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Abstract: Although the utility of Ecological Niche Models (ENM) and Species Distribution Mod-
els (SDM) has been demonstrated in many ecological applications, their suitability for modelling
epidemics or pandemics, such as SARS-Cov-2, has been questioned. In this paper, contrary to
this viewpoint, we show that ENMs and SDMs can be created that can describe the evolution of
pandemics, both in space and time. As an illustrative use case, we create models for predicting
confirmed cases of COVID-19, viewed as our target “species”, in Mexico through 2020 and 2021,
showing that the models are predictive in both space and time. In order to achieve this, we extend a
recently developed Bayesian framework for niche modelling, to include: (i) dynamic, non-equilibrium
“species” distributions; (ii) a wider set of habitat variables, including behavioural, socio-economic
and socio-demographic variables, as well as standard climatic variables; (iii) distinct models and
associated niches for different species characteristics, showing how the niche, as deduced through
presence-absence data, can differ from that deduced from abundance data. We show that the niche as-
sociated with those places with the highest abundance of cases has been highly conserved throughout
the pandemic, while the inferred niche associated with presence of cases has been changing. Finally,
we show how causal chains can be inferred and confounding identified by showing that behavioural
and social factors are much more predictive than climate and that, further, the latter is confounded by
the former.

Keywords: ecology; epidemiology; SARS-Cov-2; COVID-19; ecological niche model; species distribution
model; Bayesian analysis; causal inference

1. Introduction

Recently there has been debate [1–6] as to whether Species Distribution Models (SDM)
are appropriate tools in the study of the COVID-19 pandemic. Of course, such a debate
raises the important question of when and under what circumstances an SDM, or an
Ecological Niche Model (ENM), are likely to be valid and/or useful in the study of disease
in general? Just which diseases, or aspects of diseases, can be usefully studied using
SDM/ENMs? Which pathogens have ecological niches and which do not? In addition,
if some do not, why do they not? Taking the broad view: If ecology is the study of the
relations between organisms, both among themselves and with their environment, and
an ecological niche is the full set of biotic and abiotic factors that favour the presence of
an organism [7,8], then clearly all disease pathogens must have an ecological niche. The
question, rather, is: how is that niche to be characterised and quantified? What are the
appropriate niche dimensions and can a meaningful and useful ENM and, consequently an
SDM, be constructed?
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Although there is controversy as to the application of ENMs and SDMs to the case of
COVID-19, there have been varying degrees of success in applying them to other human
diseases. In particular, to zoonoses [9,10], where non-human species are involved in the
transmission cycle. The principal applications have been to the creation of ENMs and SDMs
for important agents in the transmission cycle of the zoonosis, such as known vectors [11]
and hosts [12], considered as risk factors, as well as the pathogen itself [13]. In all these cases
the corresponding niche variables were abiotic—climate and environmental layers—in
spite of the fact that biotic factors clearly play an important role as niche variables for
the disease itself. Biotic factors were successfully incorporated into ENMs and SDMs for
zoonoses in [14–20] Importantly, the capacity to include biotic factors into ENMs and SDMs
led not only to the creation of more predictive and explainable models but also, for example,
to the prediction and confirmation of multiple new hosts of several zoonoses [16]. However,
all these models, independently of the inclusion of biotic factors, were based on presence–
absence data and on the implicit assumption that the system was in “equilibrium” [21].

In all of these cases of human disease there has been a component that is considered
“ecological”, either in the targets of the ENM/SDM, such as vectors or hosts of a zoonosis,
as well as in the niche variables themselves, such as climatic and other environmental
variables, as well as potential hosts and vectors. However, in the case of a disease such as
COVID-19, which is based on human-to-human transmission, there is a question as to the
relevance of such factors. Additionally, abundance, rather than just presence–absence is
a fundamental concern. Finally, it is clear that for epidemics or pandemics of this nature
in no way is an equilibrium assumption valid. It is these criticisms, among others, that
have led to the questioning of an ecological ENM/SDM approach and to the conclusion
that an epidemiological rather than ecological approach is to be preferred, which leads
us to a further question: when is an ecological versus an epidemiological approach more
appropriate? The difference between the two is stated quite clearly in the epidemiological
literature [22,23]. Put simply, ecological models are naturally associated with the “where”
of a disease, while epidemiological models are more concerned with the “who”. This
difference is aptly captured in [24] with the question: “Is it better to have a heart attack in the
United States or Canada?”, the emphasis being that this type of question is of an ecological
nature, whereas the question: How many people out of a cohort of individuals diagnosed
with COVID-19 will subsequently die? is an epidemiological question. Indeed, this
ecological “where” perspective has a long history in the social sciences as a whole [25,26].
From a modelling viewpoint, the difference between the two approaches lies in what
statistical ensemble will be used to draw inferences. Epidemiological models use an
ensemble of “individuals”, while ecological models use an ensemble of “places”, where
each place is associated, either explicitly or implicitly, with a population. The “places” can
vary depending on context: from countries and other political units, to eco-regions, any
fixed-area spatial cells, and to pixels on a raster.

Additionally, there is a subsequent question of “when”, that is relevant for both the
ecological and epidemiological points of view. Standard SIR-type modelling [27], for in-
stance, is associated with the “who” and the “when”, with the “who” being associated
with a fixed-number of states—susceptible, infected, etc. that are associated with individu-
als [28]. It is the “when” and, relatedly, “how many” that has dominated the modelling
of the COVID-19 pandemic, with standard SIR models, and variations thereof [29–31],
playing an important role [32,33]. However, more sophisticated techniques, such as deep
learning, have also been used [34]. All these methods however, are based on modelling
the time series of the data to be predicted, such as cases or deaths. In no way can they
account for the high degree of multi-factoriality involved in the evolution in space and
time of the pandemic. In other words, they cannot account for the “whys” that accrue from
the direct and indirect causes of this evolution. Thus, although such dynamical models
can be extended to consider “place” by constructing a SIR-type model for a particular
place [35,36]; such models, however, do not account for the distinguishing features of that
particular “place”, as does an SDM/ENM. On the other hand, currently, SDM/ENMs do
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not account for the dynamics of a disease and are also unnecessarily restrictive in the set of
niche variables considered. Finally, there is, behind the “who”, “where”, and “when”, the
“why” that explains them. This, we argue, is the most important role for the use of ENMs in
the study of human disease.

In this paper, we show that an ecological approach, using SDM/ENMs, can be usefully
applied to any human or non-human disease, transmissible or not, taking as a specific ex-
ample the spatio-temporal distribution of COVID-19 in Mexico to answer in the affirmative
that a respiratory virus does, indeed, have an ecological niche, and that it can be mapped.
We show that a wide variety of habitat variables, both environmental, behavioural, and
social, and of different types and spatio-temporal resolutions, can be included, to yield a
deeper understanding of the factors that drive the COVID-19 pandemic. Moreover, we
show how to generalise SDM/ENMs to incorporate and predict the dynamics of the disease.
Finally, we show how the formalism can be used to disentangle the complex causal chains
that are a fundamental part of a complex adaptive system.

2. Materials and Methods

Several of the methodological elements used in this paper have been used previously
for creating ENM/SDMs in multiple contexts [15–18]. Further details can be found in these
papers and in the Supplementary Material.

2.1. Defining a Spatial Grid

All SDM/ENMs are based on the notion of co-occurrence between a target, C, and, one
or more, predictors/habitat variables, X = (X1, X2, . . . , XN). Normally, co-occurrence is
considered purely in spatial terms, although the concept can be extended to co-occurrences
in time. In either case, to specify whether there is a co-occurrence or not requires a
specification of a grid that divides a spatio-temporal region into cells. A spatial grid can
consist of cells of arbitrary shape, as long as they form a partition; i.e., each spatial point
is a member of one and only one cell. A partition may be uniform, such as formed by
rectangular cells of a given area, or irregular, as is the case for political/administrative
units, such as municipalities, counties, states, etc. In standard SDM/ENM modelling [37]
this partition is implicit, corresponding, for example, to the pixels of environmental rasters.
Such a partition, however, creates a barrier when wishing to include biotic factors, such
as point collection data, that cannot be naturally represented as a raster. In short, we may
wish to ask: what is the relative importance of average annual temperature, as taken from
WorldClim, versus the presence of a prey species in an SDM/ENM for a vagile carnivore?

In Stephens et al. [38], a methodology has been developed for incorporating spatial
data layers of arbitrary type and spatial resolution. A spatial grid is overlaid on a chosen
spatial region and co-occurrences defined with respect to a given cell. Thus, if there is a
co-occurrence between C and a particular variable, Xi, in a particular cell, then N(CXi) = 1.
In the case of a continuous variable, such as species abundance, temperature, or precipi-
tation, the variable, Xi, is coarse grained into a set of n discrete bins, leading to n discrete
“presence/absence” variables. Thus, Xm

i (α) = 0, 1 represents the presence/absence in
a cell, α, of values of Xi in the range defined by the mth bin. Any categorical variable
can be left as is, or also coarse grained into a smaller number of categories, if necessary.
The criterion for fixing the bin distribution of a variable are that it allows for the best
discrimination—dependence of C on Xi—while maintaining an appropriate degree of sta-
tistical significance—number of cells associated with a given Xm

i . Furthermore, the target C
can also be discretised if necessary in the same way, with bins Cm

i . In summary, all vari-
ables become categorical, with each category being associated with a binary variable. An
advantage of this categorisation is that no relation is assumed between one bin and another,
as would be the case in a regression-based approach for example. Using a non-uniform
grid however, can introduce some bias, as some municipalities are bigger than others. We
have, however, used spatially uniform grids without substantial changes in our results.
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2.2. Constructing SDMs and ENMs

Having transformed all variables to this binomial form, counts, N(CXm
i ), can be made

over the region of interest, corresponding to the number of cells that contain a presence
of the target Cm

i and the variable Xm
i . The number of cells associated with a given Cm

i
and/or Xm

i may be fixed or varying depending on the target class. For instance, if we define
the class using a relative measure, such as the 10% of cells with the highest abundance
for a given species, or the highest number of confirmed cases or deaths in the case of
COVID-19, then the class will always be associated with 10% of the cells, independently of
time. However, if the class is based on an absolute measure, such as presence/absence of
the species, or confirmed cases of a disease, the number of cells in the class may vary in
time as, for example, in the case of an invasive species, or an emerging epidemic. Similar
considerations hold for Xm

i (t). If it represents a relative measure, such as the 10% of cells
with highest average annual temperature, then it will always cover 10% of cells. However,
if it represents the presence/absence of an invasive species, the number of associated cells
will change. We will consider these cases in more detail below.

From the co-occurrence counts, probability distributions may be calculated, such as
P(CXm

i ), P(C | Xm
i ), and P(Xm

i | C), which are related through Bayes theorem. These
distributions can be compared to a null hypothesis and a binomial test used, for instance, to
determine the statistical significance of the deviation from this hypothesis. For example, for
the posterior, a natural null hypothesis is P(C) (This is equivalent to the null hypothesis of
type SIM2 in the classification of Gotelli [39]. This null hypothesis is one that leads to lower
rates of Type I errors and corresponds, in the framework of presence–absence matrices, to
keeping the number of observations fixed but randomising their location.) and a statistical
diagnostic for determining if the habitat variable Xm

i is significant or not is

ε(C | Xm
i ) =

NXm
i
(P(C | Xm

i )− P(C))√
(NXm

i
P(C)(1− P(C)))

(1)

In the case that the binomial distribution can be approximated by a normal distribution,
| ε(C|Xm

i ) |> 1.96 is equivalent to the 95% confidence interval. For a multivariate niche
the corresponding distributions of interest are: P(CX), P(C|X), and P(X|C). Although
these exist formally from a frequentist perspective, i.e., P(C|X) = N(CX)/N(X), in the
case of a high-dimensional habitat, both N(CX) and N(X) = 0, 1, which means that a
direct statistical estimation is impossible. To overcome this problem, in [40], the likelihood
P(X|C) has been estimated by assuming a factorisation of the form

P(X | C) =
Nξ

∏
i=1

P(ξ | C) (2)

where ξ is a combination of a small number of variables. Thus, the abiotic and biotic
habitat variables are partitioned into a set of Nξ non-overlapping combinations. In the
case that Nξ = N, this corresponds to the well known Naive Bayes approximation [41]
(Although a complete factorisation of the likelihood may seem a strong assumption, the
Naive Bayes approximation has been shown to be a robust performer even in cases where
there are strong correlations between variables. An explanation for its surprisingly good
performance can be found in [41]). Usually, in order to calculate P(C|X), as the evidence
function P(X) is independent of C, to omit it, the following “score” function is often used

S(C | X) = ln(
P(C | X)
P(C̄ | X)

) = ln(
P(X | C)
P(X | C̄)

) + ln(
P(C)
P(C̄)

)

=
m

∑
i=1

s(Xm
i ) + ln(

P(C)
P(C̄)

) (3)
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where C̄ is the set complement of C, with P(C̄) = 1− P(C), and s(Xm
i ) = ln( P(Xm

i |C)
P(Xm

i |C̄)
) is

the contribution (“score”) to the overall S(C|X) from the variable Xm
i . If s(Xm

i ) > 0, < 0
then the factor Xm

i contributes positively/negatively to the occurrence of C. Everything
now is based on simple cell counts: P(Xm

i |C) = N(CXm
i )/N(C), P(C) = N(C)/Ns,

P(Xm
i ) = N(Xm

i )/Ns, where N(C) is the number of cells with a presence of the target
C, N(Xm

i ) is the number of cells with a presence of the variable Xm
i and Ns is the total

number of cells in the spatial grid. P(C|X) can be determined directly from S(C|X) by
deriving the relation P(C|S(C|X)) = N(CS)/N(S), discretizing the score range into bins
and then counting how many cells in a given score range also have a presence of the target.
∆(C, X) = (P(C|X) − P(C)) is a measure of how niche-like the conditions specified by
X are. The most niche-like conditions, Xn, are those where P(C|X) reaches its maximum
value, while we can term those conditions, Xan, where P(C|X) reaches its minimum value,
as the most “anti-niche” like. P(C|X) represents a height function for a given point in an
N-dimensional Hutchinsonian ecological niche space. The corresponding “Niche Land-
scape” is our ENM. As every spatial cell α can be assigned a corresponding niche profile,
X(α), P(C|X(α)) for different spatial cells also now yields an SDM over our spatial region
of interest.

A significant advantage of assuming a factorisation of the likelihood is that the subse-
quent model is completely transparent, with each factor contributing separately, so that
each factor can be compared and contrasted with the rest. Moreover, the same applies for
groups of factors, so we can compare the relative predictive and discriminative value of
climate factors versus socio-economic factors, or air contamination versus mobility.

Of fundamental importance in the construction of P(C|X) is the statistical ensemble
from which the counts will be made. Although we consider a spatial ensemble, the data
assigned to each cell invariably have a temporal dimension. In the case of standard
SDM/ENM, with a target class defined through point collection data, each data point,
d(x, t), is associated with a spatial specification, usually latitude and longitude, and a
collection date, t. Similarly, abiotic factors are also time-stamped. A model for P(C|X)
assumes that the distributions in time of both C and X are both statistically constant
and representative.

In the case that the target variable is metric, such as number of cases, NC, the classifier
S(C|X) can also be used to predict NC(α, t) for a given spatial cell and over a particular time
period. In the case of a spatial model, the cells may be divided up into training and test
sets. The points (NC(α), S(C | X(α))) for each cell, α, of the training set can then be plotted,
and a regression performed to determine the relationship NC = F(S(C|X)). This relation
can now be used to predict NC for any cell in the test set given we have S(C | X) there.

2.3. Dynamical ENMs and SDMs

A key aspect of the COVID-19 pandemic is its highly dynamic nature, which can
manifest itself in several different ways. First of all, the habitat variables themselves may
be time dependent, Xi ≡ Xi(t). Secondly, the target itself may be dynamical, C ≡ C(t). In
the latter case, this may represent the fact that a disease or a species/disease is present at a
given spatial point at one point in time but not another. Thus, the case of an invasive species
would fit into this category. In the former, the disappearance of food resources or climate
change would naturally fit. In general, we wish to model P(C(t)|X(t′)). It is important
to point out that there is a difference, however, between having a ENM that is dynamical
versus just considering a different configuration of the habitat variables substituted into a
given model. In the case of climate change, for instance, this is usually performed [42] by
determining a static ENM, equivalent to P(C|X(t)), which can be applied to any spatial
point, α, then using a climate change model to determine X(α, t)→ X(α, t′) for some future
time t′. In other words, we assume the ENM does not change, only the spatial distribution
of the habitat variables, which is then used to determine the new spatial distribution of the
target with the same original model. In other words, we determine an SDM at t′ using an
ENM derived at time t.
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To move beyond this limited context, we must return to the question of spatio-temporal
cells as opposed to just a spatial grid. Considering a timespan T, we divide T into NT
intervals. We now have a total of NTs = Ns × NT spatio-temporal cells. The simplest
division is into uniform intervals, such as a year into 12 months. In a static setting, the
interpretation of P(C|X) is that it represents an equilibrium relation between C and X, even
though the data used to calculate it, more often than not, spans substantial and, effectively,
non-commensurate time periods. For example, using WorldClim data from a given year as
habitat variables for a niche model of a species represented by collection data taken from
a 150-year time period. Without assuming equilibrium we should calculate P(C(t)|X(t)).
However, we may also consider calculating P(C(t)|X(t′)), i.e., to predict the effect of the
habitat variables X(t′) at time t′ < t on our target C(t). Of course, an important question at
the heart of this is: how are changes in X(t′) reflected in C(t)? This requires longitudinal
observations and/or an understanding of the underlying causal relationships between the
Xi and C.

There are four distinct paths to incorporating time into the SDM/ENM: (i) assume
equilibrium, and thereby ignore time dependence; (ii) construct a model P(C(t)|X(t))
using a time slice/history to predict a spatial distribution C(α, t) on that time slice, as a
function of the habitat variables on the same time slice; (iii) predict in time, assuming
niche conservatism, i.e., construct P(C(t)|X(t)) and use it to predict the spatial distribution,
C(α, t′) at some later time using the habitat X(α, t′); (iv) predict in time, without assuming
niche conservatism, by constructing P(C(t)|X(t′)), where t′ < t. Models of type (i) and
(ii), we term spatial prediction models. They are analogous to standard SDM/ENMs, in that
they predict a spatial distribution. However, in distinction, in case (ii) they do so using a
time slice of data that permits us to compare and contrast C(t), X(t) and P(C(t)|X(t)) over
time. For instance, we may use data only from May 2021 and compare with data from May
2020, or we may consider data from all of 2021, etc. Models of type (iii) and (iv) we term
time prediction models. In this case they are an ENM/SDM equivalent to a SIR-type model,
predicting the evolution of “where” in time, as opposed to “who”. The case with niche
conservatism would be equivalent to a SIR type model, where the parameters of the model
do not change, whereas the non-conservative case would correspond to the case where
they do change and are fitted to dynamic data.

The notion of a time prediction model also naturally leads us to consider ENM/SDMs
that are associated with changes in the distribution of a species/disease. For instance,
we may consider the set of cells, C(t− 1), that have a presence in the time interval t− 1
and the set of cells, C(t), that have a presence in the time interval t. ∆C(t, t − 1) may
then represent those cells that had a presence/absence at t − 1 and, in contrast, an ab-
sence/presence at t. This could, for example, model the range expansion of a species. In
this case, an ENM P(∆C(t, t− 1)|X(t− 1)) represents a model for predicting changes in
the distribution due to the habitat variables. This model can then be applied to produce an
SDM P(∆C(α, t + 1, t)|X(α, t)) using the habitat variables at t and predicting the change in
distribution between t and t + 1.

We give more details about how to construct the different spatio-temporal models in
the Supplementary Material. As discussed above, spatially, we used a grid corresponding
to the municipalities of Mexico. For the temporal partition, we chose a month, though any
other timescale of interest could have been used.

2.4. Testing Model Performance

The way in which our models are tested depends on the type of statistical ensemble
that is used to train and then test the model. In the case of an ENM on a given time slice,
P(C(t)|X(t), the model will be created on a training set that corresponds to a randomly
chosen fraction, ftrain, of spatial cells with data associated with a time period t. The model
is then tested on the remaining fraction of cells ftest = 1− ftrain from the same time period.
The test and train sets can be chosen in multiple ways. Here, we consider a 70%/30% split.
Standard performance statistics can then be determined, such as from a confusion matrix
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or from the area under the ROC, among others [43,44]. However, we can also use the ENM
P(C(t)|X(t)) trained on 100% of spatial cells and apply it to a future time period t′. In
this case, the entire set of spatial cells at t′ is the test set. The luxury of a problem such
as COVID-19 is that we have relatively accurate data about the spatial distribution of the
disease as a function of time. In this case, the ENM P(C(t)|X(t)) is used by substituting
at t′, X(α, t′) for each spatial cell, α, to obtain for that cell P(C(α, t′)|X(α, t)). We can now
test the quality of the prediction using any of the above standard metrics, given that
P(C(α, t)|X(α, t′)) is a classifier, and we can compare with the actual distribution C(α, t′).
We will expect the time t ENM to yield good performance at t′ only if the niche is conserved
over this time period.

Aside from the pure assumption of niche conservatism, where we apply the ENM
P(C(t)|X(t)), we can compare and contrast ENMs from different time slices to determine
the degree to which they are changing. This would correspond to determining if the
niche is actually changing over time. This can be performed for each habitat variable by
comparing s(Xm

i (t)) with s(Xm
i (t′)). If the niche is changing then we must consider just

how fast it is changing. This can be deduced by comparing the s(Xm
i (t)) across time. If

s(Xm
i (t)) ∼ s(Xm

i (t′)) for two time periods t and t′ > t, then the niche is conserved over
the interval (t′ − t). If they differ substantially, then we may reduce (t′ − t) and determine
how much change there has been over this shorter interval.

For time prediction models that do not assume niche conservatism, the training set
consists of choosing two time periods t− 1 and t. An ENM P(C(t)|X(t− 1)) is created
on all spatial cells. This model is then applied to all spatial cells for the time periods t
and t + 1 as test set. Thus, we use the ENM P(C(t)|X(t− 1)), substituting X(α, t) to create
the SDM P(C(α, t + 1)|X(α, t)) for prediction of C(α, t + 1). We can then apply any of the
above standard metrics to evaluate the performance of this ENM/SDM.

2.5. Predicting Abundances

ENMs that are based on presence/no presence are, naturally, binary classification
models. Although a metric variable, such as abundance, can be treated as such by con-
sidering multiple classes, it is also possible to use a binary prediction model, such as the
top 10% of municipalities with highest confirmed cases, to construct a relation, N(S(C|X))
between the score, S(C|X), and the number of cases on a training set. This model can then
be applied to a test set, predicting the expected number of cases for a given cell, α, using its
habitat profile X(α). This procedure can be used for both spatial and time prediction models.
In the former case, the abundance predictions are associated with a given time slice t using
a split of the cells into training and test sets, while for the latter we predict from a training
set that consists of all cells on a time slice t to predict abundances on a test set of all cells on
a time slice t′.

2.6. Inferring Causality in ENMs

Another criticism of the application of standard SDM/ENMs to the pandemia has been
the lack of plausibility of the relation between, say, infection rates and habitat variables,
such as climate or contamination. As pointed out in [40], this is a problem with correlative
approaches in general. This criticism however, can be applied to a phenomenological
study of any complex adaptive system, where cause–effect relations are multi-layered and,
therefore, often indirect. Epidemiology and medicine in general are rife with problems
of causal inference and there are two basic approaches to it: a “classic” approach [45]
and a “modern” approach [46–48]. An important criterion from our perspective is that
of “strength of association” [45], where, although a small association does not mean that
there is no causal effect, the larger the association, the more likely that it is causal. This
is key to our use and understanding of both ε(C|Xm

i ) and s(Xm
i ) and their multi-factorial

counterparts ε(C|X) and s(X). Thus, for two niche factors, Xα and Xβ, if s(Xm
i ) > s(Xn

j ),
then we will judge Xm

i to be causally closer to C than Xn
j . An illustrative example of this
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would be a food chain: carnivore → herbivore → plant food → climate, as considered
in [40].

In [40,49], we have proposed a formalism for examining causality that is particularly
natural for application to ENMs. If we have two niche factors Xm

i and Xn
j , we can better un-

derstand their potential causal relations with a target C by considering the following relations

ε(C|Xm
i Xn

j ; PN) =
NXm

i Xn
j
(P(C|Xm

i Xn
j )− PN)√

(NXm
i Xn

j
P(C|Xm

i )(1− P(C|Xm
i )))

(4)

where PN represents the null hypothesis with respect to which we will determine the
predictability of the combination Xm

i Xn
j . If PN = P(C) we are gauging the consistency

of P(C|Xm
i Xn

j ) with the null hypothesis that the distribution of the target species is in-
dependent of the variable combination Xm

i Xn
j . However, we may also choose as null

hypotheses PN = P(C|Xm
i ) or PN = P(C|Xn

j ), in which case the null hypothesis is that
P(C|Xm

i Xn
j ) is independent of Xn

j and Xm
i , respectively. With this approach, we can deter-

mine the degree to which Xn
j confounds Xm

i or vice versa. For example, if PN = P(C|Xm
i )

and ε(C|Xm
i Xn

j ; Xm
i ) > 1.96, we can conclude that within a 95% confidence interval that

P(C|Xm
i Xn

j ) is not consistent with the null hypothesis and therefore the habitat variable Xn
j

is predictive of the distribution of C beyond what is explained by the habitat variable Xm
i .

As Xm
i may be a biotic variable and Xn

j an abiotic one, we have used this to show that, very
often, biotic factors are confounders for abiotic factors and not vice versa [40]. Although,
here, we are concentrating on causal relations and confounding with respect to pairs of
habitat variables the formalism naturally extends to larger numbers of variables.

In any spatial cell α we may determine if there is a presence or absence of a given
coarse grained bin for either variable, Xm

i (α) = 0, 1 and Xn
j (α) = 0, 1. For example,

X4
8(α)X2

10(α) = 11 would represent a presence of bin 4 of variable 8 and a presence of bin 2
of variable 10 in the cell α, while X4

8(α)X2
10(α) = 01 would represent an absence of bin 4 of

variable 8 and a presence of bin 2 of variable 10 in the cell. Thus, there are 4 possible combi-
nations for any pair of habitat variables: presence–presence = 11, presence–absence = 10,
absence–presence = 01, absence–absence = 00. By comparing and contrasting the different
combinations, we may determine, for example, if presence of one habitat variable is more
predictive than the other. Note Xn

j (α) = 0 does not imply absence of the variable itself in
the cell, just the range denoted by the nth coarse grained bin.

2.7. Data and Habitat Variables

In this paper, considering the evolution of the pandemia in Mexico, we used an
irregular spatial partition consisting of the 2458 municipalities of Mexico. The advantage of
this partition is that it is most aligned with publicly available socio-demographic and socio-
economic factors that can serve as corresponding niche variables. Its disadvantage is that
there is a potential bias in the spatial distribution of different municipalities according to
their area. For the epidemiological data, used to define the target classes, we used data from
the General Directorate of Epidemiology, Secretariat of Health in Mexico [50]. For the socio-
demographic and socio-economic data, we used 124 variables taken from the 2010 Mexican
Census [51] at the municipality level. For mobility data, we used 12 variables provided by
the Institute of Geography of UNAM, that represent the average, daily labour flows between
a pair of municipalities. For the air contamination factors, we used three atmospheric
pollutants (formaldehyde (HCHO) nitrogen dioxide (NO2), sulphur dioxide (SO2)) [52–54],
while for climactic data, we used 19 bioclimatic variables from the WorldClim database
(www.worldclim.org (accessed on March 2022)) with a spatial resolution of 30 arc-seconds
(≈1 km) [55], which includes 11 temperature and eight precipitation indices that express
annual trends (e.g., annual mean temperature and precipitation), seasonality (e.g., annual

www.worldclim.org
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temperature and precipitation ranges), and environmental extremes (e.g., highest and
lowest values of temperature for the warmest and coolest months).

As all the socio-demographic, socio-economic, and mobility data were metric and
continuous, for each variable, we ranked the 2458 municipalities from highest to lowest
value then divided the ranked list into deciles, with 10% of all municipalities in each decile.
By doing this, as opposed to dividing the metric interval for the variable into equal parts,
we assure equal statistical weight to each coarse grained category. For the air pollution
variables, we divided each raster layer into 20 ranges, which were chosen to have roughly
equal number of pixels in each one. Climate variables were also divided into 20 ranges.
Thus, in this way we mapped both target class and habitat variables in their entirety into a
set of binomial presence/absence variables for each cell on our grid. We also included in as
a habitat variable the decile of confirmed cases associated with a given municipality, but at
period t− 1, as opposed to the target variable which was associated with period t. In this
way, we could show, in principle, how the history of the habitat can also be included as a
predictor. Indeed, this is the first step at showing how the present methodology may be
developed to include SIRs-type modelling properties.

3. Results

An important aspect of a complex, adaptive phenomenon, such as the COVID-19
pandemic, is that there are many questions of “where”, “when”, and “why” that require
answers, with each question in turn requiring its own SDM/ENM. Here, we will present
representative results for the following: (i) Where are the highest number of confirmed
cases in a given time period to be found? (ii) Where are confirmed cases in a given time
period to be found? (iii) Where will most confirmed cases be found in a future time period?
(iv) Where will cases be found in a future time period where previously there were none?
In a more ecological language and taking confirmed cases of COVID-19 as the “species” of
interest: (i) Where is the highest abundance of the species of interest to be found? (ii) Where
is the species to be found in a given time period independently of its abundance? (iii) Where
will the species be found in highest abundance in a future time period? (iv) Where will the
species be found where it was not present previously? (In the online system, EpI-PUMA,
publicly available in a Platform-as-a-Service environment ((http://covid19.c3.unam.mx),
accessed on 5 April 2021, the above and many more different SDM/ENMs are available that
use the methodology described in this paper). These five representative models illustrate
important differences about how ENM/SDMs can be used to answer where, when, and
why questions. Firstly, we may use a model developed on a region Rtrain(t), using data
from a time period t, to predict on another region Rtest(t), as is standardly performed,
and where the complete spatial region under consideration is R(t) = Rtrain(t) ∪ Rtest(t).
Secondly, we may use a model developed on a region R(t) to predict on R(t′), the same
region at some later time.

3.1. Dynamic Biotic and Abiotic Factors Can Be Included in an SDM/ENM for COVID-19

To answer each of the above questions, we must extend standard ENM/SDM mod-
elling to include both dynamical target classes, C(t), and associated dynamical habitat
variables, X(t′), and develop SDM/ENMs, P(C(t) | X(t′)), that relate them. With ques-
tion (i) the target class will be the 10% of Mexican municipalities that have the highest
number of cases in month t. In that context we are characterising niche by the relative abun-
dance of the target species, with those locations where it is highest being characterised as
most niche-like. This target class is time dependent, as it may be that those places with the
highest abundance at one time are not the same as those at another. With question (ii) the
target class will be the presence of confirmed cases in month t. Questions (iii) and (iv) refer
to these target classes but in a future month t′. In particular, for the presence of confirmed
cases, we will be interested in predicting those municipalities that had no previous cases in
time period t but do in period t′.

(http://covid19.c3.unam.mx
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Thus, the targets for our ENM/SDMs are all, in principle, time-dependent. For the
habitat variables, we use those presented in the Methods section below, with an illustrative
dynamic habitat variable being the decile of municipalities corresponding to a given range
of number of confirmed cases in the period t− 1.

3.2. Predictive SDM/ENMs Can Be Created for COVID-19

SDM/ENMs were created for the target classes (i)–(v). In Figure 1 (left) we see the re-
sults for a purely spatial ENM/SDM model with target class, corresponding to question (i),
being the 10% of municipalities with the highest number of confirmed cases, consid-
ered for three different, representative months of the pandemic: March 2020, June 2020,
and January 2021. In this case, performance is based on a 5-fold 70%/30% train/test
split of the 2458 municipalities. Figure 1 (left) shows the corresponding ROC curves
and the corresponding AUC for five separate SDM/ENMs for each test set, with: socio-
demographic/economic variables only, mobility only, climate only, air contamination only,
and all factors together, for each of the three considered months. The relative performance
of each sub-model is clear, with the mobility and socio-demographic models being the best
performers, followed by the air contamination model, then the climate model, with the
total model equivalent to the mobility and socio-demographic models. Table 1 shows the
most niche-like and most anti-niche-like habitat factors, as ranked by the statistical measure
of co-occurrence ε (see Section 2) (see the Methods section) for each month. As can be seen,
the top 18 and bottom 18 ranked factors are almost identical for the three different periods.

Table 1. Top 18 most niche-like and bottom 18 most anti-niche-like habitat factors for the ENM for
top 10% of municipalities with highest number of cases ranked by score in March 2020 and showing
the corresponding rank in June 2020 and January 2021.

Percentile Type Variable Rank
(March)

Rank
(June)

Rank
(January)

Top Mobility 10-Internal-labour-flow 25719:664418 1 1 1
Top Mobility 10-Labour-flow-inward 3279:508685 2 2 2
Top Mobility 10-Inward-centrality 0.026:0.347 3 3 5
Top Mobility 10-Inwards-municipalities-connected 64:849 4 4 6
Top Socio-Demographics 10-Inhabited private homes that have Internet 5 7 3

Top Socio-Demographics 10-Inhabited private homes that have a computer,
tablet or laptop 6 8 4

Top Mobility 10-Labour-flow-out 4954:287854 7 9 7
Top Socio-Demographics 10-Total-centrality 0.053:0.416 8 5 10
Top Socio-Demographics 10-Total municipalities-connected 130:1018 9 6 11

Top Socio-Demographics 10-Male population aged 18 and over with
post-basic education 10 11 9

Top Socio-Demographics 10-Population aged 18 and over with
post-basic education 11 10 8

Top Socio-Demographics 10-Inhabited private dwellings that have a
cell phone 12 12 12

Top Socio-Demographics 10-Female population aged 18 and over with
post-basic education 13 13 13

Top Socio-Demographics 01-Illiterate population aged 15 and over 14 15 16
Top Socio-Demographics 01-Illiterate male population aged 15 and over 15 17 19
Top Socio-Demographics 01-Population aged 15 and over without schooling 16 23 25
Top Socio-Demographics 10-Population from 15 to 64 years old 17 14 22

Top Socio-Demographics 10-Inhabited private dwellings that have
a television 18 18 14

Bottom Mobility 01-Total municipalities-connected 2:14 1773 1702 1699
Bottom Mobility 02-Labour-flow-inward 22:51 1774 1725 1726

Bottom Socio-Demographics 10-Population with limitation to walk, go up
or down 1775 1726 1727
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Table 1. Cont.

Percentile Type Variable Rank
(March)

Rank
(June)

Rank
(January)

Bottom Socio-Demographics 10-Population born in the entity 1776 1727 1728

Bottom Socio-Demographics 02-Inhabited private homes that have a
washing machine 1777 1728 1729

Bottom Socio-Demographics 01-Inhabited private dwellings that have drainage 1778 1754 1757

Bottom Socio-Demographics 10-Inhabited private dwellings that do not
have drainage 1779 1755 1758

Bottom Socio-Demographics 01-Inhabited private dwellings that have
a refrigerator 1780 1756 1759

Bottom Socio-Demographics 01-Population from 6 to 11 years old that does not
attend school 1781 1610 1587

Bottom Socio-Demographics 07-Population with limitation 1782 1773 1774
Bottom Mobility 03-Internal-labour-flow 698:1179 1783 1783 1783
Bottom Mobility 01-Internal-labour-flow 9:329 1784 1784 1784
Bottom Mobility 01-Labour-flow-out 1:20 1785 1785 1785
Bottom Mobility 01-Labour-flow-inward 1:21 1786 1786 1786
Bottom Mobility 01-Outwards-centrality 0:0.003 1787 1789 1787
Bottom Mobility 01-Outwards-municipalities-connected 1:7 1788 1790 1788
Bottom Mobility 01-Inward-centrality 0:0.002 1789 1667 1650
Bottom Mobility 01-Inwards-municipalities-connected 1:5 1790 1668 1651

In Figure 2 (bottom), we show the values of the score s(Xm
i (t)) (see Section 2) for the

10 deciles, m = [1, 10], of the habitat variable Xi =Internal labour flow of the municipality,
observing that the score contributions are highly conserved across the three time periods.
This niche conservation effect is shown in an even more striking fashion in Figure 3, where
we see the correlation between the ε(Xm

i (t)) values (left) and the score values, s(Xm
i (t)),

(right) for the ENM models for each individual habitat variable for the three different
periods. For instance, we observe that the ε(Xm

i (t)) values from March 2020 explain 96% of
the variance in the ε(Xm

i (t)) values for January 2021. As a further test of niche conservation,
we used an ENM trained on all of the cells in one month to predict a future month. In
Figure 1 (right), we see the ROC and AUC for the five models using different categories of
habitat variable (mobility, socio-demographic, air contamination, climate, and all) trained
on data from all spatial cells for the period March 2020 and tested on the periods June 2020
and January 2021. Similarly, we show the result of analogous models trained on the period
June 2020 and tested on the period January 2021.

In Figure 4 (left), we see the results for a purely spatial ENM/SDM model with
target class, corresponding to question ii), being those municipalities with the presence of
confirmed cases of COVID-19 for the months: March 2020, June 2020 and January 2021.
Performance is again based on a 70%/30% train/test split of the 2458 municipalities, with
Figure 4 (left) showing the corresponding ROC curves and the corresponding AUC for five
separate SDM/ENMs for each test set, with: socio-demographic/economic variables only,
mobility only, climate only, air contamination only, and all factors together, for each of the
three considered months. Again, the relative performance of each sub-model is clear, with
the same relative performance as for the previous models. However, we note that for the
overall performance of the mobility and socio-demographics of all models is less than their
counterparts in the case of top 10% of municipalities with most cases as class, while the
performance of the climate and air contamination models is similar.
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Figure 1. Left: Performance for five different SDMs for the class—top 10% of municipalities with
the highest number of cases—according to the habitat variable group considered (mobility, socio-
demographics, air, climate, and all) for three different months of the pandemic. Five different train-test
70%–30% splits were considered for each month; Right: Performance for five different SDMs for the
class—top 10% of municipalities with the highest number of cases—according to the habitat variable
group considered (mobility, socio-demographics, air, climate, and all) using a model trained on one
month and tested on a future month.

In Figure 5 (left), in analogy with Figure 3, we see the correlations between ε(Xm
i (t))

values for all habitat variables for the model for the presence of COVID-19 cases for two
different months, while in Figure 5 (right), we show the correlations between s(Xm

i (t))
values for all habitat variables for the same model. Note that the correlation between the
ε(Xm

i (t)) and s(Xm
i (t)) distributions in March 2020 and June 2020 and March 2020 and

January 2021 are now significantly smaller than their counterparts for the top 10% model.
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Figure 2. Top: Model scores for the 10 deciles (Decilei) of the habitat variable Internal labour flow
of the municipality for the model predicting presence of COVID-19 cases; Bottom: Model scores for
the 10 deciles (Decilei) of the habitat variable Internal labour flow of the municipality for the model
predicting the top 10% of municipalities with highest number of cases.
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Figure 3. Left: Correlations between ε(Xm
i (t)) values for all habitat variables for the model with class

top 10% of municipalities with highest number of cases for two different months; Right: Correlations
between s(Xm

i (t)) values for all habitat variables for the model with class—top 10% of municipalities
with highest number of cases—for two different months.
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Figure 4. Left: Performance for five different SDMs for the class—presence of COVID-19 cases in
the municipality—according to the habitat variable group considered (mobility, socio-demographics,
air, climate, and all) for three different months of the pandemic. Five different train-test 70%–30%
splits were considered for each month; Right: Performance for five different SDMs for the class
presence of COVID-19 cases in the municipality according to the habitat variable group considered
(mobility, socio-demographics, air, climate, and all) using a model trained on one month and tested
on a future month.

Furthermore, in Figure 2 (Top) we show the values of the score s(Xm
i (t)) for the

10 deciles, m = [1, 10], of the habitat variable Xi = Internal labour flow of the municipality
to compare and contrast the score contributions of this key niche variable as a function of
time. We observe that the relative contributions from each decile differ significantly when
compared to the results for The top 10% of municipalities with highest number of cases, as
shown in Figure 2 (Bottom).
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Figure 5. Left: Correlations between ε(Xm
i (t)) values for all habitat variables for the model for the

presence of COVID-19 cases for two different months; Right: Correlations between s(Xm
i (t)) values

for all habitat variables for the model for the presence of COVID-19 cases for two different months.

Turning now to the above ENMs at time t as predictors of the species distribution at t′,
in Figure 4 (Right), we see the results of a model trained on data from those municipalities
with confirmed cases in March 2020 and June 2020 to predict which municipalities would
have cases in June 2020 and January 2021 and January 2021, respectively. In this case, we
observe that the ENM for month t is less predictive for month t′ than the corresponding
model for identifying the top 10% of municipalities with the highest number of cases.

3.3. ENMs Can Be Used to Predict Numbers of Cases

As well as using S(C|X) as a pure classifier (see Section 2), to identify a particular
class, such as presence/absence, top 10% highest cases, etc., we can also use it to predict
the actual number of cases. To perform this, we regress the total score S(C|X) against the
number of cases on our training set and then apply it to the test set. An example is shown
in Figure 6, for the classification model with C = top 10% of municipalities with the highest
number of cases, where the training set is a randomly chosen 70% of spatial cells and the
test set the remaining 30%. All habitat variables were used. Figure 6 (left) shows the relation
between score and number of confirmed cases for our three example months—March 2020,
June 2020, and January 2021. First, municipalities were ranked according to their score,
then grouped into 10 deciles. An exponential function fit was used. Figure 6 (right) shows
the results of applying the model to the 30% out of sample test set, showing the relation
between predicted and actual abundances.
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Figure 6. Left—graphs of score from a model for predicting the top 10% of the highest number of
cases versus the number of confirmed cases of COVID-19 for the three months March 2020, June 2020,
and January 2021 using as training set 70% of spatial cells. An exponential function was used to fit
the relation score–number of cases. Right—graphs of number of predicted cases versus the number
of actual cases for the 30% hold out set for the same three months.

affirmative. We have explicitly created several ENMs and SDMs for COVID-19 that are
both predictive and contain habitat factors that are more causally plausible than climate,
for instance. In order to achieve this, we introduced several innovations compared to
standard niche and species distribution modelling. Firstly, we showed how to extend
niche and species distribution modelling to “non-equilibrium" situations, where both target
and niche variables are potentially time varying, as well as the relation between them.
Secondly, we created models with habitat variables that were represented by quite different
data types and associated spatial resolutions. Finally, we showed how causal relations
and confounding can be better understood by introducing a hierarchy of conditional
probabilities and the associated intuition that a more causally direct factor should have a
bigger effect than an indirect one.

We constructed ENMs as Niche Landscapes, P(C(t)|X(t)) - Bayesian posteriors which
serve as a height function on a Hutchinsonian ecological space with 2749 dimensions,
spanning air pollution, climate, mobility, socio-economic, and socio-demographic data.
Usually in ENM/SDMs, the target class, C, is a binary variable, such as presence/no
presence of a species. In Coro [5], the corresponding variable was “high" infection rate,
defined in a binary fashion with respect to a reference infection rate. We too, have used

Figure 6. Left—graphs of score from a model for predicting the top 10% of the highest number of
cases versus the number of confirmed cases of COVID-19 for the three months March 2020, June 2020,
and January 2021 using as training set 70% of spatial cells. An exponential function was used to fit
the relation score–number of cases. Right—graphs of number of predicted cases versus the number
of actual cases for the 30% hold out set for the same three months.

3.4. Causal Relationships Can Be Deduced

As an illustration of the formalism for disentangling causal relationships (see Section 2),
we consider the relative contributions of climatic factors, as represented by the WorldClim
variable Average annual temperature, and human mobility factors, as represented by Internal
labour flow of the municipality, to prediction of the top 10% of municipalities with the greatest
number of cases. The temperature variable is divided into 20 coarse-grained bins, while
the mobility variable is divided into 10 bins. In any spatial cell, α, we may then determine
if there is a presence or absence of a given coarse grained bin for either variable. Thus, in
Equation (4), we have Xm

i representing the 10 different bins of the mobility variable and
Xn

j representing the 20 bins of the temperature variable. As, for a given spatial cell, there
are four possibles states, corresponding to presence/absence of the two habitat variables,
Xm

i Xn
j can be represented by four 20× 10 matrices.
For each cell of each matrix, we calculate P(C|XiXj) and also ε(C|Xm

i Xn
j ), using as

null hypothesis P(C), as shown in Figure 7, with data from January 2021. Note that the
absence of a variable bin, Xm

i , corresponds to those cells where there is no presence of Xm
i .

However, there will be a presence of at least one other Xm′
i , for m′ 6= m. For example, in

the matrix Clim0_Mob0, the cell Tmp.p04 = 0, 08_Inter−Mob = 0 corresponds to those
cells that are not in the average annual temperature range corresponding to Tmp.p04 and
also not in the Internal labour flow range corresponding to 08_Inter−Mob. However, that
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set of cells could have presences of temperature ranges other than Tmp.p04 and mobility
ranges other than 08_Inter−Mob.

1.78 1.79 1.9 1.84 1.77 1.78 1.85 1.35 0.13 −10.4

1.3 1.31 1.43 1.29 1.29 1.22 1.34 0.84 −0.21 −9.08

0.22 0.27 0.37 0.35 0.36 0.32 0.35 −0.21 −1.1 −8.68

0.33 0.31 0.41 0.42 0.35 0.4 0.37 −0.08 −1.05 −8.63
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Figure 7. ε(C | Xm
i Xn

j ) and P(C | Xm
i Xn

j ) for each combination of habitat variable ranges
Xm

i = Average annual temperature and Xn
j = Internal labour flow of the municipality for the four combina-

tions Xm
i = 0, 1 and Xm

i = 0, 1 corresponding to absence/presence for each variable bin, respectively.

The fact that the climate variable is confounded by the mobility variable is mani-
fest in the matrix Clim1_Mob0, where there is a presence of a particular climate variable
bin and an absence of the corresponding mobility variable bin. For instance, the cell
Tmp.p04 = 1, 10_Inter−Mob = 0 in that matrix corresponds to those municipalities that
are not in the highest decile of mobility, but are in the fourth decile of average annual
temperature. ε(C|X4

i X10
j ) = −8.05 and P(C|X4

i X10
j ) ∼ 0 there, indicating that the proba-

bility of being in the top 10% of highest number of cases is very low. Indeed, we can see
that for any temperature range, for 10_Inter−Mob = 0, there is very little chance of the
corresponding municipalities being in the top 10%. On the contrary, for Clim0_Mob1, we
see that P(C|Xm

i X10
j ) ∼ 0.8 for any m, thus indicating that high mobility is very niche-like,

independently of the value of the temperature variable. Although for Clim1_Mob0 the
range Tmp.p04 can give rise to statistically significant ε(C|X4

i Xn
j ) values for m 6= 10, by

examining the case Clim1_Mob1, we see that the ε(C|X4
i Xn

j ) values for n 6= 9, 10 are all
negative and statistically significant. Thus, climate may appear to be niche-like but, in
fact, is confounded by mobility, and now we can intuit why a climate model can create
predictability even though climate is not predictive in and of itself.

A model based on climate only is equivalent to the combination Xm
i = 1, Xn

j = ∗,
where ∗ denotes that we have marginalized over this value. For instance, P(C|Xm

i ) =
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∑Xn
j =0, 1 P(C|Xm

i Xn
j ) = P(C|Xm

i Xn
j = 0) + P(C | Xm

i Xn
j = 1). Although, P(C|Xm

i Xn
j =

0) ∼ 0 for n 6= 9, 10, P(C|Xm
i X10

j = 1) ∼ 0.6− 0.8 for any m. Thus, the primary reason
why the climate model has some degree of predictability is that those places of highest
mobility have a climate “profile”, i.e., they are not equally distributed across all average
annual temperature ranges. It is not, however, the climate that is causal. Another way
to see this is shown in Figure 8, where we show the marginal probabilities P(C|Xm

i ) and
P(C|Xn

j ), which would correspond to the results associated with an ENM based only on
the climate variable Average annual temperature or on the human mobility variable Internal
labour flow of the municipality, respectively.

We can note that, although the degree of predictability in the climate-only model
is weak, there is a variation, with ε(C|Xm

i = 1) ranging from 0.9 to −2.9. However, the
origin of the most niche-like value of 0.9 is associated with the residual predictability from
decile 10 of the mobility variable.
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Figure 8. ε(C | Xm
i = 1), ε(C | Xn

j = 1), P(C | Xm
i = 1) and P(C | Xn

j = 1) for each value of
the habitat variable ranges Xm

i = Average annual temperature and Xn
j = Internal labour flow of the

municipality corresponding to a “climate-only” model and a “mobility-only” model.

4. Discussion

Our goal in this article was to demonstrate that the questions: “Does a respiratory
virus have an ecological niche, and if so, can it be mapped?” can be answered in the
affirmative. We have explicitly created several ENMs and SDMs for COVID-19 that are
both predictive and contain habitat factors that are more causally plausible than climate,
for instance. In order to achieve this, we introduced several innovations compared to
standard niche and species distribution modelling. Firstly, we showed how to extend niche
and species distribution modelling to “non-equilibrium” situations, where both target
and niche variables are potentially time varying, as well as the relation between them.
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Secondly, we created models with habitat variables that were represented by quite different
data types and associated spatial resolutions. Finally, we showed how causal relations
and confounding can be better understood by introducing a hierarchy of conditional
probabilities and the associated intuition that a more causally direct factor should have a
bigger effect than an indirect one.

We constructed ENMs as Niche Landscapes, P(C(t)|X(t)) - Bayesian posteriors which
serve as a height function on a Hutchinsonian ecological space with 2749 dimensions,
spanning air pollution, climate, mobility, socio-economic, and socio-demographic data.
Usually in ENM/SDMs, the target class, C, is a binary variable, such as presence/no
presence of a species. In Coro [5], the corresponding variable was “high” infection rate,
defined in a binary fashion with respect to a reference infection rate. We too, have used
binary class variables, by choosing a particular subgroup of spatial cells, corresponding to
presence/absence of confirmed cases, or if a spatial cell was in the top 10% of highest total
infections (In the EpI-PUMA system, publicly available in a Platform-as-a-Service environ-
ment (http://covid19.c3.unam.mx, accessed on 5 April 2021), 72 different SDM/ENMs are
available that use the methodology described in this paper.). However, the binary nature of
the target variable is a choice rather than a restriction. For instance, taking infection rate
as a continuous variable, this can be divided into as many quantiles as we please, say nc.
The target variable now consists of nc “presence/absence” variables, each with its own
ENM/SDM, P(Ci|X), i ∈ [1, nc]. Even in the case of a binary decomposition of a continuous
variable; however, the metric nature of the variable leaves an imprint on P(C|S(C|X)), such
that higher score, as a continuous metric variable, corresponds to higher infection rate or
number of cases, as we have demonstrated, leading to a model that can predict abundances.

In criticising ENM/SDMs as a useful tool for the COVID-19 pandemic, or any other,
it is important to distinguish between applicability of ENM/SDMs in general versus a
particular instance of an ENM/SDM. It is appropriate to criticise a model that includes
climate, and which has been used to infer a corresponding causal effect on the pandemic,
without any analysis of possible confounders. This does not mean, however, that with
appropriate habitat variables and a methodology for disentangling confounding, that
useful ENM/SDMs cannot be constructed, as we have shown here. Our results clearly
show that models for predicting where the highest number of cases will be, that are built
on mobility, socio-demographic and socio-economic data, are much more predictive than
models built on climate and/or air contamination, as can be seen in the results of Figure 1,
and that this has been true throughout the pandemic. As seen in Table 1, the most important
niche/anti-niche factors for this target are all associated with the highest/lowest levels
of mobility, as proxied by inter- and intra-municipal labour flows, and a particular socio-
economic profile. The fact that a climate model can exhibit some degree of predictability
does not mean that climate is the direct driver. On the contrary, we can ask if any apparent
predictability due to climate factors is confounded by human-based factors. As we have
shown in Figures 7 and 8, this is indeed the case. Just the distribution of the habitat variable
scores themselves tells us that if there is confounding then it is the human factors that
confound climate and not vice versa, as a confounder should be causally closer to its
effect than the confounded variable and therefore have a higher score, as is implicit in the
Bradford–Hill criteria.

With respect to the socio-demographic and socio-economic factors, we see that they
have a similar predictive power to the mobility factors and reflect the socio-demographic
and socio-economic conditions where COVID-19 cases are highest. For instance, the habitat
variables % of households that have a computer and % of households that have internet access
are both significant niche factors, as are other factors that correspond to a more educated
population with higher economic status. Of course, the interpretation of these factors is
not as intuitive as mobility and we certainly do not wish to attribute direct causality to
them. However, there are a variety of relevant factors for COVID-19 that can be related to
internet access and computer usage for example, such as age, educational status, population
density [56], as urban areas have better infrastructure, and mobility itself [57,58]. As with

http://covid19.c3.unam.mx
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any epidemiological or ecological model, the interpretation of the predictors as representing
direct versus indirect interactions is highly non-trivial. The formalism we have introduced
for disentangling confounding can help in this regard.

The places where COVID-19 is in highest abundance represent one particular charac-
terisation of the spatio-temporal distribution of the COVID-19 “species” and its associated
ecological niche. Where it is present and where it will be in the future compared to where
it is now are two others. Hutchinson [7,59] defined niche as that region of ecological
space where the net growth rate of the species is r ≥ 0 at low density. For a pathogen
that is not capable of free movement and is dependent on a host, there are two natural
growth rates: one associated with the pathogenic load within a host and another that is
measured by the number of infected hosts. Obviously, in this paper we are concerned
with the latter, where the growth rate is characterised by the basic reproduction rate, R0,
or the effective reproduction rate, Rt [60]. If we defined niche for COVID-19 through an
analogue of r ≥ 0, such as Rt > 1, we would clearly be in a situation where we were
passing from “niche” to “anti-niche” (Rt > 1 → Rt < 1) and vice versa, continuously in
space and time due to a multitude of factors, including public health interventions, such as
lockdowns and vaccinations, as well as resistance to vaccinations, new variants, and a host
of others. That these factors alter the ecological conditions in a certain place at a certain
time is undeniable. However, to keep track of such changes and how they impinge on how
niche-like conditions are in a certain spatio-temporal cell, (α, t), requires the corresponding
data. Here, we have preferred to use characteristics of the pathogen distribution that are
easier to measure—number or presence of cases—but with which we can characterise the
concept of niche, and a set of habitat variables that go beyond those previously considered.
We take highest case abundance to distinguish those conditions in ecological space, and in
geographical space and time, that favour higher abundance of the pathogen, as proxied
by abundance of cases. This is a relative measure, as it may be that a municipality, α, has
Rt(α) < 1 but such that it is higher than any other.

Holt [61] has suggested that besides an “Establishment Niche”, that corresponds to
the original Hutchinsonian niche, a “Population Persistence Niche”, associated with the
range of niche space in which populations above some threshold density, N > 0, can
persist, is a complementary notion. We take where COVID-19 is in highest abundance to
be closer to this Population Persistence Niche, whereas where it is present is closer to the
original Hutchinsonian characterisation and, especially, as it is portrayed in the majority
of ENM/SDMs [37], where presence/absence is used to characterise both. On the other
hand, where it is now versus in the past corresponds to neither, but is taken to reflect the
potential range expansion/contraction of the species. We believe that these examples, and
more, show that there are multiple characteristics of a species distribution that can and
should be modelled and can be used to characterise complementary notions of niche.

The methods we have exhibited and the corresponding examples also allow us to
understand to what degree a niche is conserved. In the case of species abundance, we
saw that the niche associated with those places where the relative number of COVID-
19 cases was highest was highly conserved, with very little difference across the entire
pandemic. Moreover, we showed how this conservatism could be quantified using our
statistical diagnostic ε(C | Xm

i ) and the score functions, s(Xm
i (t)), associated with the

habitat variables Xm
i , with the time dependence of the associated score function reflecting

the relationship between target and habitat variables. For example, if s(Xm
i (t)) is strongly

positive at one time, t, and not another, t′, then we may say that the variable Xm
i is niche-like

with respect to C at time t, but not at t′. Niche conservatism with respect to Xm
i is then

quantified by s(Xm
i (t)) ∼ s(Xm

i (t′)). This niche conservatism is also manifest in that an
ENM created at time t provides a SDM that is just as predictive at a later time t′ as at t. Thus,
from a Hutchinsonian perspective, the relation P(C(t) | X) may be conserved in ecological
space, even though the spatial distribution of C(α, t) and/or X(α, t) could change in time.

In the case of presence/absence as target class, the corresponding realised niche is
not conserved, in that s(Xm

i (t)) 6= s(Xm
i (t′)). This is seen in Figure 5, when compared
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to Figure 3, where the regression slopes for the March 2020–June 2020 and March 2020–
January 2021 comparisons have lower R2 values and also slopes < 1, indicating that the
scores in January or June are only about 60% of their values in March. The R2 values and
slopes for the ε comparisons in the same figures show the same effect. These differences
just reflect the range expansion of COVID-19, where it has been argued that: “there is no
unsuitable habitat” for COVID-19 [2]. This is linked, however, to the notion of presence, not
to abundance. The fact that the score and ε contributions are diminishing in the presence
model from March 2020 to June 2020 and January 2021 is due to the fact that the habitat
variables are less able to discriminate between those cells where cases are present versus
absent. The differences between June 2020 and January 2021 are much less as, by this time,
a large majority of municipalities now had confirmed cases. We can also see this niche
non-conservation in Figure 3 (top), using as an example the variable Internal labour flow
of the municipality. We see that in March 2020 only the first three deciles of municipalities
ranked by that score are associated with a positive score—niche-like—whereas in June 2020
and January 2021 60% have positive scores. Similarly, we see that in the most anti-niche-like
deciles, Decile_02 and Decile_01, the scores are becoming less negative, indicating that
those municipalities with the lowest internal labour flows are becoming less anti-niche-
like. If the pandemic had a presence in every municipality, then every s(Xm

i (t)) → ∞,
corresponding to the fact that there can be no discrimination between where the species
is present and where it is absent. Everywhere is niche-like. This would not be the case,
however, for abundance, as is seen in Figure 3 (bottom), where the change is due to the
fact that our relative abundance measure is associated with the top 10% of municipalities
with the highest number of cases. The range expansion of COVID-19 presence also has an
impact on the performance of the corresponding SDMs, as seen in Figure 4, where we see
that for the all, socio-demographic, and mobility models, the corresponding AUC for the
presence/absence spatial models is much less than their abundance counterparts.

We have also shown how a classification-based ENM can be used to predict abun-
dances, with an example being the number of confirmed cases of COVID-19 for a given
month. We see that the score based on all habitat variables explains approximately 90% of
the variance. We believe that the ENM/SDM formalism we have developed here has the
capacity to be truly epi-ecological/eco-epidemiological given the right habitat variables.
The static habitat variables we have chosen cannot account for the dynamic expansion
and contraction that is characteristic of epidemics and which naturally emerges from a
mechanistic SIR-type modelling formalism. What is required are habitat variables that
are the analogue of what enters into a differential equations type modelling environment:
changes in abundances from one time period to another, for example, or even changes in
those changes, as it it these variables that account for the underlying dynamics. Indeed,
an ENM built on a given time slice that does not explicitly account for such variables will
either underestimate or overestimate abundances, depending on whether the epidemic is
in an expansion or contraction phase. We will return to this in a future publication.

We have also shown how it is possible to distinguish confounding and how this
can be used as a tool to disentangle causality. As a test case we considered combining
a behavioural/socio-economic/socio-demographic variable—Internal labour flow of the
municipality—and a climatic variable, showing how climate as an apparently predictive
habitat variable is confounded by the more predictive socio-economic and mobility factors.

An apparent limitation of our work is that we have worked at a quite coarse-grained
level, that of municipalities. This is a limitation of the data used, however, not the methodol-
ogy. In principle, a much finer spatial resolution, at the level of “census blocks”, for instance,
could be used if data were available at that resolution for the target class and habitat. In
the same vein, dynamical data that represented both changes in the local environment,
such as lockdowns and hospital occupation rates, or changes in behaviour, such as mask
wearing compliance, cell phone data as a proxy for short-term mobility, or vaccination rates,
or a host of other factors could also be included. It would be interesting for example to
determine to what extent adaptations in the pathogen were potentially reflected as changes
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in its niche. There is also the question of the validity of the target class data as maintaining
accurate counts of confirmed cases is difficult. However, this would have little to no impact
on the overall conclusions of our ENM/SDMs.

In summary, the five principal advantages of our methodology relative to standard
ENM/SDMs are: (i) First and foremost, our methodology can account for the highly multi-
factorial nature of COVID-19 as a complex adaptive system, where there are many directly
or indirectly causal factors that affect both its spread and its magnitude; (ii) It is Bayesian
in nature and therefore has the advantage of being adaptive, where the incorporation of
new information can be achieved naturally using Bayes theorem, which, in addition, also
allows for the incorporation of human expertise by means of Bayesian priors, as well as the
addition of data-based evidence; (iii) By considering the incorporation of new information
in time, any time variation in the relation between a target class C and its corresponding
niche variables, X can be tracked to determine how conserved the niche is; (iv) It permits a
more profound analysis of causality and confounding through the consideration of a hier-
archy of conditional probabilities; (v) It naturally permits the construction of niche models
associated with different notions of niche – presence/absence, abundance, etc.—as these are
simply representable as distinct classes of interest, C. The models we have presented can
predict ”absolutes”, such as the number of cases in a given municipality, transversally, i.e.,
on the same time slice. Additionally, they can predict “relatives”, such as the relative num-
ber of cases in a given municipality longitudinally. We have shown that the corresponding
models are accurate, with a high degree of correlation between predictions and actual
numbers. Furthermore, that accuracy is intimately related to the incorporation of relevant
niche variables such as mobility, socio-economic, and socio-demographic factors. Our goal
here was not to offer a gold-standard model for prediction of the pandemic. As mentioned,
there are more predictive and directly causal factors than we have included here. However,
the niche of COVID-19 is immensely complex and adaptive and the incorporation of the
vast array of relevant factors that determine it is a huge challenge in data collection and
integration. What we have shown is that if that data can be represented in space and time,
X(α, t), then it may be incorporated into an ENM/SDM using the methodology we have
shown here. Moreover, the innovations we have shown are independent of the specific use
case of COVID-19 considered here. They represent general extensions of current niche and
species distribution modelling, and can be applied to any ecological system, where they
are necessary. In particular, they can be applied to situations where the target and/or niche
variables are changing in time. Aside from disease dynamics, invasive species, habitat,
and biodiversity loss are other prime areas where time dependence is crucial and where
our approach can be used. Moreover, we believe that taken in its fullest sense, where a
niche/anti-niche represents the complete set of both biotic and abiotic drivers that favour
where a “species” is or is not, or at least should be, a universally applicable concept, with
the SDM determining the “where” and the ENM the corresponding “why”. Indeed, its
applicability is only restricted in an ecological setting by just what we mean by “ecological”.
If we take ecology to cover any interaction between biota and the environment then we
should accept factors as mask-wearing compliance as a potential niche factor for exam-
ple. Furthermore, when thinking of a “Species” distribution model, we may encouraged
to be liberal in our notion of “species”, where it may represent, for instance, cases of
non-transmissable diseases, such as diabetes or heart disease.

In conclusion, there is a difference between stating that ENM/SDMs generally are
inappropriate vehicles for modelling a dynamic phenomenon such as the COVID-19 pan-
demic versus stating that a particular ENM/SDM is inappropriate. We have shown that
ENM/SDMs can be generated which overcome such criticisms.
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