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Abstract: This paper models the kinematics of the vortex system of an encased axial turbomachine
at part load and overload applying analytical methods. Thus far, the influence of the casing and
the tip clearance on the kinematics have been solved separately. The vortex system is composed of
a hub, bound and tip vortices. For the nominal operating point ϕ ≈ ϕopt and negligible induction,
the tip vortices transform into a screw. For part load operation ϕ → 0 the tip vortices wind up to
a vortex ring, i.e., the pitch of the screw vanishes. The vortex ring itself is generated by bound vortices
rotating at the angular frequency Ω. The hub vortex induces a velocity on the vortex ring causing
a rotation at the sub-synchronous frequency Ωind = 0.5 Ω. Besides, the vortex ring itself induces
an axial velocity. Superimposed with the axial main flow this results in a stagnation point at the tube
wall. This stagnation point may wrongly be interpreted as dynamic induced wall stall. For overload
operation ϕ → ∞ the vortex system of the turbomachine forms a horseshoe, i.e., the pitch of the
screw becomes infinite. Both hub and tip vortices are semi-infinite, straight vortex filaments. The tip
vortices rotate against the rotating direction of the turbomachine due to the induction of the hub
vortex yielding the induced frequency Ωind = −0.5 Ω/s with the tip clearance s.

Keywords: vortex dynamics; potential flow; part load; overload; sub-synchronous frequency;
kinemtatic induced noise

1. Introduction and Literature Review

By now, the common understanding is that rotating stall as well as the resulting noise and
vibration within a turbomachine is a dynamic effect. This means that frictional forces lead to boundary
layer separation and eventually stall in rotating machines [1,2]. This understanding is recently
confirmed by Cloos et al. [3] both experimentally and analytically for the most generic machine,
a flow through a coaxial rotating circular tube. According to Cloos et al. [3], wall stall—a term coined by
Greitzer [1] in contrast to blade stall—is caused at part load by the interaction of axial boundary layer
and swirl boundary layer flow, i.e., the influence of centrifugal force on axial momentum. For wall stall
the axial velocity component uz vanishes at the line z = −z0, r = a (axial coordinate in mean flow
direction z, distance z0 from the reference point on the line of symmetry r = 0, radial coordinate r and
tube radius a; cf. Figure 1).

This paper analyzes the flow situation in encased axial turbomachines for small viscous friction.
This work shows that wall stall, i.e., uz(−z0, a) = 0 can also be a result of kinematics only due to
induced velocities of the vortex system superimposed with the axial main flow. The structure of
the vortex system, especially the tip vortices, depends on the operating point of the turbomachine.
Furthermore, the tip vortices rotate with a sub-synchronous frequency Ωind (Karstadt et al. [4] and

Int. J. Turbomach. Propuls. Power 2018, 3, 11; doi:10.3390/ijtpp3020011 www.mdpi.com/journal/ijtpp

http://www.mdpi.com/journal/ijtpp
http://www.mdpi.com
http://www.mdpi.com/2504-186X/3/2/11?type=check_update&version=1
http://www.mdpi.com/journal/ijtpp
http://dx.doi.org/10.3390/ijtpp3020011


Int. J. Turbomach. Propuls. Power 2018, 3, 11 2 of 13

Zhu [5]). The aim of the present paper is to analyze the influence of the vortex system in encased axial
turbomachines and its circulation strength on the observed phenomena yielding the research questions:

1. Is it possible to explain by means of analytical methods the sub-synchronous frequencies observed
for turbomachines?

2. Can wall stall be a result of kinematics only?

To answer these questions, this paper first employs vortex theory for an encased axial
turbomachine followed by the application of fundamental solutions. For machines without casing such
as wind turbines and screw propellers, vortex theory is well described by Betz [6], Goldstein [7],
Glauert [8] and van Kuik [9]. The method is not yet developed in such a degree for encased
turbomachines requiring the flow potential of a vortex ring inside a tube.
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Figure 1. A coaxial vortex ring of transient strength Γt and radius b in a circular tube of radius a,
according to the case ϕ→ 0. The sketch is for Z = 1, i.e., one bound vortex only to improve clarity.

In addition, to enlarge the investigation on the whole operating range of a turbomachine,
we investigate the structure and kinematics of the vortex system at heavy overload applying theory of
functions (complex analysis). For turbomachines, the flow number ϕ := U/ Ωa defines the operating
point (e.g., part load or overload). The flow number is the ratio of axial free-stream velocity U to
the circumferential velocity Ωa where Ω = 2πn is the rotational speed (the scaling to Ωa and not to
Ωb with the blade tip radius b is common in the context of turbomachines and therefore used here
as well [10]).

For the nominal operating point ϕ ≈ ϕopt and negligible induction, the vortex system of
an encased axial turbomachine consists of a hub, Z bound and Z tip vortices, with Z the number of
blades. The tip vortices transform into helices with a pitch of 2πϕa.

For part load operation ϕ → 0 (see Figure 1), the Z helices “roll up” and form a vortex ring,
i.e., the pitch of the helices vanishes. The vortex ring is continuously generated by the bound vortex
system. Hence, the coaxial vortex ring strength is transient. A nice picture for this vortex ring is that
of a thread spool rolling up and gaining strength over time. This picture explains some transient
phenomena using kinematic arguments only.

The case of heavy overload occurs for infinitely high flow numbers ϕ→ ∞ (see Figure 2). The hub,
the bound and the tip vortices form a horseshoe, i.e., the pitch of the helices becomes infinite. Both hub
and tip vortices are semi-infinite, straight vortex filaments. In real turbomachines, the flow number
cannot be adjusted to infinity but is limited to a maximum value ϕ̂ due to flow rate limitations
and geometric restrictions. Nevertheless, the analysis of this limiting case is important for the basic
understanding of the vortex system in axial turbomachines.



Int. J. Turbomach. Propuls. Power 2018, 3, 11 3 of 13

Investigations of vortex systems in fluid dynamics trace back to the work of Helmholtz [11] who
formulated the Helmholtz’s theorems as a basis for the research concerning rotational fluid motion.

Didden [12] performed measurements of the rolling-up process of vortex rings and compared the
results with similarity laws for the rolling-up of vortex sheets.
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Figure 2. A horseshoe vortex of strength Γ and radius b in a circular tube of radius a, according to the
case ϕ→ ∞. The sketch is for Z = 1, i.e., one bound vortex only to improve clarity.

Besides the investigation of vortex kinematics, a broad research field on vortex structures in
turbomachines is the experimental and numerical analysis of acoustic and noise emission of tip
vortices [13–16]. The noise of a fan is noticeable by a CPU, car or a rail vehicle cooler. All three
examples are met in everyday life. One of the main reasons for the noise is the gap s := (a− b)/a
between the housing and the impeller tip. With increasing gap the noise emission and the energy
dissipation increase [17,18]. Karstadt et al. [19] and Zhu [5] investigated noise and dissipation due to
tip vortices.

The kinematics for an encased axial turbomachine operating at part load or overload are not fully
understood yet. Especially the basic kinematics of these phenomena are not sufficiently analyzed.

To develop physical understanding of the whole picture in detail, the paper is organized as follows.
Section 2 uses vortex theory to determine the strength of the vortices. Subsequently, Section 3 derives
the velocity potential of a coaxial vortex ring within a circular tube at part load and the induced rotating
frequency. The flow potential and the induction at overload is introduced in Section 4. The paper
closes with a short outlook to potential applications in Section 5 and a discussion in Section 6.

2. Vortex Theory

An encased axial turbomachine with Z impellers is considered. The sketched vortex system
(see Figures 1 and 2) results from the Z bound vortices. The generation of a bound vortex was
explained by Prandtl [20] using arguments of boundary layer theory and Kelvin’s circulation theorem.
The presence of viscosity is essential for the creation of the bound vortex but the generation phase is
not in the scope of this paper. For vortex generation, we would like to refer the reader to the work of
Prandtl [20].

By vortex theory, each blade 1, ..., Z of length b is represented by its bound vortex of strength Γ.
For simplicity, this investigation assumes Γ to be constant in radial direction along the blade from
r = 0 to r = b. As a vortex filament cannot end in a fluid due to Helmholtz’s vortex theorem, a free,
trailing vortex springs at each blade end r = 0 and r = b (see Figures 1 and 2). These vortices are
of the same strength as the bound vortex. At the inner end r = 0, a straight semi-infinite vortex line
0 ≤ z < ∞ of strength ZΓ—the so-called hub vortex—attaches to the blade. The tip vortices at the
outer end r = b are helices. The axial distance of the each helix winding, i.e., the helix pitch, is given
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by U/n = 2πaϕ. Depending on the load, these helices either “wind up” (ϕ → 0) forming a vortex
ring or stretch to infinity (ϕ→ ∞) yielding a straight, semi-infinite vortex line.

Regardless of the flow number ϕ, the semi-infinite straight vortex line at r = 0 induces the
circumferential velocity ZΓ/(4πb) at z = 0, r = b due to the Biot–Savart law. Hence, the induced
rotational speed is Ωind = ZΓ/(4πb2).

In a next step, this analysis calculates the vortex strength ZΓ employing the angular momentum
equation and the energy equation. On the one hand, the axial component of the angular momentum
equation is ZΓ/2π = dM/dṁ. Here, M is the axial torque component applied by the turbomachine
to the fluid and ṁ the mass flux. A more detailed explanation is given in Appendix A. Multiplying
the momentum equation by Ω yields ZΓn = dP/dṁ. P = MΩ is the power applied to the fluid by
means of the rotating bound vortices. On the other hand, the energy equation for an adiabatic flow
reads dP/dṁ = ∆ht, with ∆ht being the difference in total enthalpy experienced by a fluid particle
passing the cross-section z = 0. Both arguments result in the relation ZΓn = ∆ht.

From turbomachine theory, the expression ∆ht = (Ωb)2(1 − ϕ/ϕ̂) can be derived from the
equation mentioned above. The dimensionless design parameter ϕ̂ equals the tangent of the blade’s
trailing edge angle β2, i.e., ϕ̂ = tan β2. Hence, the relation between ZΓ and Ω yields

ZΓn

(Ωb)2 = 1− ϕ

ϕ̂
. (1)

As Equation (1) shows, the total change in circulation ZΓ along the plane of the machine is linked
to the flow number ϕ by Euler’s turbine equation.

3. The Vortex System at Heavy Part Load

For the limiting case of interest ϕ → 0, the relation between ZΓ and Ω, Equation (1), yields
∆ht = ZΓn = (Ωb)2. This results in an induced sub-synchronous frequency

Ωind
Ω

=
1
2

, for ϕ→ 0. (2)

Here, the calculation neglects the self-induction of the vortex ring. This idealization is to
some extent inconsistent but allows obtaining a simple solution for the kinematics of an encased
axial turbomachine.

The induced frequency, Equation (2), is in surprisingly good agreement with measured
sub-synchronous frequencies 0.5 Ω − 0.7 Ω of rotating stall of compressors, fans and pumps at
part load operation [10] and may result in a rethinking of rotating stall from a kinematic perspective.

This investigation is now set to analyze the kinematics of coaxial vortex rings of radius b
and maximal strength Γt = ZΓnt < (Ωb)2t, with time t, as sketched in Figure 1. By doing so,
Laplace’s equation

1
r

∂

∂r

(
r

∂Φ
∂r

)
+

∂2Φ
∂z2 = 0 (3)

for the velocity potential Φ, with ~u = ∇Φ, is solved for an incompressible, axisymmetric flow.
The velocity potential for a coaxial ring filament in a circular tube yields

φ(r, z) :=
Φ

Ua
=

z
a
− 2τβ2

∞

∑
n=1

J1(knβ)

kn J2
0 (kn)

J0

(
kn

r
a

)
exp

(
−kn
|z|
a

)
, (4)

with J0, J1 the Bessel function of orders 0 and 1, respectively, and kn the zeros n = 1, ..., ∞ of the function
J′0(kn) = −J1(kn) = 0. Appendix B gives a more detailed derivation for this result. The dimensionless
velocity potential φ depends on the dimensionless ring radius β := b/a and the dimensionless vortex
strength τ := Γt/ 2bU. Since Γt increases linearly in time, τ can also be interpreted as a parametric
time of the process.
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Stokes stream function for this flow is (using the integrability conditions ∂ψ/∂z = −r ∂φ/∂r and
∂ψ/∂r = r ∂φ/∂z)

ψ(r, z) :=
Ψ

Ua2 = −1
2

(
1− r2

a2

)
+ 2τβ2

∞

∑
n=1

J1(knβ)

kn J2
0 (kn)

J1

(
kn

r
a

) r
a

exp
(
−kn
|z|
a

)
. (5)

With the stream function, the radial velocity component

ur(r, z)
U

= 2τβ2
∞

∑
n=1

J1(knβ)

J2
0 (kn)

J1

(
kn

r
a

)
exp

(
−kn
|z|
a

)
(6)

and the axial velocity component

uz(r, z)
U

= 1 + 2τβ2
∞

∑
n=1

J1(knβ)

J2
0 (kn)

J0

(
kn

r
a

)
exp

(
−kn
|z|
a

)
(7)

are given. The velocity field (Equations (6) and (7)) takes the induction of the vortex ring into account.
At the stagnation point z = ±z0, the axial velocity uz vanishes for

1 = −2τβ2
∞

∑
n=1

J1(knβ)

J2
0 (kn)

J0(kn) exp
(
−kn
|z0|

a

)
. (8)

Equation (8) is implicit for the stagnation point z0 = z0(τ, β). Figure 3 shows Stokes stream
function and the stagnation points at z = ±z0 for different circulation strengths τ of the vortex for
β = 0.8. With increasing τ, the stagnation point z0 moves away from the plane of the turbomachine
z = 0. This is because the induced velocity of the vortex ring increases with respect to the free-stream
velocity. Hence, the limiting case τ → 0 represents an undisturbed flow through a rigid pipe without
vortices. For the limiting case τ → ∞, the free-stream velocity disappears and only the two vortices at
r = ±b, z = 0 would be visible.
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Figure 3. Contour plots of the stream function (Equation (5)) for a vortex ring with the strength:
(a) τ = 0.8; (b) τ = 2.5; and (c) τ = 5.0, for β = 0.8.

4. The Vortex System at Heavy Overload

Figure 4 visualizes the vortex system of an axial turbomachine composed of Z = 1 impeller blade
at heavy overload ϕ → ∞ (Z = 1 is chosen to improve clarity only). For this limiting case, the flow
at cross section A-A far downstream of the machine is a plane potential flow. It can be described
using theory of functions (complex analysis) [21]. Mirrored tip vortices are necessary to fulfill the
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kinematic boundary condition on the tube wall. These mirrored vortices are located in the housing
and on the rotational axis of the turbomachine. Considering the tip vortex and its mirrored conjugates
only, i.e., neglecting the hub vortex as a first step, one obtains the system visualized in Figure 4, bottom
left. The vortex on the axis and the hub vortex feature identical magnitude but opposing rotating
directions. Adding the hub vortex yielding the complete system hence results in the annulation of
these two vortices (see Figure 4, bottom right).

MIRRORED
TIP VORTEX

TIP VORTEX

MIRRORED
TIP VORTEX

Γ

Γ

Γ
𝜉𝜉

i𝜂𝜂 𝑣𝑣ind

Ω

A-A
EXCLUDING 
HUB VORTEX

A-A
INCLUDING 
HUB VORTEX

𝑈𝑈

𝑍𝑍Γ

Γ

𝛺𝛺

𝛺𝛺ind

Γ

Figure 4. The vortex system of an axial turbomachine at overload, Z = 1.

In the following notation, the complex coordinates ζ = ξ + iη = r exp (iθ) are composed of a real
part ξ = r cos θ and an imaginary part η = r sin θ, with i =

√
−1. The complex potential F(ξ, η) is

divided into the real part, which is the velocity potential < [F (ξ, η)] = Φ(ξ, η) and the imaginary part
which is the stream function = [F (ξ, η)] = Ψ(ξ, η). F is the complex conjugate of F.

For the considered potential flow, the tip vortex at radial position b = (1 − s)a yields the
complex potential

F1(ζ) = −
iΓ
2π

ln (ζ − b) . (9)

Here, s is the dimensionless gap. The Milne–Thomson circle theorem [22] is applied to derive the
complex potential satisfying the kinematic boundary condition at the wall. This theorem postulates
a resulting complex potential

F2(ζ) = F1(ζ) + F1

(
a2

ζ

)
(10)

for a potential F1 and the mirrored potential at the surrounding wall. Adding the potential of the
mirrored tip vortex on the axis of the turbomachine ζ = 0 (see Figure 4, bottom right), yields for the
complex flow potential

F′(ζ) = − iΓ
2π

[
ln (ζ − b)− ln

(
ζ − a2

b

)
+ ln ζ

]
+ const. (11)
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The tip vortex at ζ = b with the circulation Γ necessitates a mirrored vortex at ζ = 0 with the same
magnitude of circulation and a mirrored vortex in the housing at ζ = a2/b = a/(1− s) with the same
magnitude and inverted direction. Up to now, the hub vortex is excluded from the considerations.
Considering the hub vortex as visualized in Figure 4, bottom right yields for the complex potential

F(ζ) = − iΓ
2π

[
ln (ζ − b)− ln

(
ζ − a2

b

)]
+ const. (12)

In the following, this analysis shows that an induced movement of the gap vortex occurs against
the rotating direction of the turbomachine at heavy overload. A potential vortex induces a velocity on
the surrounding flow. The velocity components of a given potential F(ζ) are calculated by

dF(ζ)
dζ

= uind~eξ − ivind~eη . (13)

A straight vortex filament does not induce a velocity on its own due to the Biot–Savart law so
the induced velocity at ζ = b is only due to the mirrored tip vortex at ζ = a/(1− s). The resulting
induced velocity at the position of the tip vortex yields

uind~eξ − ivind~eη =
d

dζ

[
iΓ
2π

ln
(

ζ − a2

b

)] ∣∣∣∣
ζ=b

= − iΓ
2πb

b2

a2 − b2~eη . (14)

Assuming a turbomachine with Z impeller blades, the rotating velocity of the tip vortex is

vind =
ZΓ
2πb

b2

a2 − b2 =
ZΓ

2πas
1− s
2− s

= Ωa
1− ϕ/ϕ̂

s
(1− s)3

2− s
. (15)

This is the rotating direction against the rotating direction of the turbomachine. For symmetry
reasons, the rotating trajectory defines a circular path at radius b = a(1− s). Hence, the induced
frequency at ζ = b is

Ωind =
vind

b
=

Ω
s
(1− s)2

2− s

(
1− ϕ

ϕ̂

)
. (16)

For high flow number ϕ→ ϕ̂ and small gap s� 1, the induced frequency yields

Ωind
Ω

=
1
2s

, for ϕ→ ∞ (17)

against the rotating direction of the turbomachine.

5. Application for Acoustical Investigations

Previous investigations by Karstadt et al. [4] analyzed the tip clearance noise in axial
turbomachines. Figure 5 shows the frequency spectra over the complete operating range. Remarkable
are the peaks at 42 Hz and 375 Hz, which correspond to the rotational speed n and the blade passing
frequency Zn. Fukano and Yang [16] showed that the circumferential frequency of the tip clearance
noise shifts to lower values with increasing tip clearance s and decreasing flow number ϕ due to the
larger extent of the gap vortex. The present paper investigates the frequency of the tip clearance noise
depending on the operating point applying analytical methods. At heavy part load, Equation (2)
indicates that an induced frequency at half the rotation speed of the turbomachine should appear.
This frequency was also observed by Karstadt et al. [4] as Figure 5 shows a high intensity in the region
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of 0–50 Hz. Equation (17) indicates that for heavy overload the induced frequency will increase with
decreasing tip clearance. Furthermore, we expect a noise of high frequency due to the small value of
s < 1% which is common for turbomachines. The broadband drop in the sound power for all flow
numbers is clearly visible.

Müller [23] applied the continuity and the momentum equation and deduced that sound inside
a fluid volume is only emitted if the rotation of the velocity field changes in time. The present study
applies a similar approach to analyze the tip clearance noise of a turbomachine. Time-consuming
simulations as performed by Carolus et al. [24] surely allow a more profound and accurate insight
into the acoustics of turbomachines. The development of an analytical model which predicts main
frequencies is yet interesting to generate a deeper understanding of the acoustics in turbomachines.

These findings and the presented analytical model in this paper could be an efficient tool for
acoustic design of turbomachines. This is because this analysis separates kinematic and dynamic
effects. Up to now, this is not possible for computational fluid dynamics (CFD) calculations. Separating
different effects generates a deeper understanding of the underlying physics and allows realizing
particularly focused investigations.

Sound frequency (𝑓) in HzF
lo

w
 n

u
m

b
e
r

(𝜑
)

𝑠 = 0.38%,   Z = 9,   n = 42 s−1,   𝑅𝑒 = 3.46 ⋅ 106 𝐿w in dB

Figure 5. Frequency spectra of the tip clearance noise depending on the flow number ϕ [4].

6. Summary and Conclusions

An interplay between dynamic and kinematic effects explains flow structures and phenomena.
Using computational fluid dynamics, a clear distinction of both effects is often impossible. In contrast,
analytical methods allow a more focused picture of fluid mechanics, i.e., they allow a clear distinction
of effects. Of course, only generic flows are accessible to analytical methods.

This paper focuses on an analytic model for wall stall so far being explained by dynamics only:
boundary layer separation is indeed a dynamic effect. Nevertheless, boundary layer separation is
not necessarily the only reason for wall stall. It is shown that kinematics may also explain at least
some effects of wall and rotating stall. The used picture for a flow at small flow numbers is a thread
spool rolling up the tip vortices resulting from rotating bound vortices. From the fluid mechanics
perspective, the thread spool is a coaxial vortex ring of increasing strength connected to a semi-infinite
hub vortex (Figure 1).

Thus far, the velocity potential of a coaxial vortex ring inside a tube was unknown. The solution
of Laplace’s equation results in the velocity potential for the vortex filament within a tube
(see Equation (4)).

This study gained three main results, which are due to kinematics only. First, at part load operation
the hub vortex induces a sub-synchronous rotation of the vortex ring. The derived rotational speed
Ωind = 0.5 Ω of the vortex ring is surprisingly consistent with observed sub-synchronous speeds of
rotating stall (cf. [10]). Second, the vortex ring induces an upstream axial velocity at the wall. Together
with the undisturbed flow velocity, this results in a stagnation point upstream and downstream at
the wall which may be interpreted as wall stall (Figure 3). Third, at overload operation, the induced
rotational direction is inverted to the case at part load. The semi-infinite straight vortex filament at the
outer blade end rotates against the rotating direction of the turbomachine due to the induction of the
hub vortex. The induced frequency yields Ωind = −0.5 Ω/s.
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The presented analytical model may give new arguments and improves the understanding of the
vortex system in turbomachines but is also intended to motivate generic experiments. Hence, a test rig
will validate the models presented in this paper in the near future.

As a next step, the velocity potential for a coaxial vortex ring filament in a circular tube
(Equation (4)) will be extended to a coaxial vortex layer, yielding a transient behavior of the vortex
system. This behavior leads to a change in the circulation over time being responsible for noise
emission [23].

Author Contributions: P.F.P. developed the analytical model. P.T. and F.-J.C. performed the calculations.
P.F.P. and P.T. analyzed the results and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Quantity Description Dimension
a tube radius L
b blade tip radius L
F complex potential L
∆ht total enthalpy difference L2T−1

i imaginary number −
Jn Bessel function of order n, Jn(x) = π−1 ∫ π

0 cos(nτ − x sin τ)dτ −
kn n-th zero of Bessel function J1 −
ṁ mass flux MT−1

M torque ML2T−2

n rotational speed T−1

P power ML2T−3

r radial coordinate L
s tip clearance, s = (a− b)/a −
t time T
u, v velocity LT−1

uind, vind induced velocity LT−1

U free-stream velocity LT−1

z axial coordinate L
z0 wall stall location L
Z blade number −
β dimensionless vortex ring radius, β = b/a −
β2 trailing edge angle −
Γ vortex strength L2T−1

Γt time-dependent vortex strength, Γt = ZΓnt L2T−1

ζ complex coordinate, ζ = ξ + iη L
ξ real part of complex coordinate ζ L
η imaginary part of complex coordinate ζ L
θ argument of complex coordinate ζ −
τ dimensionless vortex strength, τ = Γt/(2bU) −
ϕ flow number, ϕ = U/(Ωa) −
ϕopt optimal flow number −
ϕ̂ maximum flow number −
φ dimensionless velocity potential, φ = Φ/(Ua) −
Φ velocity potential L2T−1

ψ dimensionless stream function, ψ = Ψ/(Ua2) −
Ψ Stokes stream function L3T−1

Ω frequency T−1

Ωind induced frequency T−1
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Appendix A. Euler’s Turbine Equation

To obtain ZΓ/2π = dM/dṁ, the control volume sketched in Figure A1 is considered.
The calculation applies the conservation of momentum

dM = dṁ (r2cu2 − r1cu1) , (A1)

with cuj the angular component of the total velocity c at position j. This equation is also known as
Euler’s turbine equation. Evaluating the circulation Γ :=

∮
C ~c · d~x at a closed curve C yields

Γ :=
∮
C

~c · d~x =

2π∫
0

~c ·~eϕ r dϕ = 2π r cu. (A2)

Combining Equations (A1) and (A2) and following Helmholtz’s theorems, i.e., Γ2 − Γ1 = ZΓ,
with the blade number Z, the calculation results in

ZΓ
2π

=
dM
dṁ

. (A3)

(1) (2)

d ሶ𝑚

𝑟2
𝑟1

Figure A1. Control volume inside an encased axial turbomachine between the inlet and outlet,
Locations (1) and (2), respectively.

Appendix B. Bessel Function

To obtain the velocity potential for a coaxial vortex ring inside a tube, Equation (4), Laplace’s
Equation (3) has to be solved for an incompressible, axisymmetric flow. Applying the separation ansatz

Φ = Uz + F(r) G(z), (A4)

the velocity potential of the parallel flow Uz is superimposed by the potential F(r) G(z) of the vortex
ring within the tube. The functions F(r) and G(z) are unknown thus far. To determine F(r) and G(z),
an artificial vortex core is assumed first. Second, applying an asymptotic limit, we shrink this vortex
core to zero obtaining the singularity solution for a vortex ring filament in a circular tube.

In the first step, we solve the regular boundary value problem sketched in Figure A2.
The vortex core of the annular vortex is smeared to a coaxial, plane washer b(1− ε) ≤ r ≤ b,

with ε the dimensionless radial extent of the vortex core. For z = 0+, the vortex induces the radial
velocity W. For z = 0−, it induces −W yielding the circulation of the ring

Γt =
∮
C

~u · d~x = 2 εb W. (A5)

The function G(z) is odd, i.e., G(−z) = −G(z), and vanishes for G(z→ ±∞) = 0. The boundary
conditions for the function F(r) are
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−∞ < z < ∞ :
dF
dr

∣∣∣∣
r=0

=
dF
dr

∣∣∣∣
r=a

= 0, (A6)

z = 0 :
dF(r)

dr
=


0, b < r < a,

W, b(1− ε) < r ≤ b,

0, 0 < r ≤ b(1− ε).

(A7)

𝑧𝑧 → ∞

𝐹𝐹′
𝑟𝑟

=
0,

𝑧𝑧

𝐹𝐹𝐹
=
𝑊𝑊

,

𝑟𝑟

𝑧𝑧 = 0

𝐹𝐹𝐹
=

0

𝐹𝐹′ 𝑟𝑟 = 0 = 0

𝐹𝐹′ 𝑟𝑟 = 𝑎𝑎 = 0

𝑈𝑈

𝐺𝐺
𝑧𝑧
→
∞

=
0

𝑟𝑟 = 𝑏𝑏(1 − 𝜀𝜀)

𝑟𝑟 = 𝑏𝑏

𝑟𝑟 = 𝑎𝑎

Φ = 𝑈𝑈𝑈𝑈 + 𝐹𝐹 𝑟𝑟 𝐺𝐺(𝑧𝑧)

𝐺𝐺 −𝑧𝑧 = −𝐺𝐺(𝑧𝑧)
d𝑥⃗𝑥

𝐶𝐶

𝑟𝑟 = 0

Figure A2. The regular boundary value problem for the vortex ring within a circular tube.

The boundary condition, Equation (A7), is developed in a Bessel series expansion benefiting from
the orthogonality properties of the Bessel functions [25]. The solution of Equation (3) satisfying the
boundary conditions in Equations (A6) and (A7), yields

φε(r, z) :=
Φε

Ua
=

z
a
− τ

∞

∑
n=1

2
kn

J0 (knr/a)
J2
0 (kn)

exp
(
−kn
|z|
a

)
1
ε

β∫
β(1−ε)

J1

(
kn

r
a

) r
a

d
( r

a

)
, (A8)

In the second step, we employ the limit

φ = lim
ε→0

φε, with Γt = 2 εbW = const, (A9)

to gain the asymptotic solution for the vortex filament. Using l’Hôpital’s rule, a regular solution for
the integral

lim
ε→0

1
ε

β∫
β(1−ε)

J1

(
kn

r
a

) r
a

d
( r

a

)
= β2 J1(knβ) (A10)

is found. Hence, the asymptotic limit ε→ 0 and Γt =const leads to the velocity potential for a coaxial
vortex ring filament inside a circular tube

φ(r, z) :=
Φ

Ua
=

z
a
− 2τβ2

∞

∑
n=1

J1(knβ)

kn J2
0 (kn)

J0

(
kn

r
a

)
exp

(
−kn
|z|
a

)
. (A11)
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