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Abstract: The opportunistic fungal pathogens belonging to the Candida haemulonii complex and
the phylogenetically related species Candida auris are well-known for causing infections that are
difficult to treat due to their multidrug-resistance profiles. Candida auris is even more worrisome
due to its ability to cause outbreaks in healthcare settings. These emerging yeasts produce a wide
range of virulence factors that facilitate the development of the infectious process. In recent years,
the aggregative phenotype has been receiving attention, as it is mainly associated with defects in
cellular division and its possible involvement in helping the fungus to escape from the host immune
responses. In the present study, we initially investigated the aggregation ability of 18 clinical isolates
belonging to the C. haemulonii species complex (C. haemulonii sensu stricto, C. duobushaemulonii, and
C. haemulonii var. vulnera) and C. auris. Subsequently, we evaluated the effects of physicochemical
factors on fungal aggregation competence. The results demonstrated that cell-to-cell aggregation was
a typically time-dependent event, in which almost all studied fungal isolates of both the C. haemulonii
species complex and C. auris exhibited high aggregation after 2 h of incubation at 37 ◦C. Interestingly,
the fungal cells forming the aggregates remained viable. The aggregation of all isolates was not
impacted by pH, temperature, β-mercaptoethanol (a protein-denaturing agent), or EDTA (a chelator
agent). Conversely, proteinase K, trypsin, and sodium dodecyl sulfate (SDS) significantly diminished
the fungal aggregation. Collectively, our results demonstrated that the aggregation ability of these
opportunistic yeast pathogens is time-dependent, and surface proteins and hydrophobic interactions
seem to mediate cell aggregation since the presence of proteases and anionic detergents affected
the aggregation capability. However, further studies are necessary to better elucidate the molecular
aspects of this intriguing phenomenon.

Keywords: Candida haemulonii clade; cell-cell interaction; emerging yeasts; drug resistance; virulence;
physicochemical conditions

1. Introduction

The Candida haemulonii species complex is classically formed by the emergent pathogens
C. haemulonii sensu stricto, C. duobushaemulonii, and C. haemulonii var. vulnera [1]. The
globally concerning fungus Candida auris is phylogenetically associated with this fungal
complex, and together they form the C. haemulonii clade [1]. Molecular methods are re-
quired for the correct identification of these emerging opportunistic yeasts [1]. Both the
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C. haemulonii species complex and C. auris are well-known for their intrinsic multidrug-
resistance profiles to clinically available antifungal agents, particularly azoles and polyenes,
which challenges clinicians to achieve successful treatments. This scenario is worsened
by the medical condition of the affected individuals, who generally have a compromised
immunological system and/or severe underlying illnesses such as diabetes, pulmonary,
renal, and peripheral vascular diseases [2].

Although species belonging to the C. haemulonii complex have been reported in clinical
cases around the world, they are still considered rare causative agents of human infections.
However, some countries, such as India, Korea, Kuwait, and Brazil [2], have experienced
an increase in the incidence of these fungi in recent years. The reasons for this circumstance
are not clear. Candida auris is considered a serious global health threat by the Centers for
Disease Control and Prevention (CDC, USA), mainly due to its capacity to cause outbreaks
in healthcare settings. To our knowledge, the ability to cause outbreaks is the major
difference between C. auris and the species comprising the C. haemulonii complex, which
can be attributed to the ability of C. auris to resist the commonly used disinfectants, its
persistence on medical devices and hospital surfaces for weeks, and its ability to colonize the
axillae, nares, and groin of patients [3]. Both the C. haemulonii species complex and C. auris
can cause superficial to deep-seated infections and produce a wide range of virulence
attributes [2].

Cellular aggregation is a phenomenon that has been described in C. auris, and isolates
can be classified as either aggregative or non-aggregative. However, the understand-
ing of this aggregation phenotype is still being studied [4–6]. According to Borman and
coworkers [4], aggregative strains of C. auris exhibit large aggregates (many cells attached
to one another) that cannot be disrupted by vortex mixing or detergents. The aggrega-
tive phenotype has been associated with colonizing isolates, while the non-aggregative
phenotype was mainly associated with isolates recovered from candidemia cases [5]. The
comparison of virulence between aggregative and non-aggregative phenotypes is still con-
troversial. In this sense, Borman and coworkers [4] demonstrated that aggregative C. auris
isolates exhibited less virulence compared to non-aggregative ones in the Galleria mellonella
larvae model. Conversely, C. auris aggregative isolates formed more robust biofilms than
non-aggregative isolates [5]. On the other hand, Carvajal and coworkers [6] did not observe
a clear relationship between the phenotype of aggregation and the virulence of C. auris
isolates, including in vivo infection of G. mellonella larvae.

Brown and coworkers [7] demonstrated that aggregative isolates of C. auris were more
cytotoxic than the non-aggregative ones using two- and three-dimensional skin epithelial
models. Additionally, the genes ALS5 and SAP5, associated with virulence traits and host
invasion, were upregulated in the aggregative C. auris, which can be involved in the greater
inflammatory response presented by this phenotype within the host tissue. ALS5 is a key
adhesion gene, and the upregulation of the adhesin protein Als5p in older cells of C. auris
has been demonstrated, along with a thickened cell wall, decreased neutrophil killing, and
increased epithelial adhesion [8].

The aggregative phenotype of C. auris has been proposed to be a consequence of a
defect in cellular division and failure to release daughter cells after the budding event [4].
However, a recent study reported a new form of aggregation in C. auris resulting from
increased adherence between adjacent cells, likely caused by genomic amplification of
the cell wall adhesin ALS4, which plays a role in virulence in G. mellonella larvae as well
as adhesion to both biotic and abiotic surfaces [9]. Regarding the C. haemulonii species
complex, the aggregative phenotype has not been previously described, but our research
group demonstrated that clinical isolates of the C. haemulonii complex exhibit a tendency
to form aggregates [10,11]. However, very little is effectively known about this intriguing
biological event in these emerging yeasts. Therefore, in this work, we aimed to study
the aggregation phenomenon in clinical isolates belonging to the C. haemulonii species
complex and C. auris, as well as the effects of both chemical and physical factors on their
aggregation capability.
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2. Materials and Methods
2.1. Microorganisms and Growth Conditions

A total of 18 clinical isolates of C. haemulonii species complex and C. auris were used
in the present study. The isolates of the C. haemulonii complex were recovered from
patients from Brazilian hospitals between 2005 and 2013 and were identified by molecular
approaches as C. haemulonii (n = 5; LIPCh2 recovered from the sole of the foot, LIPCh3
from toe nail, LIPCh4 from finger nail, LIPCh7 from toe nail, and LIPCh12 from blood), C.
duobushaemulonii (n = 4; LIPCh1 from finger nail, LIPCh6 from toe nail, LIPCh8 from blood,
and LIPCh10 from bronchoalveolar lavage), and C. haemulonii var. vulnera (n = 3; LIPCh5
from toe nail, LIPCh9 from urine, and LIPCh11 from blood) [12]. Candida auris isolates were
recovered from patients from Colombian hospitals between 2005 and 2016 (n = 6; Ca386
was recovered from a biopsy of bone tissue, Ca432 from the secretion of craniotomy, Ca485
from eye discharge, Ca446 and Ca885 from blood, and Ca881 from cerebrospinal fluid) [13].
Fungal cells were cultured in Sabouraud-dextrose broth (SDB) at 37 ◦C for 48 h and then
used in all experiments. The yeast cells were quantified using a Neubauer chamber.

2.2. Aggregation Kinetic Assay

The aggregation assay was performed using a standard method previously described [14,15].
In this sense, yeasts grown in SDB were washed twice in sterile phosphate-buffered saline
(PBS, pH 7.2), and then fungal suspensions containing 108 yeasts/mL were prepared
in microcentrifuge tubes (Eppendorf, Hamburg, Germany), vortexed for 30 s and then
transferred by pipetting into plastic cuvettes (1 mL/cuvette). The fungal suspensions
were incubated at 37 ◦C without agitation for 30-, 60-, 90-, and 120-min. Aggregation
was quantified as a percentage reduction in the optical density (OD) and calculated as
([OD0 − ODf]/OD0) × 100, where OD0 is the OD value at the start of the experiment and
ODf is the value after the different incubation time periods. All measurements were per-
formed at 530 nm using a spectrophotometer (Ultrospec 2100 Pro, Amersham Biosciences,
Amersham, United Kingdom). PBS without fungal cells was used as a blank. The percent-
age of aggregation was calculated and used for classification of aggregation as follows:
high (more than 40%), intermediate (30–40%), and low aggregation (less than 30%) [16].
One isolate of each Candida species was selected for the subsequent experiments.

2.3. Aggregation after Prolonged Periods and Assessment of Viability

The selected fungal isolates were prepared for aggregation assays as described above
and incubated for 5 and 24 h at 37 ◦C. At each time point, the OD was read at 530 nm,
and the percentage of aggregation was calculated as described above. In parallel, aliquots
(10 µL) of cell suspensions were obtained at each time point, spotted on the surface of
Sabouraud-dextrose agar (SDA) plates, and incubated at 37 ◦C for 48 h to evaluate the
viability of the fungal isolates after aggregation. Fungal cells were also stained with a
crystal violet solution (0.2% in water; Sigma-Aldrich, St. Louis, MO, USA) after each
incubation period and observed using a light microscope to investigate cell viability. The
dye is unable to enter viable (intact) cells, which remain unstained, while dead cells become
blue due to the dye’s ingress. In this context, control of dead cells was obtained by boiling
fungal cells for 20 min, followed by staining them with the same crystal violet solution.

2.4. Light Microscope Imaging

Fungi (108 yeasts/mL) were incubated in PBS (pH 7.2) at 37 ◦C for 2 h to allow cell
aggregation. Afterwards, the systems were gently mixed by pipetting, and an aliquot of
10 µL of each cell suspension was transferred to a glass slide, covered with a coverslip,
and observed using a fluorescence microscope to obtain differential interference contrast
images (DIC; Zeiss Fluorescence Microscope—Axio Imager D2 [Zeiss, Jena, Alemanha]).
Aliquots (10 µL) of the cell suspensions taken before incubation were used as a control for
negative aggregation for comparison purposes (time 0 h).
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2.5. Effects of Chemicals on Aggregation

In order to investigate the influence of chemical factors on the aggregation ability of the
clinical isolates of C. haemulonii species complex and C. auris, fungal suspensions were pre-
pared as described above and then incubated for 2 h to allow aggregation in the following
conditions: (i) PBS adjusted to pH 4.5, 7.2, and 8.5 to investigate the involvement of charged
groups on aggregation capability [17]; (ii) 50 µg/mL of proteinase K (Invitrogen, Carlsbad,
CA, USA); (iii) 0.25% trypsin (Nova Biotecnologia, São Paulo, Brazil) [9]; (iv) 0.05% to 0.25%
sodium dodecyl sulfate (SDS) [18]; (v) 0.5% to 2% β-mercaptoethanol [18]; (vi) 0.5 mM to
5 mM ethylenediamine tetraacetic acid tetrasodium salt (EDTA; Sigma-Aldrich, St. Louis,
MO, USA) [18]. DIC images were obtained as described above after incubation of the
clinical isolates with the chemicals that affected their aggregation capability.

2.6. Effects of Temperature on Aggregation

To evaluate the influence of temperature on the aggregation capability of the isolates
of the C. haemulonii species complex and C. auris, fungal cells were prepared as described
above and then incubated for 2 h to allow aggregation at either 28 ◦C or 37 ◦C.

2.7. Statistics

All experiments were performed in triplicate, in three independent experimental
sets. The results were analyzed statistically by Student’s t-test (in comparisons between
two groups) and by the Analysis of Variance One-Way ANOVA followed by Dunnett’s
multiple comparison test (in comparisons between three or more groups). All analyses
were performed using the program GraphPad Prism 8. In all analyses, p values of 0.05 or
less were considered statistically significant.

3. Results and Discussion
3.1. Aggregation Is a Time-Dependent Event in C. haemulonii Clade

The auto-aggregation capability of the 18 clinical isolates from the C. haemulonii species
complex and C. auris studied herein was observed to be a time-dependent event (Figure 1).
When analyzing each species individually, we observed that C. auris isolates had a very
similar percentage of aggregation at each time point, with mean aggregation ranging
from 3.1 ± 1.8% after 30 min to 50.8 ± 3.7% after 120 min of incubation. Similar results
were observed for C. duobushaemulonii isolates, with the mean percentage of aggregation
varying from 6.3 ± 0.8% after 30 min to 57.7 ± 3.6% after 120 min. On the other hand,
C. haemulonii and C. haemulonii var. vulnera isolates exhibited a more variable profile among
the different isolates. In this sense, the mean aggregation of C. haemulonii isolates varied
from 13.1 ± 8.9% after 30 min to 46.9 ± 10.8% after 120 min, while the mean percentage of
aggregation of C. haemulonii var. vulnera isolates was 7.9 ± 2.4% and 54.3 ± 11.4% after 30
and 120 min of incubation, respectively.

Supporting our observations, Tomici and coworkers [17] also demonstrated that the auto-
aggregation percentage in isolates of C. albicans, C. krusei, C. glabrata, and Saccharomyces boulardii
increases over time. Cellular aggregation is a well-known phenomenon in the microbial
field, described in both bacteria and fungi, not only in natural environments but in mam-
malian hosts as well. For instance, nitrogen-fixing bacteria such as Azospirillum, Klebsiella,
and Azotobacter can aggregate and flocculate, which contributes to their dispersal and
survival in soil [18]. Microorganisms can exhibit the ability of auto-aggregation, charac-
terized by the aggregation between cells of the same microbial strain, or coaggregation,
characterized by the aggregation between different microbial strains or species, or even
interkingdom interactions [19]. The formation of dental caries, for example, is highly medi-
ated by the coaggregation process, and, for this reason, several coaggregation studies have
focused on microorganisms of the human oral cavity, such as Streptococcus salivarius and
Candida albicans, among others [19,20]. Additionally, the coaggregation of Lactobacillus with
potential intestinal pathogens, such as Escherichia coli and Klebsiella spp., as well as some
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Candida species, as an anti-infection mechanism has also been investigated by research
groups [17,21].

The global threat posed by C. auris depends in part on its described aggregative
phenotype [4]. The impact of this phenotype on fungal cells and virulence is still being
investigated, and studies are somehow contradictory, but it has been shown to influence
biofilm formation, fungal virulence, and antifungal susceptibility, including tolerance to
clinical concentrations of sodium hypochlorite, with some isolates persisting alive after
14 days of treatment [22].
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Figure 1. Aggregation capability of the clinical isolates comprising the C. haemulonii species complex
and C. auris. The aggregation was evaluated by the reduction in the optical density (at 530 nm) of
fungal suspensions in PBS (pH 7.2) containing the fungi (108 yeasts/mL) after 30, 60, 90, and 120 min
of incubation at 37 ◦C in inert conditions. The results were expressed as percentages of aggregation
for each clinical isolate of C. haemulonii (A), C. duobushaemulonii (B), C. haemulonii var. vulnera (C), and
C. auris (D). The values represent the mean ± standard deviation of three independent experiments.

Recently, Pelletier and coworkers [23] demonstrated that macrophages are unable
to clear C. auris aggregates, which could benefit the fungi during a systemic infection
by facilitating the persistence of infection. An elegant study conducted by Forgács and
coworkers [24] showed the presence of large aggregates of C. auris, formed by single and
budding yeast cells, in the kidneys, livers, and hearts of immunosuppressed mice after
six days of infection. Moreover, despite exhibiting an aggregative or non-aggregative
phenotype in vitro, the C. auris isolates presented the same behavior in vivo, and the
authors speculate that these aggregates in tissues could protect the fungi from the host
immune system [24].

All clinical isolates of the C. haemulonii species complex and C. auris that underwent
testing demonstrated high aggregation after 2 h of incubation, according to the criteria
established in this study (i.e., aggregation >40%), except for one C. haemulonii isolate
(LIPCh7), which showed intermediate aggregation.
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The following isolates were chosen for further experiments: LIPCh4 from C. haemulonii,
LIPCh6 from C. duobushaemulonii, LIPCh5 from C. haemulonii var. vulnera, and Ca386 from
C. auris. Candida duobushaemulonii and C. auris isolates were randomly selected for the study
because very little difference was observed in their aggregation capabilities after 2 h of
incubation. In contrast, for C. haemulonii and C. haemulonii var. vulnera, the isolates that
showed the highest aggregation ability were chosen for the further experiments.

3.2. Aggregation after Prolonged Periods and Viability

The aggregation ability of the selected fungal isolates was evaluated for prolonged
periods (5 and 24 h) of incubation in PBS under inert conditions. The results revealed that
aggregation remained time-dependent and, except for the isolate LIPCh5 of C. haemulonii
var. vulnera, all the other isolates exhibited aggregation around 80% after 5 h and 90%
after 24 h of incubation (Figure 2A). Similar results were observed with C. albicans and
C. krusei ATCC strains, but not with C. glabrata isolates, which exhibited considerably lower
aggregation ability after the same incubation periods [17].
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Figure 2. Aggregation capability and assessment of viability after long periods of time for the clinical
isolates comprising the C. haemulonii species complex and C. auris. (A) The aggregation was evaluated
by the reduction in the optical density (at 530 nm) of fungal suspensions in PBS (pH 7.2) containing
the fungi (108 yeasts/mL) after 0, 2, 5, and 24 h of incubation at 37 ◦C in inert conditions. The results
were expressed as percentages of aggregation of isolates LIPCh4 from C. haemulonii, LIPCh6 from
C. duobushaemulonii, LIPCh5 from C. haemulonii var. vulnera, and Ca386 from C. auris. The values
represent the mean ± standard deviation of three independent experiments. The asterisks mean the
following: (****) p < 0.0001; (***) p < 0.001; (**) p < 0.01, and (*) p < 0.05. (B) Cellular viability was
assessed by spot inoculation of 10 µL of each system on SDA after each time point. (C) Representative
images of the viability of aggregates after 24 h of incubation, evaluated by staining with a 0.2% crystal
violet solution. CT corresponds to the control of fungal cells boiled for 20 min prior to staining. Ch,
C. haemulonii; Cd, C. duobushaemulonii; Chv, C. haemulonii var. vulnera; and Ca, C. auris. Bars = 30 µm.
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Fungal cells remained viable after aggregation, as can be observed by the fungal
growth on SDA after the different incubation periods (Figure 2B). Corroborating this
finding, we stained the fungal cells with a crystal violet solution after the incubation
periods and observed that the dye was unable to enter the cells, demonstrating their
viability, including those forming the aggregates (Figure 2C). On the other hand, fungal
cells boiled for 20 min (control of dead cells) and then stained with the same dye turned
blue, indicating that the dye entered the dead cells (Figure 2C).

3.3. Morphological Analysis of Cellular Aggregation

The four clinical isolates belonging to the C. haemulonii clade selected in the present
study were analyzed both before and after a 2-h incubation at 37 ◦C in PBS at pH 7.2.
Interestingly, we observed that the members of the C. haemulonii species complex exhibited
clusters of cells even after vigorous vortex mixing, which represents the time 0 h of the
experiment. These aggregates became noticeably larger after the incubation period, indicat-
ing the occurrence of significant cell-to-cell interactions. In contrast, C. auris also displayed
clusters of cells at 0 h, but these were considerably smaller than those observed in the
C. haemulonii complex isolates and remained similarly sized after incubation. However, the
number of aggregates and the number of cells per aggregate visibly increased, but these
were clearly smaller in comparison with the C. haemulonii complex isolates (Figure 3).
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pipetting, and observed using a light microscope. DIC images represent the isolates LIPCh4 from
C. haemulonii, LIPCh6 from C. duobushaemulonii, LIPCh5 from C. haemulonii var. vulnera, and Ca386
from C. auris before (0 h) and after incubation (2 h). Images were obtained at ×20 magnification.
Bars = 50 µm.

Our clinical isolates could be seen as single and budding yeast cells before and after
incubation, and the same was observed by other authors with aggregates of C. auris both
in vitro [23] and in vivo, using an immunosuppressed murine model [24].

3.4. Effects of Chemical Factors on Aggregation

The adaptation of opportunistic pathogens to different pH values favors their survival
in the hostile environment of the human body, for example, facing basic pH in the mouth,
acidic pH in the stomach, and neutral pH in the large intestine. In order to investigate
the potential involvement of charged groups in the aggregation of C. haemulonii complex
and C. auris isolates, we tested their ability to aggregate at different pH values. Since pH
values ranging from 4.5 to 8.5 are relevant for biological systems, we evaluated the impact
of PBS adjusted at three different pHs (4.5, 7.2, and 8.5) on the aggregation capability of the
isolates and observed that none of the Candida species tested were affected by pH variation
under the conditions used in our study (p > 0.05; Figure 4). On the other hand, Tomicic
and coworkers [17] reported that the auto-aggregation of C. albicans, C. krusei, C. glabrata,
and S. boulardii varied depending on pH values after 5 h of incubation, with the highest
auto-aggregation observed at acidic pH (pH 4.5) and the lowest at basic pH (pH 8.5);
however, after 24 h of incubation, no differences were observed in the auto-aggregation
ability of these different Candida species.
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a defect in cell division and release of the budding daughter cells, and the new aggregative 

phenotype caused by the expansion of the ALS4 gene adhesin [9]. Additionally, the 

Figure 4. Effects of different pH values on the aggregation capability of clinical isolates of the
C. haemulonii species complex and C. auris. The aggregation was evaluated by the reduction in the
optical density (at 530 nm) of fungal suspensions in PBS (pH adjusted for 4.5, 7.2, and 8.5) containing
the fungi (108 yeasts/mL) after 2 h of incubation at 37 ◦C. The results were expressed as percentages
of aggregation of isolates LIPCh4 from C. haemulonii, LIPCh6 from C. duobushaemulonii, LIPCh5 from
C. haemulonii var. vulnera, and Ca386 from C. auris. The values represent the mean ± standard
deviation of three independent experiments.

Subsequently, the fungi were treated with two broad-spectrum proteases, proteinase
K and trypsin, to investigate whether surface proteins, such as adhesins, play a role in the
aggregation process of C. haemulonii species complex and C. auris. Our results showed that
both proteinase K and trypsin led to a significant reduction in the percentage of aggregation
(p < 0.05), indicating that surface proteins are indeed important in cell-cell interactions that
lead to aggregation in these emerging Candida species (Figure 5).
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Figure 5. Effects of proteinase K (PK) and trypsin on the aggregation capability of the clinical
isolates of the C. haemulonii species complex and C. auris. The aggregation was evaluated by the
reduction in the optical density (at 530 nm) of fungal suspensions in PBS containing the fungi
(108 yeasts/mL), PK (50 µg/mL), and trypsin (0.25%) after 2 h of incubation at 37 ◦C. The results
were expressed as percentages of aggregation of isolates LIPCh4 from C. haemulonii, LIPCh6 from
C. duobushaemulonii, LIPCh5 from C. haemulonii var. vulnera, and Ca386 from C. auris. The values
represent the mean ± standard deviation of three independent experiments. The symbols represent
the significant difference in aggregation capability between PBS and the PK or Trypsin systems. The
asterisks mean the following: (****) p < 0.0001; (***) p < 0.001; (**) p < 0.01.

Bing and colleagues [7] demonstrated that treatment of C. auris with proteinase K
and trypsin led to the separation of cell clumps into individual yeast cells in an isolate of
C. auris that did not exhibit the typical aggregative phenotype; however, the enzymes were
not able to disrupt the aggregates of a typical aggregative isolate of C. auris. Furthermore,
quantitative transcriptional expression assays demonstrated that the relative expression
levels of the ALS4 gene in the typical aggregative isolate were comparable to those of a
non-aggregative strain of C. auris, whereas the isolate whose aggregates were disrupted by
the action of proteinase K and trypsin exhibited 400 times higher relative expression levels
of the ALS4 gene [9]. Therefore, those authors suggested the existence of two aggregative
phenotypes in C. auris: the typical aggregative phenotype resulting from a defect in cell
division and release of the budding daughter cells, and the new aggregative phenotype
caused by the expansion of the ALS4 gene adhesin [9]. Additionally, the authors demon-
strated that the C. auris isolate with the new aggregative phenotype developed more robust
biofilms on both polystyrene and silicone surfaces compared to the typical aggregative
isolate and non-aggregative isolates of C. auris, which formed weaker biofilms [9]. Based
on our findings, the clinical isolate of C. auris used in this study fits this newly described
aggregative phenotype.

In order to investigate the role of proteins in aggregation and other features re-
lated to cell adhesion, we utilized chemicals, such as the protein-denaturing agent β-
mercaptoethanol, the chelator agent EDTA, and the anionic detergent SDS, to assess cell-
to-cell interactions. In this sense, treatments with 0.5 to 2% β-mercaptoethanol and 0.5 to
5 mM EDTA had no effect on the aggregation ability of the clinical isolates tested, indi-
cating that disulfide bonds and divalent cations did not appear to mediate aggregation
in the C. haemulonii complex and C. auris (Figure 6A,B). Conversely, treatment with SDS
significantly reduced the aggregation ability of all clinical isolates studied at concentrations
varying from 0.10 to 0.25%, which suggests that hydrophobic interactions may play a role
in cell-to-cell aggregation of isolates of the C. haemulonii complex and C. auris (Figure 6C).

It has been reported that the use of detergents is not capable of disrupting C. auris
aggregates in isolates exhibiting the typical aggregative phenotype [4]. However, in this
study, we demonstrated that SDS significantly reduced the aggregation of our isolate of
C. auris, which did not present the typical aggregative phenotype, and the same effect was
observed for the isolates of the C. haemulonii complex. To our knowledge, until now, no
other studies have evaluated the impact of protein-denaturing and chelator agents on the
aggregation ability of Candida spp. or other yeasts. Nevertheless, a study conducted with
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the bacterium Azospirillum brasilense also demonstrated that β-mercaptoethanol and EDTA
did not affect bacterial aggregation [18].
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aggregates in isolates exhibiting the typical aggregative phenotype [4]. However, in this 

Figure 6. Effects of β-mercaptoethanol (A), EDTA (B), and SDS (C) on the aggregation capability of
the clinical isolates of the C. haemulonii species complex and C. auris. The aggregation was evaluated
by the reduction in the optical density (at 530 nm) of fungal suspensions (108 yeasts/mL) after 2 h of
incubation at 37 ◦C in PBS (pH 7.2) containing different concentrations of β-mercaptoethanol (0.5 to
2%), EDTA (0.5 to 5 mM), and SDS (0.05 to 0.25%). The results were expressed as percentages of
aggregation of isolates LIPCh4 from C. haemulonii, LIPCh6 from C. duobushaemulonii, LIPCh5 from
C. haemulonii var. vulnera, and Ca386 from C. auris. The values represent the mean ± standard
deviation of three independent experiments. The asterisks mean the following: (****) p < 0.0001;
(***) p < 0.001.

Microscopic analyses confirmed the spectrometric results, revealing that the incubation
of the clinical isolates of the four species tested herein with trypsin, proteinase K, and SDS
drastically reduced their aggregation ability. As a result, the aggregates observed were
considerably smaller than those observed in PBS systems (Figure 7).
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Figure 7. Effects of trypsin, proteinase K, and SDS on the aggregation capability of the clinical isolates
belonging to the C. haemulonii species complex and C. auris. The fungi (108 yeasts/mL) were incubated
under inert conditions at 37 ◦C for 2 h in PBS (pH 7.2), trypsin (0.25%), proteinase K (50 µg/mL),
and SDS (0.25%), gently homogenized by pipetting, and observed using a light microscope. DIC
images represent the isolates LIPCh4 from C. haemulonii, LIPCh6 from C. duobushaemulonii, LIPCh5
from C. haemulonii var. vulnera, and Ca386 from C. auris after incubation. Images were obtained at
×20 magnification. Bars = 50 µm.

3.5. Effects of Temperature on Aggregation

All experiments were conducted at 37 ◦C to mimic the normal temperature of the
human body. However, we also evaluated the aggregation ability of the isolates at room
temperature (28 ◦C). The results indicated that the clinical isolates of C. haemulonii complex
and C. auris tended to form fewer aggregates at 28 ◦C, but no significant differences were
observed (p > 0.05; Figure 8). Tomicic and coworkers [9] reported that C. krusei and C.
glabrata isolates exhibited a higher percentage of auto-aggregation at 37 ◦C compared to
the same process at 28 ◦C and 42 ◦C; conversely, for C. albicans, a higher percentage of
auto-aggregation was observed at 42 ◦C.
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4. Conclusions

This study collectively demonstrated the ability of the C. haemulonii species complex
and C. auris to form cell aggregates in a typically time-dependent manner. The presence
of proteinase K, trypsin, and SDS significantly impacted the auto-aggregation process,
suggesting that surface proteins and hydrophobic interactions play a crucial role in medi-
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