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Abstract: Dengue fever is a prevalent mosquito-borne disease that burdens communities in sub-
tropical and tropical regions. Dengue transmission is ecologically complex; several environmental
conditions are critical for the spatial and temporal distribution of dengue. Interannual variability
and spatial distribution of dengue transmission are well-studied; however, the effects of land cover
and use are yet to be investigated. Therefore, we applied an explainable artificial intelligence (AI)
approach to integrate the EXtreme Gradient Boosting and Shapley Additive Explanation (SHAP)
methods to evaluate spatial patterns of the residences of reported dengue cases based on various
fine-scale land-cover land-use types, Shannon’s diversity index, and household density in Kaohsiung
City, Taiwan, between 2014 and 2015. We found that the proportions of general roads and residential
areas play essential roles in dengue case residences with nonlinear patterns. Agriculture-related
features were negatively associated with dengue incidence. Additionally, Shannon’s diversity index
showed a U-shaped relationship with dengue infection, and SHAP dependence plots showed differ-
ent relationships between various land-use types and dengue incidence. Finally, landscape-based
prediction maps were generated from the best-fit model and highlighted high-risk zones within the
metropolitan region. The explainable AI approach delineated precise associations between spatial
patterns of the residences of dengue cases and diverse land-use characteristics. This information is
beneficial for resource allocation and control strategy modification.

Keywords: artificial intelligence; dengue fever; land cover land-use; EXtreme Gradient Boosting
(XGBoost); Shapley Additive Explanation (SHAP)

1. Introduction

Dengue fever (DF) is an important vectorborne disease prevalent worldwide. Two
urban-dwelling mosquitoes, Aedes aegypti and Aedes albopictus, are the primary and sec-
ondary vectors for dengue virus transmission [1]. More than 129 countries with 390 million
people are at risk of infection annually, of which 96 million dengue infection cases are
symptomatic [2,3]. The clinical symptoms of dengue infection range from flulike syndromes
to severe hemorrhage, plasma leakage, or organ impairment. Severe dengue infection is
usually mediated by antibody-dependent enhancement, which develops after secondary
infection with different dengue serotypes [4]. The rising incidence and expansion of geo-
graphical territory of dengue infection in tropical, subtropical, and temperate regions stems
from global travel and environmental changes, resulting in a huge disease burden in the last
two decades [5,6]. Vector control, source reduction, community education, and engagement
are the mainstays for preventing dengue infection due to the lack of effective treatment. A
licensed dengue vaccine (Dengvaxia) is recommended for people aged 9–45 years with a
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history of dengue infection [7]. However, this recommendation limits the number of eligible
individuals. Therefore, preventing dengue transmission through nationwide vaccination
programs in endemic countries is not recommended at the current stage.

Multiple factors affect global dengue transmission, including climate change/variation,
land-use land-cover (LULC) types, sociodemographic characteristics, and international
travel [2,6,8]. Climatic conditions are critical factors for determining interannual varia-
tions in dengue transmission. Therefore, many studies have attempted to use climatic
factors to forecast the occurrence of dengue and establish an early warning system [9–13].
The influences of temperature, rainfall, and relative humidity on vector abundance and
dengue transmission have been widely discussed [8,14,15]. In addition, regional climate
phenomena derived from climate changes, like the El Niño Southern Oscillation (ENSO)
or the Indian Ocean Dipole (IOD), have been linked to dengue transmission in many
regions [16–18]. However, spatial patterns of dengue infection are more relevant to vector
distributions, population density, and movement patterns of people, which are associ-
ated with various LULC characteristics. Climate-based models help design early warning
systems for dengue to prevent potential outbreaks under extreme climatic conditions;
however, spatial patterns driven by LULC characteristics are also important for defining
intervention priority zones. Such a type of study is scarce in the literature and is worth
further evaluation.

Recently, machine learning and artificial intelligence (AI) approaches to spatial epi-
demiology and mosquitoborne disease have started thriving [19,20]. Ensemble-tree-based
machine learning approaches are useful for identifying important variables and predicting
the spatial patterns of diseases. However, feature interpretation is equally important for epi-
demiological studies as the model’s performance [21]. Understanding precise relationships
between environmental risk factors and dengue incidence could advance our knowledge
of disease ecology to formulate appropriate dengue prevention and control policies. There-
fore, recent approaches integrating machine learning and explainable AI have helped
enhance feature interpretation using gradient-boosting models [22,23]. The availability
of explainable approaches provides an excellent opportunity to evaluate different LULC
characteristics and the spatial patterns of the residences of reported dengue cases.

Therefore, this study used the EXtreme Gradient Boosting (XGBoost) and Shapley
Additive Explanation (SHAP) techniques to analyze multiple LULC type-related factors
and spatial patterns of residences of reported dengue cases in Kaohsiung City (KC), Taiwan,
which experienced unprecedented dengue outbreaks in 2014 and 2015 [17]. The availability
of a fine-scale LULC survey released by the Taiwan government provides an excellent
opportunity to deepen our understanding of the associations between landscape-level
characteristics and spatial patterns of the residences of dengue cases using explainable
AI approaches.

2. Materials and Methods
2.1. Study Area

KC is the second largest city in Taiwan, with 2.8 million inhabitants (population
density: 9365 per square km; Figure 1a) [24]. It is the political and economic center
of southern Taiwan (22◦36′54′′ N, 120◦17′51′′ E). The economic activities in KC mainly
comprise industry, tourism, and agriculture. KC is approximately 100 km south of the
Tropical of Cancer, with a mean temperature range of 19.7–29.4 ◦C and annual average
precipitation of approximately 1968.2 mm. The primary rainy season is between May
and September, and the “plum rains” (East Asian rainy season) in May and June bring
continuous rainfall resulting in high humidity. The number of typhoons significantly
determines precipitation fluctuations in July and August, affecting vector abundance and
dengue transmission. Historically, KC is a dengue hotspot; more than 70% of dengue cases
in Taiwan have been reported in the city [25]. Since 2000, 43,304 dengue cases have been
reported in KC, with 34,782 reported in 2014 and 2015 [17]. Interactions between climate
variations, the coexistence of A. aegypti and A. albopictus in urban and suburban regions
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and a high population density caused interannual outbreaks. Furthermore, continuous
precipitation after the petrochemical gas explosion in 2014 and the arid and hot summer of
2015 resulted in an unprecedented outbreak over 2 years [26].
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2.2. Dengue Data

Dengue fever is included on Taiwan’s National Notifiable Infectious Disease Category
2 list. Local physicians are required to report suspected cases within 24 h. Dengue cases
were confirmed by serological, nucleotide, or nonstructural protein 1 rapid antigen tests
following the Taiwan Centers for Disease Control guidelines. Indigenous dengue cases
in 2014 and 2015 were acquired from the Taiwan CDC Open Data Portal (data.cdc.gov.tw
(accessed on 15 Dec 2021)). Imported dengue cases were excluded from the analysis
because they were irrelevant to local transmission patterns. Taiwan CDC aggregates the
dengue case data at the Basic Statistical Area (BSA) level using their residential address. We
further summarized the dengue incidence at the second-level dissemination area, roughly
equivalent to the village level. BSA is the finest scale of the administrative unit in Taiwan.
Our previous study reports detailed information on the administrative units in Taiwan [27].
We used the second-level dissemination area for the analyses to reduce the bias caused by
the modifiable area unit problem and maintain sufficient variability in the LULC types.
We also excluded mountainous regions (elevations above 300 m) in the northeastern part
of KC because of the low vector and residential population density, which made dengue
transmission unlikely. The dengue incidence rates were log-transformed in the analysis to
reduce a highly skewed distribution (Figure 1a).

data.cdc.gov.tw
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2.3. Landscape-Level Variables

LULC data were retrieved from the second nationwide land-use investigation con-
ducted by Taiwan’s National Land Surveying and Mapping Center, the Ministry of the
Interior [28]. The investigation was launched in 2006 and updated continuously until 2015.
The LULC types have been classified through integrating satellite images (SPOT-6 and 7,
the spatial resolution is 1.5 m), aerial photos operated by crewless aerial vehicles (the spatial
resolution is 25 cm), and ground-based surveys. There are three hierarchical categories
for the LULC types: level-1 (9 types), level-2 (43 types), and level-3 (108 types). We used
level-3 variables to calculate the percentages of specific LULC types in each spatial unit
(the second-level dissemination area) in the model. Table S1 details the cross-reference list
of the number and level-3 LULC types. In KC, there are 96 LULC types of level-3 variables.
We included 70 LULC types in the analysis after excluding 26 LULC types that cover a
meager percentage (<1%) in the second-level dissemination area.

Shannon’s diversity index (SI) is commonly used in ecology to represent the diversity
and richness of different species [29]. Recently, this index has been used to analyze the
mosquito species diversity and West Nile virus transmission in Costa Rica [30]. Therefore,
our study uses this idea to investigate the effect of LULC diversity on the spatial patterns of
dengue infection. To capture the diversity of the LULC types per spatial unit, we calculated
SI using the following formula:

SIj = −
n

∑
i=1

pijlnpij

In this equation, n indicates the total number of LULC types, and pi is the proportion
of a specific LULC type (i) at the jth spatial unit in the study area. The minimum SI
value is 0, indicating no diversity in the area; however, the higher the SI value, the higher
the diversity.

Our preliminary analyses also included climatic variables from a historical weather
station summary (10-year averages during the transmission season between May and
September). Climate parameters are less critical than LULC factors for determining spatial
patterns in the study region; therefore, we removed climate variables from the formal
analysis. Finally, we included household density (HD) in the analysis to account for
population aggregation. All the data sources in the analysis are listed in Table S2. A
multicollinearity assessment was conducted using the variance inflation factor (VIF). The
VIF of all the variables was <10; therefore, all the environmental variables were included in
the analysis.

2.4. Modeling Approaches

XGBoost is a gradient-boosting modeling approach used in various machine learning
competitions because of its high performance compared with other tree-based machine
learning approaches [31]. In addition, gradient boosted model can be more accurate and
interpretable than different modeling approaches on a tabular-style dataset. Therefore,
we used XGBoost to analyze the influence of the LULC types and the spatial patterns of
dengue infection. Our analysis incorporated an explainable AI approach to enhance our
understanding of the model’s output to obtain an accurate and consistent interpretation of
the variable influences on dengue incidence [32]. Inconsistent interpretation is a challenge
for tree-based or ensemble machine learning approaches. Lundberg et al. proposed the
SHAP method for consistent interpretations in 2019 [33–35]. SHAP provides detailed
explanations as a so-called “black-box machine-learning model” without sacrificing model
performance. SHAP is an approach to explain prediction output generated by machine
learning models. It helps us to understand the contribution of each variable in the model.
The SHAP summary plot can demonstrate global feature importance and local explanation
summary, which indicate how each feature affects the dependent variable in the model.
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The SHAP dependence plot is presented as a scatter plot to show the effect of a feature on
the model prediction [36,37].

The formula to calculate the Shapley value is given below:

∅j = ∑
S⊆F\{j}

|S|!(|F| − |S| − 1)!
|F|! [ f (S ∪ {j})− f (S)]

where ∅j is the Shapley value for sample j, F the total number of features, F\{j} a set of all
possible combinations of features excluding j, f (S) the model prediction with features in S,
and f (S ∪ {j}) the model prediction with features in S plus feature j. The Shapley value
is the marginal contribution to model prediction averaged over all possible models with
different combinations of features.

Figure 1b presents the analytical flow diagram. The sample data were randomly
allocated to training (80%) and test (20%) groups. All landscape variables (70 LULC types,
SI, and HD) were included in the model training stage, and the final model retained
20 essential variables based on minimizing the loss function. The relative importance
of each variable was ranked based on the contribution to the XGBoost model. Ten-fold
cross-validation of the training dataset and early stopping approach were performed
during the tuning stage to avoid the occurrence of overfitting. The hyperparameters of
XGBoost were tuned under different learning rate settings (eta), maximum tree depths, and
subsampling rates and validated by the root mean squared error (RMSE). Table S3 details
the hyperparameter settings and final optimal parameters. The model performance for
the training and test dataset was evaluated by Adj-R squared and RMSE (the formula is
given below):

RMSE = [
N

∑
i=1

(ŷi − yi)
2/N]

1/2

where N is the total number of observations, ŷi the predicted value, and yi the observed value.
SHAP were applied to the output of the XGBoost model to provide better interpreta-

tions of landscape-level features and dengue transmission. Variable-specific SHAP values
were estimated for each spatial unit to evaluate the positive or negative impacts on dengue
transmission. A positive SHAP value indicates that a higher percentage of certain LULC
variables in the spatial unit positively associates with dengue incidence. SHAP-dependent
plots were generated to demonstrate interpretable associations between the LULC-type
variables and dengue transmission.

The predicted dengue incidence rates and residuals derived from the best-fitted XG-
Boost model in KC were smoothed and visualized using the ordinary kriging method. The
risk maps highlight the high-risk areas of dengue transmission in KC. All models were
generated using the “XGBoost” and “SHAPforxgboost” packages in R software (version
4.2.2, R Core Team, Vienna, Austria). The risk maps were created using ArcGIS Pro 3.0.3
(ESRI, Redland, CA, USA). The R script used to develop XGBoost/SHAP modeling is
available at https://github.com/TMURS/DENGUE_LCLU.

3. Results

We identified 933 s-level dissemination areas in KC after removing areas with no data
in the past 10 years; 794 samples (80%) were allocated as training data, and 199 samples
(20%) were allocated as test data. In 2014 and 2015, 34,782 confirmed dengue cases were
reported, and more than 98% of dengue cases (34,329) were successfully aggregated into the
second-level dissemination areas using their residential address in our study. The dengue
incidence spatial patterns were mainly clustered in the metropolitan region due to the
higher population density (Figure 1a). However, small-scale transmission also occurred in
suburban and rural neighborhoods.

The XGBoost model included the LULC types (level-3, n = 70), SI, HD, and historical
climate variables. However, the historical climatic variables were excluded from the

https://github.com/TMURS/DENGUE_LCLU
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model at the exploratory stage; thus, the model retained 20 important variables based on
minimizing the loss function.

The global SHAP summary plot retained 20 variables in the output (Figure 2). Among
the top 10 important variables, dry crops (F010102) was the most influential variable, show-
ing a protective effect on the spatial patterns of the residences of dengue cases in KC. Other
agriculture-related variables (F010103: fruit tree and F010402: aquaculture) demonstrated
similar effects on dengue incidence. General roads (F030303) was the second most influ-
ential variable. Therefore, areas with more general road coverage were more affected by
dengue. Furthermore, unused land (F090801), house density, residential area (F050201),
manufacturing (F050301), and industrial areas (F050202) were important variables. SI was
also listed as an important factor, indicating that the LULC diversity patterns consider-
ably influenced the spatial distribution of the residences of dengue. Table 1 presents the
descriptive statistics of the top ten most important LULC variables.
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The SHAP-dependent plots demonstrated interpretable associations between the
LULC-type variables and dengue incidence (Figures 3 and S1). The results demonstrated
that agriculture-related factors (F010102, F010103, and F010402) are inversely associated
with dengue incidence. The dengue infection risk increased with >20% general road
coverage in KC. An inverted pattern was observed between the residential areas (F050201)
and dengue transmission risk, which decreased when the residential area comprised >40%
of the total area. HD also had a nonlinear pattern; the incidence rate was higher when the
HD was approximately 15,000 but significantly lower when the HD was >20,000. When
the second-level dissemination area had a small proportion of unused land (F090801),
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manufacturing (F050301), and industrial area (F050202), the dengue infection risk was
higher. SI had a U-shape association with dengue fever; the infection risk was higher when
SI was <1.5 or >2.5.

Table 1. Descriptive statistics of the ten most influential land-use land-cover types from the
SHAP summary.

LULC Types Mean Standard Deviation Max Min

F010102 (Dry Crops) 2.98% 6.85% 58.31% 0
F030303 (General Roads) 21.10% 10.00% 47.60% 0.91%

F010103 (Fruit Tree) 3.39% 7.74% 56.83% 0
F010402 (Agriculture Storage Facility) 0.10% 0.21% 2.08% 0

F090801 (Unused Land) 4.20% 5.10% 38% 0
House Density 8643.1 7008.6 69,215.2 3.0

F050201 (Residential Area) 26.20% 16.20% 67.90% 0
F050301 (Manufacturing) 1.98% 5.92% 80% 0
F050202 (Industrial Area) 0.06% 0.17% 4.13 0

Shannon’s Diversity Index 1.9 0.4 3.0 0.28
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Figure 3. Shapley Additive Explanation (SHAP) dependence plots generated from the EXtreme
Gradient Boosting model demonstrate the relationships between the land-use land-cover types and
dengue incidence based on the ten most essential variables in Figure 2 and Table 1 (purple color
indicates a higher value of corresponding variables and yellow color indicates lower value). The
SHAP dependence plot of Shannon’s diversity index is listed in Figure S1 for better typesetting
arrangement. A positive SHAP value indicates a higher dengue transmission risk. The plots were
smoothed using locally estimated scatterplot smoothing (red curve).

The dengue infection risk map in KC was visualized using the smoothed predicted in-
cidence rates (Figure 4). The risk map highlights high-risk zones in the metropolitan region
and its surrounding neighborhood. Two small hotspots are observed in the northeastern
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and northwestern corners. In addition, more accurate high-risk zones within metropolitan
areas were identified using our model (Figure 4). These areas may be critical zones for
dengue vector control and prevention.
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dissemination areas in Kaohsiung City, Taiwan. The right panel shows the zoomed-in view of the
high-risk zones in the metropolitan region.

Figure 5 shows the model’s validation results. The residual plots indicate the spatial
pattern of the prediction error. Overestimation and underestimation usually occurred in
rural and suburban regions, respectively. The XGBoost model performed well with the test
data (Adj-R2 = 0.92, RMSE = 0.3255). Furthermore, the Adj-R2 and RMSE for the test data
were 0.78 and 0.6431, respectively, indicating no severe overfitting issue.
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4. Discussion

This study integrated an explainable AI approach that combined the XGBoost and
SHAP methods to analyze fine-scale LULC types and spatial patterns of the residences of
reported dengue cases in KC. We found that transportation infrastructure, diversity indexes,
and urbanization nonlinearly influenced the spatial patterns of dengue incidence. The
XGBoost model also revealed several high-risk zones within metropolitan and suburban
areas of KC.

Historically, KC has been a significant dengue hotspot in Taiwan because of the
coexistence of A. aegypti and A. albopictus in the city, and the high population density.
However, extreme climatic conditions were the leading cause of the unprecedented KC
outbreaks in 2014 and 2015 [17]. Interannual variations in dengue transmission driven by
temperatures, rainfall, relative humidity, or regional climate phenomena, such as ENSO
and IOD, have been discussed elsewhere [9,11,14,38,39]. Moreover, suitability analyses
have demonstrated critical associations between vector ecology, virus propagation, and
climatic variations [15,25,40,41]. The abundance of mosquitoes and the extrinsic incubation
period of the dengue virus could be shortened by higher temperatures. Precipitation can
create more breeding sites [40,41]. Dengue early warning systems have also been developed
using climate-based models to forecast the dengue transmission risk [42,43]. Therefore,
it is well established that climatic factors are essential for determining the likelihood of
outbreaks. However, the spatial distribution of dengue infection can also be affected by
other landscapes or anthropogenic factors.

The XGBoost/SHAP approach demonstrated that several LULC variables affect the
spatial distribution of residences of dengue cases. In contrast to previous studies, this study
used a fine-scale nationwide land-use investigation dataset that incorporated satellite im-
ages and field surveys to acquire diverse LULC information. Most previous studies relied
on remote sensing data that classified LULC variables into more generalized categories, in-
cluding forests, wetlands, water bodies, urban areas, croplands, and bare land [44–46]. Such
a classification may be appropriate for analyzing correlations with dengue transmission or
vector ecology at the district or national level. However, a more precise interpretation at
a finer spatial resolution may be challenging. In our study, we used more diverse LULC
types to analyze their impact on the spatial distribution of the residences of dengue cases.
Agriculture-related LULC types showed protective effects on dengue incidence because the
agriculture-dominant regions are usually less populated; therefore, transmission is unlikely.
Transportation infrastructure (F030303: general roads) was the most important variable
in the model, and the risk became significant when the coverage exceeded 20% within a
second-level dissemination area. The coverage of general roads is a proxy for population
density and anthropogenic activities. Previous studies have shown the importance of
road density and distance to roads in dengue transmission in China [47,48]. Our study
demonstrates that general roads are accurate, quantifiable targets for the residences of
dengue cases.

Dengue fever is an urban-type mosquito borne disease; therefore, the urbanization
level plays a critical role in determining the spatial extent of transmission. Our model
indicated that residential areas were an important factor affecting the spatial patterns
of the residences of dengue cases. In addition, the SHAP dependence plot highlighted
the nonlinear association between residential areas and dengue incidence. The nonlinear
relationship echoed our previous study, which also identified that dengue incidence was
higher when the residential area was approximately 20% in Tainan City [27]. Decreased
dengue risk in areas with a high percentage of residential space may be related to a specific
type of community. For example, historical dengue hotspots in KC usually occurred in
older communities with high contact probability between humans and mosquito vectors.
Such communities may mix with unused land or abandoned areas with poor sewer systems
and sanitation. In addition, artificial waste containers create breeding sites for mosquito
vectors in these areas. However, a high proportion of unused land is usually associated
with the low populated area and low transmission.
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In contrast, the area with high residential coverage is usually linked to more modern
communities or business districts, where dengue transmission is lower than in less devel-
oped regions. The U-shaped relationship between SI and the residences of dengue cases
also emphasized that a diverse composition of LULC types may either enhance or reduce
dengue transmission. This diversity might be linked to human behavior and vector ecology,
which is worthy of further analysis.

The XGBoost model performs better than other tree-based models [32], and the model
used in this analysis also showed good prediction performance without overfitting. Deep
learning (e.g., artificial neural network) approaches also have essential roles in AI; how-
ever, such approaches are more appropriate for image recognition and natural language
processing [49]. Furthermore, XGBoost is more interpretable than traditional linear regres-
sion models. Our recent work also used the combined XGBoost and SHAP approach to
evaluate Plasmodium knowlesi and landscape-level variables in peninsular Malaysia [50].
The explainable AI approach adopted in this study provides important insights into the
complex environmental influences on the spatial distribution of the residences of dengue
cases. Furthermore, the high-risk zones predicted in this study (Figure 4) provide more ac-
curate information for prioritizing vector control and dengue prevention strategies. Future
research should aim to improve public health by integrating climatic variations and human
morbidity to capture the spatial and temporal dynamics of dengue infection.

This study had some limitations. First, the analysis did not include vector abundance
and larval indices because the data was unavailable. Many studies have indicated that
the landscape level could be an important predictor of mosquito abundance; however,
the associations between the vector index and incidence are usually arbitrary [51,52].
A systematic ovitrap surveillance project was implemented in KC in 2016. Therefore,
mosquito abundance data should be included in future studies. Second, LULC data from
nationwide land-use investigations are only available for Taiwan. However, using more
localized datasets, the explainable AI approach can still be applied to different regions
using more localized datasets.

Furthermore, the influences of LULC types could not be considered as the cause of
dengue transmission. Instead, the LULC types represented the proxy of underlying dengue
transmission dynamics driven by the mixture effects of sociodemographic characteristics,
human behavior, vector behavior, disease control policy, and climate effects. Lastly, the
source of dengue infection could not be identified in the study. The dengue case data
were aggregated at the second-level dissemination areas based on the residential address.
Therefore, the reported address might not be the exact location of the infection. Wen et al.
conducted a study to discuss the spatial and temporal diffusion patterns of dengue in
Tainan City, Taiwan. Their result indicated that most noncommuter dengue cases clustered
within 100 m, and most commuters clustered within 2–4 km [53]. The results of this study
partially supported that the source of dengue transmission might be at a limited distance
around the residence for noncommuter dengue cases. The reported dengue cases in the
second-level dissemination areas might be associated with the transmission patterns. The
study also indicated that a substantial proportion of dengue cases might be infected far
away from their home; thus, our conclusion could not be applied to commuter dengue cases.
Dengue transmission is intertwined with vector abundance, host density and mobility,
and intervention. Our study results only can be interpreted as the associations between
LULC factors and the spatial patterns of the residences of reported dengue cases. No causal
inference can be made from our results.

Coronavirus disease 2019 (COVID-19) has caused a global pandemic since 2020; how-
ever, the impacts of COVID-19 on dengue transmission vary in different regions. Increased
dengue transmission has been reported in several countries in Asia and South America,
like Thailand, Singapore, and Peru [54–56]. The lockdown policy might be an important
contributor to enhancing dengue transmission through higher human and vector contact
probability, especially for A. aegypti. Dengue incidence increased by approximately 37% in
Singapore among adults during the COVID-19 pandemic [55]. In addition, the huge pro-
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portion of medical resources and public health infrastructures used to deal with COVID-19
during the pandemic period could have reduced the resources for surveillance, intervention,
diagnosis, and treatment for dengue and other health outcomes. Rebuilding dengue control
and surveillance systems and relocating the intervention resources in the post-pandemic
era could be challenges for these countries. Taiwan has reported few indigenous dengue
cases after 2016, and no indigenous case has been reported during the pandemic period,
throughout 2020–2022. The border control implemented in March 2020 was a crucial policy
to limit dengue transmission in Taiwan.

In contrast to other dengue-prevalent countries in Southeastern Asia, international
travelers import the dengue virus in spring. This induces subsequent local dengue transmis-
sion in Taiwan during summer and fall [57]. The epidemiological characteristic of dengue
transmission in Taiwan explained why no indigenous dengue cases were reported during
the COVID-19 pandemic. However, the border reopened and quarantine requirements
ended in October 2022, bringing a potential challenge of a future dengue epidemic in
Taiwan again. In the future, the dengue early warning system should be optimized to
integrate climate, LULC types, vector abundance, and human behavioral characteristics
to enhance the precision and accuracy of warning signals in space and time. Our study
demonstrated a promising machine learning approach to simultaneously balance model
performance and interpretability that might be useful for future model development.

5. Conclusions

This study integrated explainable machine learning approaches to investigate associ-
ations between fine-scale landscape characteristics and spatial patterns of the residences
of reported dengue cases in KC, Taiwan. Using the XGBoost and SHAP approaches, we
identified nonlinear patterns between diverse LULC types and the spatial patterns of the
residences of dengue infection in KC. Furthermore, the predicted high-risk areas within
the metropolitan and suburban areas in KC provide essential information for prioritizing
dengue interventions. Therefore, explainable AI approaches with XGBoost and SHAP
value estimations could enhance our understanding of environmental characteristics and
spatial patterns of dengue infection. The information derived from the explainable AI
approach is beneficial for resource allocation and modification of dengue control and
prevention strategies.
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