [7]. The
Cluster AD-Flight clustering model proposed by Li L uses the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm for multi-dimensional clustering
analysis to exclude abnormal flight from multiple nominal patterns in takeoff phase [8].
Regression-based methods are also widely used. These methods use regression models to
fit multi-dimensional data, and then detect abnormalities based on the predictions of the re-
gression models and the differences in data observations. Dewallef P et al. adapted Kalman
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filter model to deal with the performance monitoring and fault diagnosis problems based
on several gas path measurements, including fuel flow, spool speed and the temperature
of compressor blade and casing [9]; Seo D H et al. proposed a neural network framework
fusing with support vector machine to monitor engine’s working state, and the framework
has been applied to the on-design and off-design performance data of a turbo-shaft engine
have been generated by the gas turbine simulation program (GSP) [10].

Another topic related to anomaly detection is the neighborhood-based method. It
selects a distance or use a similarity measurement method to define a neighborhood, and
calculates the distance or relative density between a sample point and its neighborhood
as an anomaly score. In this field, Puranik et al. applied both k-nearest neighborhood
(KNN) and local outlier factor (LOF) to conduct quantitative analysis of flight data outlier
detection [11]. Another KNN method used for data anomaly detection is carried out by
Manukyan A et al. aiming at detecting instantaneous abnormal points [12].

However, the development process of anomaly detection algorithm for engine’s data
reflects several problems. First, very few public data sets to obtain. Algorithm development
requires data sets, especially fault data for verification, while the real engine data is difficult
to obtain due to confidentiality issues, and the number of faults contained is very rare.
Moreover, engine data usually involves technical secrets and cannot be easily released [13].
Second, although there are many algorithms, only part of them is suitable for engine
detection, that is, lacking an integrated detection algorithm library. The complete engine
monitoring process includes baseline construction, anomaly detection and trend prediction,
and this requires multiple algorithms’ cooperation. Lastly, too many applications of classic
machine learning algorithms, and lack of some attempts to apply new algorithms in the
field of artificial intelligence for engine condition monitoring [14].

This paper has been divided into five sections. Section 2 introduces the engine condi-
tion monitoring data and enumerates its particularity. Section 3 enlists the machine learning
techniques in the developed algorithm toolbox for engine anomaly detection. Section 4
includes detailed description of the simulation data set of engine gas path faults and the
comparison of the detection results using the various algorithm of the developed toolbox.
Finally, Section 5 concludes the work.

2. Commercial Aircraft Engine Condition Monitoring
2.1. Engine Gas Path Analysis

The performance of aero-engines is referred to the carefully tuned interaction among
each gas path component. The high-pressure compressor (HPC) and high-pressure turbine
(HPT) is often referred to as the core engine, which is in charge of generating power that
the LPT uses to transform into mechanical power for driving the fan. Typical sensors
in aero-engine system include temperature sensors, speed sensors and pressure sensors
located in different stations of engine. These raw sensor data contain control and feed-
back mechanisms; thus, simple analysis cannot obtain effective degradation information.
Other condition parameters, such as Mach number, altitude and atmospheric temperature
are included for further analysis. Figure 1 shows the online built-in sensor parameters
of a typical modern turbofan engine, covering the main gas path components of the en-
gine and important accessory systems (accessory systems such as lubricating oil and fuel
control), etc. [15].

Gas path analysis (GPA) is a method that relates variations of measured engine
performance parameters resulting from engine deterioration to the condition of its gas path
components [16]. It is meaningful to the existing gas turbine diagnostic methods, which is
wildly used for condition-based maintenance. In order to put these methods into practical
applications, improving diagnostic accuracy has been the focal point for developing better
GPA techniques [17–19].
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Figure 1. Typical engine built-in sensor parameters.

Existing approaches can be grouped in two categories: physics-based methods and
data-driven methods. The physics-based methods aim at describing the physics of failure
mechanisms by mathematical modeling for the components and the systems under the
study. Such methods are applicable where there is enough information about the internal
parameters of the system and the failure mechanisms can be parameterized on that basis.
Houman Hanachi et al. developed a robust physics-based performance indicator for
aero-engine [20]. A comprehensive physics-based thermodynamic model for the gas
path of a single shaft engine was developed in their work to accurately predict the cycle
parameters based on limited actual operating data. Physical degradation processes are
only well understood for critical or relatively simple components, and physics-based
approaches are generally hindered by their limited ability to properly tune the parameters
of models with high complexity or model incompleteness, which restricts the deployment
in practical applications [21]. The alternative approach for health monitoring is the use
of data-driven models [22]. These approaches use large amounts of data, preferably from
various sources, and apply data analytics techniques such as machine learning and artificial
neural networks to discover patterns and relations in the data sets. This means that in
principle no knowledge on the system characteristics or failure behavior is required, which
makes the approach popular and widely accessible [23].

2.2. Engine Condition Monitoring Data

A flight is divided into different flight phases, each phase has a different impact on
the engine, which increases the difficulty of data monitoring. Currently, Quick Access
Recorders (QAR) is widely adopted by airlines, providing full flight data continuously
sampled at frequencies of 1 Hz and more, and enabling the researches of new methods
in engine condition monitoring. All other functions such as exceedance tests, report
generation, are based on, and controlled by the flight phase. For the flight phase diagram,
see Figure 2. Flight phase is determined based on a state-transition machine, that means
once a given flight phase is entered, it can only transmit to another flight phase under
defined conditions. Therefore, the flight phase can be used as a performance tag to describe
how the engine is currently operating. The flight phases that are mainly discussed in
Figure 2 are shown in Table 1.
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Table 1. Flight phase.

Number Code Flight Phase

0 PRF Pre-flight
1 ESR Engine Start
2 TXO Taxi Out
3 TKO Takeoff
4 INC Initial Climb
5 CLB Climb
6 CRS Cruise
7 DES Descent
8 APP Approach
9 FNA Final Approach
10 GOA Go Around
11 LAN Landing
12 TAG Touch and Go
13 TIN Taxi In
14 ESP Engine Stop

For cruise data acquisition, data points must be recorded under stable operating con-
ditions, which is stabilized at cruise setting for at least 5-min before recording data. During
recording, fan speed (N1) variation needs to be minimized, and stable airplane/engine
conditions needs to be maintained. For takeoff data acquisition, monitoring data should
be recorded at, or near, conditions when peak EGT typically occurs for the engine, that
is, during full-rated or derated thrust takeoff, at any ambient temperature. These data
points can effectively reduce the amount of data required for analysis, but provide very
little information to reflect the variation in the performance state of the engine throughout
the entire flight segment.

Actual analysis rarely analyzes the entire flight data, but extract certain operating
points during takeoff and cruise for condition monitoring. However, the form of the
condition monitoring data may lead to difficulties distinguishing between faults and
random scatter. Depending on the faulty component and the severity of the fault, it may
take multiple data points to detect [24], which may cause false alarms and missed alarms.
Therefore, continuous monitoring of the entire flight segment should be performed to
improve the fault detection rate.
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3. Development of Engine Data Mining Toolbox

Existing approaches for engine data mining can be grouped in three categories: base-
line construction, anomaly detection and trend prediction.

Baseline model is widely used in engine condition monitoring. Baseline model, i.e., the
health indicator, is proposed to characterize the unobserved degradation state of the engine.
Non-parametric modeling techniques, such as Multivariate State Estimation Technique
(MSET) and Random Forest (RF), can be adopted to calculate the health indicator. Based
on the developed baseline model, the delta value between the real value of and baseline
value is monitored in real time to monitor the gas path component condition and to trigger
a warning once some fault occurs.

Engine anomaly detection usually refers to detecting and locating the fault by ana-
lyzing the mechanical condition of the main engine mechanical damage, engine vibration,
lubrication, transmission and fuel control systems, and comprehensively analyzing the
performance condition parameters [25]. The detection method requires the ability to ac-
curately isolate the fault, but also needs a quantitative assessment of the severity of the
fault to provide input for the remaining life prediction and maintenance decision making.
Several different anomaly detection algorithms are integrated in this module, covering
functions such as outlier detection, trend anomaly detection and clustering.

Parameter trend prediction includes the prediction of the gas path performance and
the remaining life of key components. In the trend prediction, the gradual performance
deterioration is tracked to obtain the degradation state of each module before the fault,
then the information is incorporated when isolating and assessment the fault to improve
the health assessment results.

This article collects the algorithms applied for engine anomaly detection and integrates
them into an algorithm library, including supervised and unsupervised algorithms. Table 2
introduces different types of algorithms involved in the algorithm library. Due to the
complicated forms of engine failure, the diversity of algorithms needs to be guaranteed in
order to improve detection efficiency.

Table 2. Algorithm Detail.

Type Algorithm

Baseline Construction module

RF (Random Forest)

MSET (Multiple State Estimation Technique)

LSTM (Long Short-Term Memory)

Anomaly detection module

MD (Mahalanobis Distance)

Iforest (Isolation Forest)

XGBOD (Extreme Gradient Boosting Outlier
Detection)

MCD (Minimum Covariance Determinant)

WFCS (Feature Weighted Fuzzy Compactness and
Separation)

GMM (Gaussian Mixture Model)

DTW (Dynamic Time Warping)

VAE (variational autoencoder)

Parameter trend prediction module
ARMA (Autoregressive–moving-average model)

State Space Model

This paper mainly uses the following four anomaly detection methods.

1. Isolation Forest, IF
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Isolation forest is an unsupervised learning algorithm for anomaly detection that
works on the principle of isolating anomalies [25]. Instead of trying to build a model of
normal instances, it explicitly isolates anomalous points in the dataset. The main advantage
of this approach is the possibility of exploiting sampling techniques to an extent that is not
allowed to the profile-based methods, creating a very fast algorithm with a low memory
demand. other algorithms for an efficient fault detection system.

2. Extreme Gradient Boosting Outlier Detection, XGBOD

XGBOD is demonstrated for the enhanced detection of outliers from normal obser-
vations in various practical datasets. It combines the strengths of both supervised and
unsupervised machine learning methods by creating a hybrid approach that exploits each
of their individual performance capabilities in engine outlier detection. Compared to other
semi-supervised outlier ensemble methods, XGBOD provides better predictive capabilities,
eliminates the dependency of building balanced subsamples and averaging the results, and
improves efficiency with more stable execution [26].

3. Minimum Covariance Determinant, MCD

The minimum covariance determinant (MCD) method of Rousseeuw (1984) is a highly
robust estimator of multivariate location and scatter [27], using the Mahalanobis distances
as the outlier scores. Its objective is to find h observations (out of n) whose covariance
matrix has the lowest determinant.

4. One-class Support Vector Machine, OCSVM

Support Vector Machine (SVM) is a generalized linear classifier method for binary
classification of data, which belongs to supervised learning. SVM is defined as a linear
classifier with the maximum interval in the feature space, and its learning strategy is to
maximize the interval, which is finally transformed into the solution of a quadratic pro-
gramming problem. The difference between One-class Support Vector Machine (OCSVM)
and support vector machine is that there is only one category of training data. When the
test data is input into the model, the model will detect whether it is similar to the training
data. For anomaly detection, the training data is health samples, and whether the test data
is abnormal is determined by judging whether the test data is similar to the health data.

4. Case Study: Gas Path Fault Simulation

An application test case is conducted on a two spool, partially mixed, high bypass
ratio turbofan, which is representative of the modern turbofan engines in civil aviation. The
engine performance model consists of 10 health parameters to characterize the condition of
five components and 7 performance measurements being representative of a measurement
set of today’s civil turbofan are produced by the model. Figure 3 shows the process of the
entire research case. The specific parameters are shown in Figure 4 and Table 3.
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Table 3. Parameter Detail.

Health Parameter Gas Path Performance Measurement

Fan flow correction factor SW1 (%) Outlet pressure of the fan P13 (bar)
Fan efficiency correction factor SE1 (%) Outlet temperature of the fan T13 (C)

LPC flow correction factor SW2 (%) Outlet temperature of the HPC T3 (C)
LPC efficiency correction factor SE2 (%) Outlet pressure of the HPC P3 (bar)

HPC flow correction factor SW3 (%) Low pressure rotor speed NL (rpm)
HPC efficiency correction factor SE3 (%) High pressure rotor speed NH (rpm)

HPT flow correction factor SW4 (%) Exhaust gas temperature T6 (C)
HPT efficiency correction factor SE4 (%) Inlet pressure of HPC P2 (bar)

LPT flow correction factor SW5 (%) Inlet temperature of HPC T2 (C)
LPT efficiency correction factor SE5 (%)

4.1. Simulation Process

All simulation data are obtained using TurboFan Engine Simulator. By inputting a spe-
cific working condition, the simulation software can calculate the performance parameters
under the condition.

First a fleet of engines is simulated. The system’s components will experience degrada-
tion due to wear and tear resulting from usage. It is most often a slow phenomenon, which
is detected relative to past performance on the same engine. It is very difficult to detect an
efficiency drop in absolute value, because each unit of the fleet has slightly different initial
wear at the engine sub-component due to manufacturing and assembly tolerances, which
leads to differences in the health parameters of each engine component in the fleet, such as
efficiency and flow.

For the above reasons, each engine in the startup fleet can be distinguished based on
the difference in the initial health parameters. Assuming that the deviation between the
health parameters of a specific engine unit and the baseline value conform to a triangular
distribution, the maximum and minimum deviation values of the parameters of each
component are shown in Table 4.

Based on the triangular distribution of the parameters, this paper adopts the Monte
Carlo idea to randomly select values, and generates 100 sets of unit body health parameter
deviation values, and uses this to distinguish each specific engine. Figure 5 shows the
triangular distribution of Fan efficiency deviation.

After obtaining the fleet data, the next step is to simulate different take-off conditions
for each individual engine. Each set of different takeoff conditions simulation represents
a specific flight. The simulation method is the same as the fleet data. Assuming that
the parameters of the take-off condition also conform to the triangular distribution, the
maximum and minimum deviation values are shown in Table 5.
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Table 4. Health Parameter Deviation.

Health Parameter Minimum Deviation Maximum Deviation

Fan flow correction factor SW1 (%) −1 1
Fan efficiency correction factor SE1 (%) −0.3 0.1

LPC flow correction factor SW2 (%) −1 1
LPC efficiency correction factor SE2 (%) −1 0.5

HPC flow correction factor SW3 (%) −1 1
HPC efficiency correction factor SE3 (%) −0.6 0.6

HPT flow correction factor SW4 (%) −1.5 1.5
HPT efficiency correction factor SE4 (%) −0.35 0.15

LPT flow correction factor SW5 (%) −0.5 0.5
LPT efficiency correction factor SE5 (%) −0.5 0.5
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Table 5. Condition Parameter Deviation.

Condition Parameters Minimum
Deviation

Maximum
Deviation

Altitude (m) −500 500
Mach number 0.24 0.26

Standard atmospheric
temperature difference (C) −20 20

Fuel flow (kg/s) 0.83 0.97

Each engine randomly generates 1000 sets of condition parameter values for flights sim-
ulation. After the simulation calculation is completed, the performance data of 100 engines
is obtained, and 1000 flights are simulated for each engine. The gas path parameters calcu-
lated with the aid of the performance model do not contain noise, but in practice the sensor
will inevitably introduce measurement noise. Therefore, a certain amount of Gaussian
noise is added to the gas path parameters to simulate actual measurement noise.

4.2. Data Preprocessing and Fault Injection

The baseline model of engine can reflect the basic functional relationships of engine
performance parameters in a healthy state. When the engine is in a healthy state, the
performance parameter deviation value obtained by subtracting the baseline value from
the actual measurement value should theoretically fluctuate around 0. The abnormal
detection of the engine performance parameter can be realized by analyzing the deviation
value sequence.
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The performance measurement deltas (∆Y) of each parameter needs to be calculated
to facilitate the detection of the algorithm. The formula is as follows:

∆Y = Y − Y0 (1)

where Y represents the value of the parameter, and Y0 the nominal value at a typical
taking-off condition when the engine is at a clean and new condition. (That is, using the
Random Forest algorithm for parameter regression).

The health parameter deviation is calculated as follows:

∆ f = ( f − f0) · 100% (2)

where f 0 = 1 meaning the engine is at a clean and new condition. The interrelation among
the health parameters deviations and the measurements deltas is expressed through a multi
variable regression model, which is obtained by linearizing of the engine performance
model at a typical taking-off operating point.

In this paper, two kinds of baseline values Y0 are calculated. One is to randomly select
400 sets of data from all health status data of the fleet to calculate a baseline value. The
other is based on the first 400 health data of each engine, a total of 20 engines’ personalized
baseline values was established separately.

Component faults are simulated by deviating of the corresponding health parameters
from their nominal values, i.e., the flow and efficiency deviations of each module. To
demonstrate the proposed information fusion mechanism, a typical set of fault scenarios
has been examined, which covers different possible faults in all individual components
(given in Table 6).

Table 6. Failure modes.

Failure Modes Changes in Health Parameters

Failure mode A Fan flow rate drops by 1%, efficiency drops by 1.5%
Failure mode B HPC flow rate drops by 1%, efficiency drops by 0.7%
Failure mode C HPT flow rate drops by 1%, efficiency drops by 1%
Failure mode D LPT flow rate drops by 1%, efficiency drops by 0.5%
Failure mode E HPC efficiency decreased by 1.5%
Failure mode F HPT efficiency decreased by 1.5%

For each fault case, a series of n = 400 measurement sets from the taking-off operating
point has been recorded for following, including 20 fleet samples and 20 single engine
samples. They were randomly selected from the fleet data without putting it back. The first
360 sets are health status data, and the last 40 sets are abnormal conditions (Inject according
to the failure mode of Table 4).

4.3. Results Analysis and Comparison

In the detection, four binary classifiers, IForest, XGBOD, MCD, OCSVM (one class
support vector machine), are chosen as detection algorithms. The algorithms will output
two indicators to measure classification accuracy: AUC and Precision. AUC is the area
under the ROC curve, its value is equivalent to the probability that a randomly chosen
positive example is ranked higher than a randomly chosen negative example. As for
precision, it is the probability of how many real positive examples are in the sample
predicted to be positive.

This article compares the test results from the following three aspects:

1. Comparison of anomaly detection effects between the fleet baseline model and a single
personalized baseline model:

The deviation values obtained from the two baseline models are input into the isola-
tion forest, MCD, XGBOD, OCSVM algorithm. The AUC value and accuracy rate of the
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abnormal detection of six abnormal modes is calculated by the algorithm model. Since
each algorithm has been tested many times, the calculation result is the average of multiple
tests. After detection, the comparison of AUC and precision is shown in the figure below.

It can be seen from Figures 6 and 7 that only three faults (i.e., fault C, D and E) have
relatively high detection accuracy. The remaining fault cases are misdiagnosed. Among
the four anomaly detection algorithms, XGBOD is an ensemble learning algorithm, so the
overall effect is the best. The overall anomaly detection effect of MCD and IForest is not
much different. In abnormal modes A and F, IForest is better than MCD. In abnormal mode
B, MCD is better than IForest. OCSVM has the worst anomaly detection effect overall.
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2. The influence of engine performance parameters on anomaly detection effect:

In the above, the deviation values of the nine performance parameters are all detected
for abnormality. In the actual situation, the data collected by the sensor does not include
the HPC inlet pressure and inlet temperature. Therefore, this section will compare the
anomaly detection effects of the nine parameters and the seven parameters. Tables 7 and 8
show the results.
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Table 7. Detection Results (AUC).

Failure
Modes

IForest XGBOD MCD OCSVM

Nine
PARAM

Seven
PARAM

Nine
PARAM

Seven
PARAM

Nine
PARAM

Seven
PARAM

Nine
PARAM

Seven
PARAM

A 0.89 0.81 0.98 0.92 0.88 0.89 0.83 0.83
B 0.90 0.85 0.99 0.98 0.96 0.92 0.76 0.75
C 0.99 0.99 1.0 1.0 0.99 0.99 0.99 0.99
D 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.98
E 0.99 0.99 1.0 1.0 1.0 1.0 1.0 1.0
F 0.94 0.95 0.99 0.99 0.91 0.91 0.93 0.94

Table 8. Detection Results (precision).

Failure
Modes

IForest XGBOD MCD OCSVM

Nine
PARAM

Seven
PARAM

Nine
PARAM

Seven
PARAM

Nine
PARAM

Seven
PARAM

Nine
PARAM

Seven
PARAM

A 0.49 0.36 0.78 0.71 0.51 0.53 0.41 0.41
B 0.48 0.43 0.90 0.79 0.74 0.57 0.20 0.19
C 0.94 0.90 0.99 0.99 0.93 0.96 0.98 0.98
D 0.85 0.83 0.98 0.97 0.92 0.94 0.86 0.86
E 0.97 0.98 1.0 1.0 1.0 1.0 1.0 1.0
F 0.66 0.72 0.92 0.91 0.59 0.62 0.73 0.73

The failure modes not accurately identified were failure mode A and B. For the failure
mode B, the HPC fault with a simultaneous reduction in efficiency and flow capacity, which
may affect LPC component, resulting in an evident LPC efficiency decrease. Due to the
limited on-board performance measurement set, the measurements between the LPC and
HPC are insufficient to characterize all fault information, for which they share a similar
measurement observation pattern due to the failure.

3. The influence of different levels of noise on the detection effect:

Besides the on-board sensor measurements limitation, the measurement noise can
also introduce uncertainty into the health parameters estimation. Especially when the fault
magnitude is relatively smaller, the failure signature maybe masked in the measurement
noise, causing wrong diagnostics conclusions. Two types of noise are used to process the
data here. The amount of noise is shown in Table 9.

Table 9. Noise Setting.

Gas Path Performance Parameter Noise A Noise B

Outlet pressure of the fan P13 (bar) 0.25% 0.5%
Outlet temperature of the fan T13 (C) 0.4% 0.8%

Inlet pressure of HPC P2 (bar) 0.25% 0.5%
Inlet temperature of HPC T2 (C) 0.4% 0.8%

Outlet temperature of the HPC T3 (C) 0.25% 0.5%
Outlet pressure of the HPC P3 (bar) 0.4% 0.8%

Exhaust gas temperature T6 (C) 0.4% 0.8%
Low pressure rotor speed NL (rpm) 0.05% 0.1%
High pressure rotor speed NH (rpm) 0.05% 0.1%

The test analysis for the above test results is given here. First, in the detection of
different baseline model, the failure modes B, C, D, E and F show better effect with single
engine baseline model. However, in the detection of failure mode A, the detection effect
of the fleet baseline model is more accurate, which means that the failure mode A is
less affected by the engine’s performance difference. The fan is the most exposed air
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path component of the engine. Compared to changes in internal flow and efficiency of
components, changes in the external environment are more likely to affect the efficiency of
the fan.

Second, most algorithms obtain better detection results when the input performance
parameters are nine. However, the MCD algorithm performs even better when the input
parameters are seven, which may be related to the internal calculation of the Mahalanobis
distance. When the dimensionality of the data point increases, the calculated Mahalanobis
distance will also increase. If the fault information can be reflected by only a few parameters,
adding more parameter dimension may cover up the fault information which needs to be
expressed by the value of distance, and it may lead to the misjudgment of the algorithm.

Third, the detection results of noise case are given in Table 10. Indicator “Precision” is
more obviously affected by noise, so it is selected as the observation target.

Table 10. Detection Result of Different Noise.

Failure
Modes

IForest XGBOD MCD OCSVM

Noise A Noise B Noise A Noise B Noise A Noise B Noise A Noise B

A 0.49 0.42 0.78 0.72 0.51 0.56 0.41 0.31
B 0.48 0.48 0.89 0.73 0.74 0.59 0.20 0.37
C 0.94 0.73 0.99 0.99 0.93 0.71 0.98 0.92
D 0.85 0.75 0.98 0.97 0.92 0.83 0.86 0.85
E 0.97 0.94 1.0 1.0 1.0 0.99 1.0 1.00
F 0.65 0.49 0.92 0.80 0.59 0.33 0.73 0.66

It can be observed that the detection ability of all algorithms decreases after the noise is
doubled. Among them, the detection accuracy of failure modes C, D and F are significantly
reduced, which are all turbine failure. This shows the flow and efficiency deviations of
turbine component have less impact on the engine, which can be easily masked in the noise.

Based on the above results, the XGBOD algorithm has the highest detection accuracy. It
makes good use of its advantages as an integrated algorithm, and performs well in the case
of reduced parameters or increased noise. In contrast, the detection accuracy of IForest and
OCSVM algorithms is not in a good level. Due to the lack of training data, the IForest failed
to play its advantage in the detection of massive data. As for OCSVM, it is mainly good at
single classification [28], and it does not perform well on two classification problems.

In terms of failure modes, failure mode E has the highest detection accuracy. This
shows that the reduced efficiency of the high-pressure compressor will seriously affect the
performance of the whole engine. On the other hand, the detection rate of each algorithm
for failure mode A is relatively low. The reason may be that the selected parameters cannot
well represent the characteristics of the failure, or the failure itself has a small impact on
engine’s performance.

5. Conclusions

This paper presents a detailed review of an experimental data mining algorithm library
for engine condition monitoring, which comprises different types of algorithms (baseline
construction, anomaly detection, trend prediction). The algorithm library is validated
on engine simulation data, which shows great effectiveness on detecting different types
of failure.

The innovations of the algorithm library are listed below:

1. This algorithm library is specifically established for engine condition monitoring;
2. The simulation data set used in this article can be made public for verification by

other anomaly detection algorithm developers;
3. Compare the performance differences in anomaly detection algorithms in each condi-

tion to provide reference for actual engineering applications.
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In the case study part of the paper, the performance data simulation of the engine
fleet’s health status and abnormal conditions is carried out. The baseline models of the
fleet and a single engine are established respectively, and the deviation value sequences
obtained from different baseline models are compared for anomaly detection. This paper
tested four anomaly detection algorithms: Isolated Forest, XGBOD, MCD, OCSVM. The
conclusions are as follows:

1. Different abnormal modes have different effects on engine performance parameters,
leading to different detection results. The overall HPC and HPT abnormal detection
results are the best;

2. In the comparison of the four algorithms, the XGBOD anomaly detection based on
the integrated idea is the most accurate and can detect most outliers;

3. In terms of the deviation value sequences obtained by different baseline models, the
individualized model is slightly better than the fleet model based on the fleet data in
anomaly detection;

4. The reduction in status monitoring parameters and increased noise will reduce the
accuracy of detection.

The successful application of these algorithms proves the reliability and efficiency of
the algorithm library. To further improve the performance of the algorithm library, different
operating conditions still need to be investigated. Therefore, a potential future research
direction is a validation on actual failure data, as well as the installation of new algorithms.
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