Asymptomatic and Mild SARS-CoV-2 Infections in a Hungarian Outpatient Cohort in the First Year of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Blood and Nasopharyngeal Swab Samples
2.2. Questionnaire
2.3. SARS-CoV-2 RT-PCR
2.4. SARS-CoV-2 Culture, Inactivation, and Purification
2.5. Anti-SARS-CoV-2 IgG and IgA Antibody Testing
2.6. Data Analysis
3. Results
3.1. Clinical Symptoms, Seroprevalence, and RT-PCR Positivity of Participants without Known COVID-19 Contacts
3.2. Symptoms, Seroprevalence, and RT-PCR Positivity of Participants with Known COVID-19 Contacts
3.3. The Relation of IgG and IgA Antibodies in the Participants with or without Previous COVID-19 Contacts
3.4. Coexisting Diseases and COVID-19 Symptoms, in Context with PCR Positivity, in Participants with or without Previous COVID-19 Contacts
3.5. Direct Comparison of PCR Positivity and Symptoms in Participants with or without Previous COVID-19 Contacts
3.6. Repeated Sampling and Testing of 33 Selected Participants: IgG Positivity, PCR Positivity, and Symptoms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statement on the Second Meeting of the International Health Regulations. Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-NCoV). 2005. Available online: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) (accessed on 16 December 2021).
- Word Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020 (accessed on 16 December 2021).
- Szalai, B.; Hercegh, É.; Magyar, N.; Déri, D.; Rózsa, M.; Molnár, Z.; Kuti, D.; Kis, Z.; Szomor, K.; Takács, M.; et al. Detection of the First Appearance of SARS-CoV-2 Virus in Hungary Based on Retrospective Testing of Respiratory Samples. Orv. Hetil. 2020, 161, 1619–1622. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; et al. Clinical, Laboratory and Imaging Features of COVID-19: A Systematic Review and Meta-Analysis. Travel Med. Infect. Dis. 2020, 34, 101623. [Google Scholar] [CrossRef]
- Huang, A.T.; Garcia-Carreras, B.; Hitchings, M.D.T.; Yang, B.; Katzelnick, L.C.; Rattigan, S.M.; Borgert, B.A.; Moreno, C.A.; Solomon, B.D.; Trimmer-Smith, L.; et al. A Systematic Review of Antibody Mediated Immunity to Coronaviruses: Kinetics, Correlates of Protection, and Association with Severity. Nat. Commun. 2020, 11, 4704. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z.; Azman, A.S.; Deng, X.; Sun, R.; Zhao, Z.; Zheng, N.; Chen, X.; Lu, W.; Zhuang, T.; et al. Serological Evidence of Human Infection with SARS-CoV-2: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2021, 9, e598–e609. [Google Scholar] [CrossRef]
- Rostami, A.; Sepidarkish, M.; Leeflang, M.M.G.; Riahi, S.M.; Nourollahpour Shiadeh, M.; Esfandyari, S.; Mokdad, A.H.; Hotez, P.J.; Gasser, R.B. SARS-CoV-2 Seroprevalence Worldwide: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2021, 27, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Azami, M.; Moradi, Y.; Moradkhani, A.; Aghaei, A. SARS-CoV-2 seroprevalence around the world: An updated systematic review and meta-analysis. Eur. J. Med. Res. 2022, 27, 81. [Google Scholar] [CrossRef]
- Emmenegger, M.; De Cecco, E.; Lamparter, D.; Jacquat, R.P.B.; Riou, J.; Menges, D.; Ballouz, T.; Ebner, D.; Schneider, M.M.; Morales, I.C.; et al. Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region. iScience 2023, 26, 05928. [Google Scholar] [CrossRef]
- Ma, Y.; Deng, J.; Liu, Q.; Du, M.; Liu, M.; Liu, J. Long-Term Consequences of Asymptomatic SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health 2023, 20, 1613. [Google Scholar] [CrossRef] [PubMed]
- Nagy, É.; Golopencza, P.; Barcs, I.; Ludwig, E. Comparison of COVID-19 Severity and Mortality Rates in the First Four Epidemic Waves in Hungary in a Single-Center Study with Special Regard to Critically Ill Patients in an Intensive Care Unit. Trop. Med. Infect. Dis. 2023, 8, 153. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; et al. Antibody Responses to SARS-CoV-2 in Patients with COVID-19. Nat. Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Kim, G.U.; Kim, M.J.; Ra, S.H.; Lee, J.; Bae, S.; Jung, J.; Kim, S.H. Clinical Characteristics of Asymptomatic and Symptomatic Patients with Mild COVID-19. Clin. Microbiol. Infect. 2020, 26, 948.e1–948.e3. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Su, Y.Y.; Zhi, S.S.; Huang, J.; Zhuang, C.L.; Bai, W.Z.; Wan, Y.; Meng, X.R.; Zhang, L.; Zhou, Y.B.; et al. Virus Shedding Dynamics in Asymptomatic and Mildly Symptomatic Patients Infected with SARS-CoV-2. Clin. Microbiol. Infect. 2020, 26, 1556.e1–1556.e6. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jin, C.; Zhang, L.; Kong, D.; Hu, K.; Xuan, M.; Liu, Q.; Li, S.; Zhang, K.; Xue, Y. Clinical characteristics and risk factors analysis of viral shedding time in mildly symptomatic and asymptomatic patients with SARS-CoV-2 Omicron variant infection in Shanghai. Front. Public. Health 2023, 10, 1073387. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Lv, J.; Pang, Y.; Li, L.M. Role of asymptomatic and pre-symptomatic infections in covid-19 pandemic. BMJ 2021, 375, n2342. [Google Scholar] [CrossRef]
- World Health Organization. Unity Studies: Early Investigation Protocols. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/early-investigations (accessed on 16 December 2021).
- World Health Organization. Living Guidance for Clinical Management of COVID-19. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 (accessed on 12 January 2022).
- World Health Organization. Population-Based Age-Stratified Seroepidemiological Investigation Protocol for COVID-19 Virus Infection. Available online: https://apps.who.int/iris/handle/10665/331656 (accessed on 17 March 2020).
- Baer, A.; Kehn-Hall, K. Viral concentration determination through plaque assays: Using traditional and novel overlay systems. J. Vis. Exp. 2014, 93, e52065. [Google Scholar] [CrossRef]
- Rockstroh, A.; Wolf, J.; Fertey, J.; Kalbitz, S.; Schroth, S.; Lübbert, C.; Ulbert, S.; Borte, S. Correlation of Humoral Immune Responses to Different SARS-CoV-2 Antigens with Virus Neutralizing Antibodies and Symptomatic Severity in a German COVID-19 Cohort. Emerg. Microbes. Infect. 2021, 10, 774–781. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, W.; He, H.; Zhao, D.; Jiang, D.; Zhou, P.; Cheng, L.; Li, Y.; Ma, X.; Jin, T. Serum IgA, IgM, and IgG Responses in COVID-19. Cell. Mol. Immunol. 2020, 17, 773–775. [Google Scholar] [CrossRef]
- Zervou, F.N.; Louie, P.; Stachel, A.; Zacharioudakis, I.M.; Ortiz-Mendez, Y.; Thomas, K.; Aguero-Rosenfeld, M.E. SARS-CoV-2 Antibodies: IgA Correlates with Severity of Disease in Early COVID-19 Infection. J. Med. Virol. 2021, 93, 5409–5415. [Google Scholar] [CrossRef]
- Oroszi, B.; Horváth, J.K.; Túri, G.; Krisztalovics, K.; Röst, G. The Role of Epidemiological Surveillance and Mathematical Forecasting in Preventing and Mitigating Pandemic Waves—What Has Been Accomplished and What Should Be Achieved. Sci. Secur. 2021, 2, 38–53. (In Hungarian) [Google Scholar] [CrossRef]
- Röst, G.; Bartha, F.A.; Bogya, N.; Boldog, P.; Dénes, A.; Ferenci, T.; Horváth, K.J.; Juhász, A.; Nagy, C.; Tekeli, T.; et al. Early Phase of the COVID-19 Outbreak in Hungary and Post-Lockdown Scenarios. Viruses 2020, 12, 708. [Google Scholar] [CrossRef]
- Uzzoli, A.; Kovács, S.; Páger, B.; Szabó, T. Regional Inequalities in the Waves of the COVID-19 Pandemic in Hungary. Terul. Stat. 2021, 61, 291–319. [Google Scholar] [CrossRef]
- Koronavírus. Available online: https://koronavirus.gov.hu/ (accessed on 16 December 2021).
- Ye, Q.; Zhang, T.; Lu, D. Potential false-positive reasons for SARS-CoV-2 antibody testing and its solution. J. Med. Virol. 2021, 93, 4242–4246. [Google Scholar] [CrossRef]
- World Health Organization. Final WHO SARS-CoV-2 Serology Test Kit Evaluation Results. Available online: hhttps://www.who.int/publications/m/item/final-who-sars-cov-2-serology-test-kit-evaluation-results (accessed on 21 July 2022).
- Amendola, A.; Bianchi, S.; Gori, M.; Colzani, D.; Canuti, M.; Borghi, E.; Raviglione, M.C.; Zuccotti, G.V.; Tanzi, E. Evidence of SARS-CoV-2 RNA in an Oropharyngeal Swab Specimen, Milan, Italy, Early December 2019. Emerg. Infect. Dis. 2021, 27, 648–650. [Google Scholar] [CrossRef]
- La Rosa, G.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Iaconelli, M.; Bonadonna, L.; Lucentini, L.; Suffredini, E. SARS-CoV-2 Has Been Circulating in Northern Italy since December 2019: Evidence from Environmental Monitoring. Sci. Total. Environ. 2021, 750, 141711. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, C.M.; Marchi, S.; Viviani, S.; Manenti, A.; Casa, E.; Dapporto, F.; Remarque, E.J.; Bollati, V.; Manini, I.; Lazzeri, G.; et al. A serological investigation in Southern Italy: Was SARS-CoV-2 circulating in late 2019? Hum. Vaccin. Immunother. 2022, 18, 2047582. [Google Scholar] [CrossRef] [PubMed]
- Merkely, B.; Szabó, A.J.; Kosztin, A.; Berényi, E.; Sebestyén, A.; Lengyel, C.; Merkely, G.; Karády, J.; Várkonyi, I.; Papp, C.; et al. Novel Coronavirus Epidemic in the Hungarian Population, a Cross-Sectional Nationwide Survey to Support the Exit Policy in Hungary. Geroscience 2020, 42, 1063–1074. [Google Scholar] [CrossRef]
- Omori, R.; Matsuyama, R.; Nakata, Y. The Age Distribution of Mortality from Novel Coronavirus Disease (COVID-19) Suggests No Large Difference of Susceptibility by Age. Sci. Rep. 2020, 10, 16642. [Google Scholar] [CrossRef]
- Axfors, C.; Pezzullo, A.M.; Contopoulos-Ioannidis, D.G.; Apostolatos, A.; Ioannidis, J.P. Differential COVID-19 infection rates in children, adults, and elderly: Systematic review and meta-analysis of 38 pre-vaccination national seroprevalence studies. J. Glob. Health 2023, 13, 06004. [Google Scholar] [CrossRef]
- Zsichla, L.; Müller, V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023, 15, 175. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Dufort, E.M.; Blog, D.S.; Hall, E.W.; Hoefer, D.; Backenson, B.P.; Muse, A.T.; Kirkwood, J.N.; St George, K.; Holtgrave, D.R.; et al. COVID-19 Testing, Epidemic Features, Hospital Outcomes, and Household Prevalence, New York State—March 2020. Clin. Infect. Dis. 2020, 71, 1953–1959. [Google Scholar] [CrossRef]
- Boehmer, T.K.; DeVies, J.; Caruso, E.; van Santen, K.L.; Tang, S.; Black, C.L.; Hartnett, K.P.; Kite-Powell, A.; Dietz, S.; Lozier, M.; et al. Changing Age Distribution of the COVID-19 Pandemic—United States, May–August 2020. MMWR Morb. Mort. Wkl. Rep. 2020, 69, 1404–1409. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Rapid Risk Assessment: Coronavirus Disease 2019 (COVID-19) in the EU/EEA and the UK—Eleventh Update: Resurgence of Cases. Available online: https://www.ecdc.europa.eu/?url=https%3A%2F%2Fwww.ecdc.europa.eu%2Fen%2Fpublications-data%2Frapid-risk-assessment-coronavirus-disease-2019-covid-19-eueea-and-uk-eleventh (accessed on 10 August 2020).
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological Assessment of Hospitalized Patients with COVID-2019. Nature 2020, 581, 465–469, Erratum in Nature 2020, 588, E35. [Google Scholar] [CrossRef][Green Version]
- Kellam, P.; Barclay, W. The Dynamics of Humoral Immune Responses Following SARS-CoV-2 Infection and the Potential for Reinfection. J. Gen. Vir. 2020, 101, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, L.M.; Wan, L.; Xiang, T.X.; Le, A.; Liu, J.M.; Peiris, M.; Poon, L.L.M.; Zhang, W. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect. Dis. 2020, 20, 656–657. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062, Erratum in Lancet 2020, 395, 1038. [Google Scholar] [CrossRef]
- Wellinghausen, N.; Plonné, D.; Voss, M.; Ivanova, R.; Frodl, R.; Deininger, S. SARS-CoV-2-IgG Response Is Different in COVID-19 Outpatients and Asymptomatic Contact Persons. J. Clin. Vir. 2020, 130, 104542. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Li, F.; Chen, F.; Liu, H.; Zheng, J.; Lei, C.; Wu, X. Viral Dynamics in Asymptomatic Patients with COVID-19. Int. J. Infect. Dis. 2020, 96, 288–290. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Buitrago-Garcia, D.; Simancas-Racines, D.; Zambrano-Achig, P.; del Campo, R.; Ciapponi, A.; Sued, O.; Martinez-García, L.; Rutjes, A.W.; Low, N.; et al. False-Negative Results of Initial RT-PCR Assays for COVID-19: A Systematic Review. PLoS ONE 2020, 15, e0242958. [Google Scholar] [CrossRef]
- Wikramaratna, P.S.; Paton, R.S.; Ghafari, M.; Lourenço, J. Estimating the false-negative test probability of SARS-CoV-2 by RT-PCR. Eurosurveillance 2020, 25, 2000568. [Google Scholar] [CrossRef]
- Wikramaratna, P.S.; Paton, R.S.; Ghafari, M.; Lourenço, J. Prolonged persistence of SARS-CoV-2 RNA in body fluids. Emerg. Infect. Dis. 2020, 26, 1834–1838. [Google Scholar]
- Meyerowitz, E.A.; Richterman, A.; Bogoch, I.I.; Low, N.; Cevik, M. Towards an Accurate and Systematic Characterisation of Persistently Asymptomatic Infection with SARS-CoV-2. Lancet Infect. Dis. 2021, 21, e163–e169. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, K.; Gao, W.; Lv, J.; Yu, C.; Wang, L.; Wang, Z.; Wang, B.; Liao, C.; Li, L. Asymptomatic and pre-symptomatic infection in Coronavirus Disease 2019 pandemic. Med. Rev. 2022, 2, 66–88. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total No. of Tested People | Time Period | No. of People with Positive RT-PCR-Results | Percentage of Positive People (95% CI) |
---|---|---|---|---|
Symptoms | 1023 of 1023 | April 2020–August 2020 | 129 | 12.6 (10.64–14.80) |
IgG antibodies | 1023 of 1023 | April 2020–August 2020 | 39 | 3.8 (2.72–5.17) |
Symptoms | 3120 of 3120 | September 2020–March 2021 | 348 | 11.1 (10.07–12.31) |
IgG antibodies | 2748 of 3120 | September 2020–March 2021 | 449 | 16.3 (14.98–17.78) |
IgA antibodies | 2409 of 3120 | September 2020–March 2021 | 177 | 7.3 (6.34–8.46) |
Viral RNA | 2423 of 3120 | September 2020–March 2021 | 204 | 8.4 (7.34–9.6) |
Symptoms | 4143 of 4143 | April 2020–March 2021 | 477 | 11.5 (10.56–12.52) |
IgG antibodies | 3771 of 4143 | April 2020–March 2021 | 488 | 12.9 (11.89–14.05) |
Characteristics | Total No. of Tested People | Time Period | No. of People with Positive RT-PCR-Results | Percentage of Positive People (95% CI) |
---|---|---|---|---|
Symptoms | 185 of 185 | April 2020–May 2020 | 80 | 43.2 (35.99–50.71) |
IgG antibodies | 185 of 185 | April 2020–May 2020 | 9 | 4.9 (2.25–9.03) |
Symptoms | 409 of 409 | September 2020–March 2021 | 233 | 57.0 (52.01–61.82) |
IgG antibodies | 386 of 409 | September 2020–March 2021 | 52 | 13.5 (10.23–17.29 |
IgA antibodies | 320 of 409 | September 2020–March 2021 | 31 | 9.7 (6.68–13.47) |
Viral RNA | 335 of 409 | September 2020–March 2021 | 47 | 14.0 (10.46–18.16) |
Symptoms | 594 of 594 | April 2020–March 2021 | 313 | 52.6 (48.59–56.77) |
IgG antibodies | 571 of 594 | April 2020–March 2021 | 61 | 10.6 (8.27–13.51) |
Symptoms * | PCR-Positive Participants | % | PCR-Negative Participants | % | p-Value |
---|---|---|---|---|---|
n = 204 | n = 2219 | ||||
cough | 40 | 19.6 | 68 | 3.1 | <0.001 |
fatigue | 33 | 16.2 | 98 | 4.4 | <0.001 |
headache | 33 | 16.2 | 125 | 5.6 | <0.001 |
sore throat | 27 | 13.2 | 80 | 3.6 | <0.001 |
rhinitis | 24 | 11.8 | 84 | 3.8 | <0.001 |
chills | 21 | 10.3 | 32 | 1.4 | <0.001 |
myalgia | 23 | 11.3 | 38 | 1.7 | <0.001 |
anosmia | 15 | 7.4 | 19 | 0.9 | <0.001 |
dysgeusia | 15 | 7.4 | 19 | 0.9 | <0.001 |
fever | 14 | 6.9 | 19 | 0.9 | <0.001 |
chest pain | 7 | 3.4 | 22 | 1.0 | 0.002 |
gastrointestinal symptoms | 6 | 2.9 | 13 | 0.6 | <0.001 |
shortness of breath | 3 | 1.5 | 13 | 0.6 | 0.135 |
Symptoms * | PCR-Positive Participants | PCR-Negative Participants | |||
---|---|---|---|---|---|
n = 47 | % | n = 288 | % | p-Value | |
sore throat | 22 | 46.8 | 59 | 20.5 | <0.001 |
cough | 20 | 42.6 | 41 | 14.2 | <0.001 |
fatigue | 23 | 48.9 | 57 | 19.8 | <0.001 |
rhinitis | 20 | 42.6 | 57 | 19.8 | 0.001 |
headache | 20 | 42.6 | 101 | 35.1 | 0.322 |
myalgia | 26 | 55.3 | 22 | 7.6 | <0.001 |
anosmia | 11 | 23.4 | 9 | 3.1 | <0.001 |
dysgeusia | 11 | 23.4 | 9 | 3.1 | <0.001 |
chills | 12 | 25.5 | 20 | 6.9 | <0.001 |
fever | 10 | 21.3 | 9 | 3.1 | <0.001 |
chest pain | 5 | 10.6 | 8 | 2.8 | 0.010 |
shortness of breath | 5 | 10.6 | 15 | 5.2 | 0.145 |
gastrointestinal symptoms | 0 | 0.0 | 19 | 6.6 | 0.070 |
Groups | No. of PCR-Positive People | No. and Percentage PCR-Positive People with Symptoms | No. and Percentage of PCR-Positive People without Symptoms |
---|---|---|---|
Participants without COVID-19 contact | 204 | 53 (26.0) *,+ | 151 (74.0) + |
Participants with COVID-19 contact | 47 | 36 (76.6) *,× | 11 (23.4) × |
Participants | PCR-Positive | IgG-Positive | IgG-Negative |
---|---|---|---|
10 with symptoms | 4 (1 of 3–4 samples was positive) | 2 | 2 |
6 (more than 1 of 3–4 samples were positive) | 2 | 4 | |
23 without symptoms | 8 (1 of 3–4 samples was positive) | 3 | 5 |
12 (more than 1 of 3–4 samples were positive) | 1 | 11 | |
3 (intermittent positive and negative samples) | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankovics, I.; Müller, C.; Gönczöl, É.; Visontai, I.; Varga, I.; Lőrincz, M.; Kuti, D.; Hasitz, Á.; Malik, P.; Ursu, K.; Bányász, B.; Sarkadi, J.; Dénes, B. Asymptomatic and Mild SARS-CoV-2 Infections in a Hungarian Outpatient Cohort in the First Year of the COVID-19 Pandemic. Trop. Med. Infect. Dis. 2023, 8, 204. https://doi.org/10.3390/tropicalmed8040204
Jankovics I, Müller C, Gönczöl É, Visontai I, Varga I, Lőrincz M, Kuti D, Hasitz Á, Malik P, Ursu K, Bányász B, Sarkadi J, Dénes B. Asymptomatic and Mild SARS-CoV-2 Infections in a Hungarian Outpatient Cohort in the First Year of the COVID-19 Pandemic. Tropical Medicine and Infectious Disease. 2023; 8(4):204. https://doi.org/10.3390/tropicalmed8040204
Chicago/Turabian StyleJankovics, István, Cecília Müller, Éva Gönczöl, Ildikó Visontai, István Varga, Márta Lőrincz, Dávid Kuti, Ágnes Hasitz, Péter Malik, Krisztina Ursu, Borbála Bányász, Júlia Sarkadi, and Béla Dénes. 2023. "Asymptomatic and Mild SARS-CoV-2 Infections in a Hungarian Outpatient Cohort in the First Year of the COVID-19 Pandemic" Tropical Medicine and Infectious Disease 8, no. 4: 204. https://doi.org/10.3390/tropicalmed8040204