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Abstract: COVID-19 has undergone multiple mutations, with the Omicron variant proving to be
highly contagious and rapidly spreading across many countries. The United States was severely hit
by the Omicron variant. However, it was still unclear how Omicron transferred across the United
States. Here, we collected daily COVID-19 cases and deaths in each county from 1 December 2021 to
28 February 2022 as the Omicron wave. We adopted space-time scan statistics, the Hoover index, and
trajectories of the epicenter to quantify spatiotemporal patterns of the Omicron wave of COVID-19.
The results showed that the highest and earliest cluster was located in the Northeast. The Hoover
index for both cases and deaths exhibited phases of rapid decline, slow decline, and relative stability,
indicating a rapid spread of the Omicron wave across the country. The Hoover index for deaths was
consistently higher than that for cases. The epicenter of cases and deaths shifted from the west to the
east, then southwest. Nevertheless, cases were more widespread than deaths, with a lag in mortality
data. This study uncovers the spatiotemporal patterns of Omicron transmission in the United States,
and its underlying mechanisms deserve further exploration.

Keywords: COVID-19; infectious diseases; spatiotemporal pattern; space-time scan; epicenter

1. Introduction

The COVID-19 epidemic caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) has brought unprecedented changes to the world. As an RNA virus,
SARS-CoV-2 is known for its high mutation rate, which results in constant changes during
transmission across populations. Up to now, five variants of COVID-19 have been widely
reported: B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529
(Omicron) [1]. The Omicron variant, discovered in South Africa in November 2021, has
been found to weaken natural and vaccine immunity significantly compared to previous
variants [2,3]. It is highly contagious and has rapidly spread to many countries [4]. The
United States was also severely hit by Omicron at the end of 2021 [5].

Spatial analysis is indispensable to uncover spatiotemporal patterns of infectious
disease transmission. Numerous studies on COVID-19 using spatial analysis and GIS
technologies can be divided into three aspects. Firstly, real-time maps based on different
themes, such as the spatial distribution of cases, risk zones, vaccination status, etc. [6].
Secondly, a series of spatial analysis methods, such as kernel density estimation, spatial
autocorrelation analysis [7,8], and space-time scan statistics were used to quantitatively
identify the clustering patterns of COVID-19 [9–11]. The most obvious feature is that
cities with high population density and social interaction are found to have higher clus-
tering of cases [12,13]. Thirdly, environmental (such as temperature and humidity) and
socioeconomic factors (economic status and demographics) are found to influence the epi-
demic [14]. The restriction of human mobility can effectively slow down the transmission
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of the COVID-19 epidemic [15,16]. For example, in early 2020, the destination and size
of population movements before the closure of Wuhan were found to determine the final
spatial distribution of COVID-19 cases in China [17].

In the United States, since COVID-19 initial outbreak in early 2020, the spread of
the epidemic has continued to influence the nation’s social, economic, and healthcare
landscapes. The disease has demonstrated several distinct characteristics. Firstly, the
spread of the epidemic varies geographically, with regions such as New York State being
at the center of the epidemic’s spatially shifting network [18]. These areas have a high
basic transmission number R0 value [19], a significantly larger hotspot size than cold-spot
size [20], and a high risk of epidemic transmission. Long-distance, high-intensity transmis-
sion is dominant between network centers, while other areas are dominated by short-range,
adjacent transmission [18]. Second, the development of COVID-19 varies over time. Troy
McMahon [21] constructed a value C(r) for describing spatial correlation, which can classify
epidemics into three phases: localized, dormant, and system-wide outbreak according to
their value magnitude. Non-pharmaceutical interventions (NPIs) are effective in controlling
epidemics. Studies have shown a significant positive correlation between personnel contact
and epidemic severity using social index analysis [22,23]. Additionally, the transmission
of COVID-19 in the United States has been characterized by fluctuations, with periods of
relative containment followed by resurgences, and is still experiencing recurrences now.
These waves have exposed the vulnerabilities in the country’s public health infrastructure,
leading to far-reaching consequences for individuals, communities, and the whole nation.
The transmission dynamics of COVID-19 in the United States have been influenced by a
complex interplay of factors. Early efforts were made to implement preventive measures,
such as lockdowns, mask mandates, and widespread testing. However, the virus managed
to find its way to transmission due to inconsistent adherence to guidelines, the emergence
of new variants, and vaccine hesitancy [24–26].

The characteristics of COVID-19’s spread varied noticeably at different phases. The
most contagious subvariant of Omicron is the BA.5 strain, which is also the dominant
subvariant globally. The patterns of spread also varied across different states and regions,
with densely populated cities experiencing higher infection rates and increased strain on
healthcare systems. However, it was still unclear how Omicron transferred across the
United States and how its transmission characteristics differ from previous outbreaks.
Further investigation is necessary. Revealing the spatiotemporal transmission mode and
characteristics of the COVID-19 epidemic from the perspective of GIS is of great significance
in controlling the transmission of a new wave of epidemics triggered by virus mutations in
the future.

We collected daily COVID-19 cases and deaths in each county to quantify spatiotempo-
ral patterns of the Omicron wave (from 1 December 2021 to 28 February 2022) of COVID-19.
This paper is structured as follows: Section 2 presents the study area and data used in the
research and introduces the main methods. Section 3 outlines the results of space-time scan
statistics, the Hoover index analysis, and trajectories of the epicenter. Section 4 summarizes
contributions and indicates future works. Finally, Section 5 draws conclusions.

2. Materials and Methods
2.1. Time Series COVID-19 Data

Our study area is the continental United States, except Hawaii and Alaska. The time-
series COVID-19 cases and deaths at the county level were collected from the USAFacts
website (https://usafacts.org/, accessed on 1 March 2023). There are over 3000 counties in
the continental United States.

2.2. Space-Time Scan Statistic

Space-time scan analysis is a widely used method for disease surveillance due to its
ability to identify spatiotemporal clusters with elevated disease risk [27,28]. The spatiotem-
poral scan statistic utilizes a changing cylindrical window that changes shape to scan the
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Trop. Med. Infect. Dis. 2023, 8, 349 3 of 12

entire study area. The bottom of the cylinder represents the potential spatiotemporal cluster,
and the height indicates the duration of the potential cluster. The statistics are constructed
by moving the center of the scan window, expanding the scan radius, and increasing the
scan time range to identify the spatiotemporal clusters.

Assuming that COVID-19 cases follow a Poisson distribution, the likelihood ratio
of the observed COVID-19 cases (deaths) in the study area is constant under the null
hypothesis H0. Under the Poisson model, the expected number of COVID-19 cases (deaths)
in each county is proportional to its total population. Then, the expected number of cases
E meets:

E =
n

∑
i=1

ei =
n

∑
i=1

pi ×
N
P

(1)

where ei and pi are the expected number of cases and population of city i, and P and N are
the total populations and the total number of cases.

The actual number of cases observed in some scan windows is higher than the expected
number of cases. Those cylindrical scanning windows can be identified by calculating
the log-likelihood ratio (LLR). The LLR measures the degree of deviation between the
actual and expected cases in a given scan window. The larger the LLR, the more likely the
cylindrical window is to be regarded as a spatiotemporal cluster. The specific calculation
formula for calculating the LLR is as follows:

LLR =

( n
e
)n
(

N−n
N−e

)N−n

(
N
E

)N (2)

where n and e are the actual number and expected number of cases in the scan window, N
and E are the total actual and expected number of cases in the study area.

To compare the possibility of COVID-19 infection in each cluster, the relative risk (RR)
was introduced. A higher RR value indicates a greater likelihood of COVID-19 infection in
the population of the cluster. The calculation formula is as follows:

RR =
n/e

(N − n)/(N − e)
(3)

The meanings of N, n, and e in Equation (3) are the same as those in Equation (2).

2.3. The Hoover Index

The spread of COVID-19 is closely associated with human-to-human contact, and
research has demonstrated a positive correlation between the number of COVID-19 cases
and population size [29,30]. Therefore, as the COVID-19 epidemic continues to spread in
the United States, the distribution of cases in each county should converge to the population
distribution, and the time taken for this convergence can be used to measure the rate of
COVID-19 transmission. The localized Hoover index (HI) is used to measure the similarity
of the spatial distribution of the two variables within a given geographic area. To further
quantitatively characterize the transmission process of the Omicron wave in the United
States, we used the Hoover index to measure the heterogeneity of the distribution of
COVID-19 cases and the population distribution in counties, calculated as follows:

Hoovert = 50 ∑n
i=1

∣∣∣∣ pit

∑n
i=1 pit

− nit

∑n
i=1 nit

∣∣∣∣ (4)

where Hoovert indicates the Hoover index of the number of COVID-19 cases at time t,
ranging from 0 to 100. Larger values indicate greater differences between case distribution
and population distribution, with cases concentrated in a few cities and stronger spatial
heterogeneity; pit and nit indicate the population and the number of cases in city i at time t,
respectively.
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2.4. Epicenter of COVID-19

The migration trajectory of the epidemic center of gravity can reflect the spatiotemporal
transmission trend of the epidemic in a certain space. The longitude and latitude of the
epidemic center of gravity in the ith state of the US are calculated as follows:

EC_loni =
1
ni

∑ni
j=1 Cij ∗ GC_lonij (5)

EC_lati =
1
ni

∑ni
j=1 Cij ∗ GC_latij (6)

where ni indicates the total number of counties in the ith state, Cij indicates the number of
cases/deaths of the jth county in the ith state, GC_lonij and GC_latij represent the longitude
and latitude of the geographic center of the ith state and the jth county. EC_loni and EC_lati
represent the calculated longitude and latitude of the weighted geographic center of the
state. The epidemic center of gravity of the country is calculated the same way as that of
the state.

3. Results
3.1. Spatiotemporal Variabilities of the COVID-19 Epidemic

The United States witnessed multiple waves of the COVID-19 epidemic, with the
most severe one occurring from 1 December 2021 to 28 February 2022, since its initial
outbreak. The extremely contagious Omicron mutant strain was the primary contributor to
this epidemic wave. In total, there were about 30 million cases, and 170,000 people died as
a result. The weekly moving average and daily counts of COVID-19 cases and deaths are
shown in Figure 1. The number of new cases in a single day peaked in mid-January 2022,
reaching a maximum of more than 1.25 million, whereas the number of new deaths in a
single day fluctuated relatively little, reaching a maximum of 4000.

Figure 1. Temporal evolution of the COVID-19 epidemic variations in the United States. (a) Newly
added COVID-19 cases; (b) newly added COVID-19 deaths. The period from 1 December 2021 to 28
February 2022 was defined as the Omicron wave of the COVID-19 epidemic.

The spatial evolution of cases and deaths in the United States during the transmission
phase of the Omicron wave (1 December 2021 to 28 February 2022) are shown in Supple-
mentary Figures S1 and S2. Despite the widespread transmission of COVID-19 throughout
the country, the US government did not implement a stringent dynamic zero-COVID policy.
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Therefore, only Florida, Washington, Wyoming, and a few central counties in the United
States had not yet reported cases at the start of the Omicron wave. By 28 February 2022, 99%
of counties had reported Omicron cases. While the spatial distribution of deaths followed
a similar pattern to that of cases, there were still some differences. The overall trend was
moving from the east and west coasts to the center of the nation. Notably, major cities on
the east and west coasts, including New York, Los Angeles, Chicago, and Detroit, were
significantly impacted during this period.

The spatial distribution of the morbidity (cumulative number of confirmed cases/total
population) and mortality (cumulative number of deaths/total population) on different
dates led by the Omicron wave (1 December 2021 to 28 February 2022) are shown in
Figures 2 and S3. The spatiotemporal evolution of morbidity and mortality significantly
differed from that of cases and deaths. In the early stage of the Omicron wave (1 De-
cember 2021 to 15 December 2021), the highest morbidity shifted from the Midwest to
the northeastern coastal regions, while the highest mortality was primarily found in the
Northwest. The spatial clusters with relatively high mortality were located in the southern
and north-central United States.

Figure 2. Spatial distributions of the accumulative COVID-19 morbidity during the Omicron wave
across the continental United States. The Omicron morbidity is defined as the accumulative COVID-
19 cases to the population from November 30, 2021 to a following date. (a) 1 December 2021; (b) 15
December 2021; (c) 15 January 2022; (d) 28 February 2022.

3.2. Space-Time Scan Analysis

Statistically significant spatiotemporal clusters of daily Omicron cases and deaths
by county between 1 December 2021 and 28 February 2022 are shown in Figure 3. The
highest and earliest cluster, spanning from 26 December 2021 to 19 January 2022, is located
near the border of the state of New York and Massachusetts, encompassing 45 counties
with a relative risk greater than 1, indicating a higher risk of Omicron transmission in this
area compared to other regions of the country. Among these, Providence County had an
RR of 1.67, with 95,245 cumulative cases noted, while Richmond County and New York
County, located in the New York Metropolitan Area, had RRs of 1.66 and 1.56, with 70,649
and 225,76 cases. From 31 December 2021 to 27 January 2022, the second-highest cluster
occurred at the Arizona–Californian interface, covering a part of San Francisco. Parts of
Florida, Alabama, Georgia, and South Carolina formed clusters of cases from 31 December
2021 to 21 January 2022, including 43 counties with RR > 1. Miami-Dade County, Broward
County, and Palm Beach County, all in Miami, had RRs of 2.04, 1.35, and 1.01. The cluster
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with the highest relative risk was in South Texas, where the RR of Loving County was
the highest, reaching 10.35. This high relative risk can be attributed to the county’s small
population, resulting in a small expected number of cases.

Figure 3. Spatial clusters of COVID-19 cases and deaths during the Omicron wave. (a) New cases;
(b) new deaths. The numbers in clusters indicate days of duration. Color in the clusters and the
figure legend are the same, and the color gradient (dark red to dark blue) indicates the temporal
change based on the initial date of the cluster. The cluster numbers in Tables 1 and S1 indicate the
rank of the relative risk for each cluster.

Table 1. Spatiotemporal cluster information of new Omicron cases in the US at different phases.

Cluster Duration (Days) Number of
Counties p Observed Expected RR Number of Counties

with RR > 1

1 26 December 2021–19
January 2022 65 <0.001 2,449,866 806,725 3.22 45

2 31 December 2021–27
January 2022 20 <0.001 2,316,904 897,684 2.72 6

3 31 December 2021–21
January 2022 246 <0.001 1,821,212 684,190 2.77 43

4 3 January 2022–3
February 2022 644 <0.001 2,209,112 1,034,411 2.23 341

5 3 January 2022–27
January 2022 382 <0.001 1,726,603 806,957 2.21 217

6 3 January 2022–21
January 2022 239 <0.001 1,326,786 594,240 2.29 83

7 6 January 2022–28
January 2022 218 <0.001 1,570,202 742,166 2.18 28

8 16 January 2022–17
January 2022 150 <0.001 287,673 38,676 7.5 29

3.3. Hoover Index Analysis

The trend of HI values in the United States during the Omicron wave is shown in
Figure 4a. HI values close to 100 indicate concentration in a few cities, while HI values close
to 0 indicate a more homogeneous spread. The blue and red curves represent the HI for
cases and deaths, while the blue and red areas surrounding the curves represent the range
of HI values on a state scale. Both the HI for cases and deaths experienced a rapid decline
(1 December 2021 to 10 December 2021), followed by a slow decline (10 December 2021 to 1
February 2022) and a plateau phase (1 February 2022 to 28 February 2022), stabilizing at
around 9.7 and 25.4 in February 2022. Compared to the HI for cases, which was at a low
level at the beginning of the wave (HI < 50), the HI for deaths fell below 50 over 4 days,
indicating that the Omicron epidemic spread widely across the country in a very short
period. The HI for deaths was consistently higher than the HI for cases, indicating that the
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high level of healthcare in the United States helped avoid the collapse of the healthcare
system due to a public health crisis.

Figure 4. Spatiotemporal evolutions of the Omicron wave of COVID-19 revealed by the Hoover
index. (a) Temporal variations of locational Hoover index from 1 December 2021 to 28 February 2022
in the United States. (b) Bivariate choropleth map of locational Hoover index for COVID-19 cases
and deaths at the state level on four representative days.

The epidemic spread across states with significant spatial heterogeneity, as shown in
Figure 4b, which plots the bivariate choropleth map of the HI for cases and deaths at the
state scale, where the gray color indicates that the state has not yet reported cases/deaths
or cases/deaths have not yet been assigned to counties. Overall, the Omicron wave was
spreading very rapidly within the United States. As of 10 December 2021, the HI for cases
had all dropped below 33, and the HI for deaths had also dropped below 50, except for
Virginia and Mississippi. The states with the widest distribution of cases and deaths were
Rhode Island (HI cases = 2.15) and Delaware (HI deaths = 2.84), both located in the eastern
coastal areas. Notably, in Wyoming, which is located in the center of the United States,
deaths spread more quickly than cases between 1 December 2021 and 4 December 2021.
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This corresponds to Figure 3, where Wyoming was included in the area of death clustering
that formed between 1 December and 2 December.

3.4. Spatial Transformation of the Epicenter

The Omicron wave was highly contagious. We calculated the geographical centers of
the epidemic and used their migration trajectories to examine the spatial transformation of
cases and deaths in the Omicron wave in the United States, as shown in Figure 5. Nationally,
both the epicenter of cases and deaths shifted from west to east, then to the southwest,
passing through three states before ending in Missouri, indicating a turning point in the
epidemic. The eastern part of the country was more severely affected before the turning
point, while the southwestern part of the country developed more rapidly thereafter. Cases
were more widespread than deaths and tended to move eastward again, indicating a
smaller increase in death data and a certain lag. At the state scale, most states had a limited
range of movement of the center of gravity of Omicron. However, states with a wider
range tended to move vertically towards the epidemic’s center of gravity, either southward
or northward. Eventually, the trajectory of deaths moved closer to the coast while the
trajectory of cases in the southeastern states moved closer to Tennessee.

Figure 5. Spatial transformation of the epicenter of the Omicron wave of COVID-19 across the
continental United States. (a) Epicenter of cases. (b) Epicenter of deaths.

4. Discussion

This study measures and compares the patterns of transmission of Omicron cases
and deaths among US counties at spatial and temporal scales. Spatially, the distribution
patterns of cases and deaths differed, but the overall trend shifted from the east and west
coasts to the national center. The spatial evolution of morbidity and mortality differed
significantly from that of cases and deaths, with the highest morbidity shifting from the
Midwest to the Northeast during the initial phase of the Omicron wave, while the highest
mortality occurred mainly in the Northwest. The highest and earliest cluster was located in
the Northeast. Temporally, the Hoover indexes of both cases and deaths underwent a rapid
decline, a slow decline, and a relatively stable phase. The Hoover indexes for deaths were
consistently higher than those for cases, indicating that the Omicron rapidly spread across
the country in a very short period. The epicenter of cases and deaths shifted from the west
to the east and then to the southwest, passing through three states and ending in Missouri.
However, cases were more widespread than deaths and tended to move eastward again,
indicating a smaller increase in mortality and a certain lag.

A study conducted in England reported that spatial growth of the Omicron variant was
2.81 times faster than that of the Delta variant and 3.76 times faster than that of the Alpha
variant [31]. The faster transmission of Omicron was widely found in other countries [32,33].
Our results confirm the highly contagious nature of Omicron and demonstrate its rapid
spread in the United States. The clustering and spread of Omicron were different from



Trop. Med. Infect. Dis. 2023, 8, 349 9 of 12

that of early COVID-19 during the first half of 2020. Areas of high relative risk (RR)
for COVID-19 were predominantly in New England, the Southeast, and the Southwest
in the first COVID-19 wave [34]. But the highest and earliest cluster of Omicron wave
was located in the Northeast. The clustering and spread of Omicron in each state also
had different patterns, suggesting that the spread of the virus in each US state cannot
be explained by a single factor but was influenced by a combination of complex factors.
Firstly, the United States is large and unequal, with differences in the quantity and quality
of health resources (e.g., hospital beds and physicians) and income. Secondly, certain cities
during Omicron wave failed to receive timely testing or lacked well-structured genomic
surveillance results due to variations in testing access, differential diagnostic capacity, and
inconsistent certification [35,36]. Thirdly, the policies adopted by states in response to the
epidemic and the timing of policy implementation varied [37,38].

To prevent the rapid spread of the virus and ensure consistent resource allocation,
the government should implement effective policies (e.g., physical isolation measures) to
control the spread of the outbreak [39–41]. Our findings suggest that in the United States,
Omicron deaths spread slower than cases, indicating the successful implementation of
containment policies and the resilience of the US healthcare system [42]. However, some
states like Rhode Island failed to control Omicron spread effectively, while Delaware’s
healthcare system struggled to reduce Omicron mortality, and Wyoming faced recurrent
outbreaks. If timely action is not taken, this could foreshadow similar outcomes in other
parts of the United States. Failure to avoid this new round of transmission will facilitate
the emergence of new variants of concern, posing a threat to global health security and
leading to a completely avoidable humanitarian crisis. Furthermore, targeted government
containment measures and coordinated epidemiological and genomic surveillance are
needed during infectious disease outbreaks to prevent further loss of life resembling that
with COVID-19 [13,42,43].

This study also has limitations. First, we used the space-time scan statistic, Hoover
index, and epicenter of COVID-19 models to simulate the spread of Omicron across the
United States without accounting for multiple complexities such as differences in health
resource quantity and quality, and a dense urban network that connects municipalities
through transportation, services, and businesses. There are already studies integrating
other elements of modeling to study COVID-19, and we still have to keep improving the
model in the future [44]. Second, although the rate of transmission of Omicron deaths was
slower than that of cases in most states, there was variation in outbreaks in some states such
as Rhode Island, Delaware, and Wyoming, and we did not look deeply into individual state
influences. In the future, we need to integrate multiple factors such as outbreak control
measures and sanitary conditions to model the spatiotemporal evolution of COVID-19.
Additionally, further research is necessary to generalize these patterns to countries with
different levels of development and local contexts and identify the underlying causes of
these differences.

5. Conclusions

This study examines the spatial and temporal patterns of Omicron transmission
of cases and deaths across counties in the United States. Overall, Omicron cases and
deaths shifted from the east and west coasts to the center of the country. The highest and
earliest cluster was located in the Northeast. The Hoover indexes of both cases and deaths
underwent a rapid decline, a slow decline, and a relatively stable phase, indicating that the
Omicron epidemic spread widely across the country within a short period. In contrast, the
Hoover index of deaths was consistently higher than that of cases, indicating that the high
level of healthcare in the United States has helped to prevent the collapse of the healthcare
system. The epicenter of cases and deaths shifted from the west to the east, then southwest
through three states before ending in Missouri. However, cases were more widespread
than deaths, and there was a lag in mortality data.
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The COVID-19 epidemic nearly ended, but we will face the threat of other emerging
infectious diseases. In the prevention and control of future outbreaks, it is crucial for
governments to take immediate and rational measures. First, healthcare resources must
be enhanced to effectively control mortality while also improving the resilience of the
healthcare system to prevent their collapse due to large-scale outbreaks. Second, govern-
ments should take containment measures such as lockdowns and accelerate vaccinations
to prevent the spread of outbreaks. Furthermore, it is essential to implement coordinated
epidemiological and genomic surveillance to monitor the emergence of novel variants and
prevent threats to global health security.
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Table S1: Spatiotemporal cluster information of new COVID-19 deaths in the US at different phases.
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