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Abstract: Helicobacter pylori infects approximately 50% of the world’s population and is considered
the major etiological agent of severe gastric diseases, such as peptic ulcers and gastric carcinoma.
Increasing resistance to standard antibiotics has now led to an ever-decreasing efficacy of eradication
therapies and the development of novel and improved regimens for treatment is urgently required.
Substantial progress has been made over the past few years in the identification of molecular mecha-
nisms which are conducive to resistant phenotypes as well as for efficient strategies to counteract
strain resistance and to avoid the use of ineffective antibiotics. These involve molecular testing meth-
ods, improved salvage therapies, and the discovery of novel and potent antimicrobial compounds.
High rates of prevalence and gastric cancer are currently observed in Asian countries, including
Japan, China, Korea, and Taiwan, where concomitantly intensive research efforts were initiated to
explore advanced eradication regimens aimed at reducing the risk of gastric cancer. In this review, we
present an overview of the known molecular mechanisms of antibiotic resistance and discuss recent
intervention strategies for H. pylori diseases, with a view of the research progress in Asian countries.

Keywords: Helicobacter pylori; antibiotic resistance; salvage therapy; drug development

1. Introduction

Since its initial discovery, H. pylori became the most intensively characterized mi-
crobial pathogen, mainly because of the unique infection site, the link to severe gastric
diseases, and the extraordinary overall prevalence rate, as it is estimated to affect 50% of the
world’s population [1]. H. pylori, a gram-negative, microaerophilic, and extremophile mi-
croorganism, causes serious gastric disorders, such as gastric atrophy, peptic ulcer disease
(PUD), gastric adenocarcinoma, and gastric cell lymphoma (mucosa-associated lymphoid
tissue, MALT), which renders H. pylori the only bacterial pathogen which is classified as a
class I carcinogen [2,3]. H. pylori possesses a wide array of virulence factors that assist in
establishing a continuous infection and ascertain bacterial survival under acidic conditions
in the stomach [4]. As infected individuals can remain symptomless over long periods,
prevalence rates are most likely underdiagnosed—in particular, in developing countries
with relatively poor public health infrastructure [5]. It is noteworthy that, albeit infection
rates are seemingly extremely high, only a small fraction (less than 1%) of infected indi-
viduals develop severe gastric complications. Nevertheless, the high incidence of H. pylori
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infections suggests an increasing burden on public health care, especially in developing
countries where infections during early childhood appear to occur more frequently than in
developed countries [6]. In South-East Asian countries, gastric cancer is often diagnosed in
the advanced stages of the disease with a poor prognosis for 5-year survival [7]. Consider-
able differences in H. pylori prevalence are observed for different regions of the world, and
the large variations in prevalence have been attributed to dietary behavior, water quality,
and socioeconomic conditions [8].

Given the fact that H. pylori represents the primary risk factor for gastric can-
cer (GC) and the cause of cancer-related death, immense resources are currently ded-
icated to the treatment and eradication of H. pylori infections. For decades, a triple
therapy—consisting of a proton-pump inhibitor (PPI: omeprazole, pantoprazole) and
2 antibiotics (usually clarithromycin combined with either metronidazole, a synthetic
nitroimidazole, or ampicillin)—served as first-line therapy [9]. As resistance rates to clar-
ithromycin and metronidazole increased to unacceptable levels, clarithromycin-resistant
H. pylori was included by the WHO, in 2017, in the list of high-priority, antibiotic-resistant
bacteria (Figure 1) [10]. The triple therapy is now progressively being replaced in areas of
high clarithromycin resistance rates by a bismuth-containing, “three-in-one”, quadruple
therapy (BQT) [11,12].
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Figure 1. WHO global priority list of antibiotic-resistant bacteria to guide research, discovery, and
development of new antibiotics, adapted with permission from WHO [13]. Helicobacter pylori is listed
as a high-priority organism.

The excessive use of antibiotics for the chemotherapy of H. pylori infections has
inevitably created a situation in which resistance development exceeded alarming levels
and extensively compromised the usefulness of these antibiotics for the eradication of
H. pylori. The declined efficacy has now incited intensive efforts for the discovery not only
of novel antimicrobial compounds but also for the development of innovative regimens for
treatment [14]. Despite rapid economic growth over the past decades, countries in Asia
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still face a deteriorating situation of H. pylori infections [15]. On the other hand, there has
been tremendous progress made in this region with research efforts aimed at better control
of H. pylori-related diseases that have resulted in an impressive and ever-increasing number
of publications.

This review aims to present a condensed view of current progress in the field from
an Asian perspective with a view of resistance mechanisms and strategies to surmount
them. For a comprehensive overview, the reader is directed to several excellent reviews
summarizing key aspects and current challenges of H. pylori antimicrobial therapy [16]. We
apologize to authors whose work we have failed to cite owing to space constraints.

2. Epidemiology

Eradication strategies for H. pylori infections are currently being massively challenged
by increasing antibiotic resistance, which can ultimately result in treatment failure and
unclear therapeutic outcomes [16]. Strains of H. pylori can exhibit considerable resistance
to the most widely used antimicrobial drugs: clarithromycin, levofloxacin, metronidazole,
amoxicillin, and tetracycline (Figure 2). The antibiotic resistance of H. pylori is commonly
assessed using the epsilometer test (E-test), a commercially available, culture-based method
using a predefined gradient of antibiotic concentrations on a plastic strip to determine the
minimum inhibitory concentration (MIC) of antibiotics [17]. The European Committee on
Antimicrobial Susceptibility Testing (EUCAST) has issued a recommendation to consider
MIC values > 0.5 mg/L for clarithromycin and >8 mg/L for metronidazole as indicators of
H. pylori strain resistance [18]. However, it should be noted that MICs for resistant strains
can display considerable variations between 0.5 to 256 mg/L for clarithromycin and 0.8
to 8 mg/L for metronidazole [19]. Marked geographic differences are also observed for
resistance rates to specific antibiotics. While in Brazil and Germany, resistance rates to
clarithromycin were 28.7% and 23.2%, respectively, they were only 7.3% in Iran and 0% in
Malaysia [18]. Earlier data for H. pylori antibiotic resistance and resistance trends over a
6-year period of surveillance can be found in Ghotaslou et al. [20].
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Figure 2. Structural formulas of the antibiotics used most frequently for the treatment of H. pylori infec-
tions. Amoxicillin, clarithromycin, levofloxacin, metronidazole, and tetracycline are shown. Their use
has resulted in the rise of resistant strains, rendering therapeutic approaches increasingly problematic.

A survey among 9 ASEAN countries (Thailand, Cambodia, Indonesia, Laos, Malaysia,
Myanmar, Philippines, Singapore, and Vietnam) was conducted to evaluate the prevalence
of infection and resistance rates against metronidazole, amoxicillin, and clarithromycin [21].
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H. pylori prevalence can vary considerably, ranging from 20% in Malaysia, 21–54% in Thai-
land, and 69% in Myanmar, while resistance to clarithromycin was highest in Cambodia
(43%) and lowest in the Philippines (2%) and Myanmar (0%); however, data for the latter
may reflect inadequate surveillance of resistance due to poor public health infrastructures.
It is further mentioned that, at the time of the survey in Laos and Cambodia, culture-based
methods for susceptibility testing were not available. Resistance to metronidazole is rela-
tively common, whereas resistance to amoxicillin was found to be rare. The wide range of
resistance rates between the different countries has urged the need for susceptibility testing
prior to treatment. Current prevalence and antibiotic resistance patterns were analyzed in a
4-year retrospective study conducted from 2013 to 2017 at King Chulalongkorn Memorial
Hospital in Thailand [22]. Overall, 92.61% of 1258 patients responded to initial treatment,
while the remaining 95 patients responded to second-line treatment with higher doses or
different antibiotics. H. pylori strains with resistance to ciprofloxacin, metronidazole, and
clarithromycin were observed at rates of 21.43, 14.29, and 10.71%, respectively, whereas
no strains resistant to amoxicillin, tetracycline, or levofloxacin were found. An interest-
ing observation by the authors even suggested declining resistance rates for amoxicillin,
metronidazole, levofloxacin, and tetracycline.

3. Molecular Mechanisms of Antibiotic Resistance

Mutational changes leading to genetically modified drug targets appear to represent
the most common type of resistance mechanism. Nevertheless, it appears that mutations
affecting membrane permeability, biofilm development, and efflux pump systems are
becoming more and more significant for the manifestation of drug-resistant genotypes [23].

Amoxicillin has been used as a standard drug for the treatment of H. pylori infections
for decades and was initially considered “resistance-resistant” since very few examples
of strain resistance had been discovered by then [24]. Later, it turned out that high rates
of resistance (49.5 to 72.7%) to amoxicillin can frequently arise, in particular, as a result of
unsuccessful eradication attempts [25]. Resistance to amoxicillin occurs predominantly
through mutations in the PBP gene and changes in membrane permeability. Primary
resistance rates for amoxicillin (3 to 5%) are relatively small, and they are considerably
lower than those for metronidazole and clarithromycin [26]. Nevertheless, resistance to
amoxicillin was identified as an independent risk factor for treatment failure of the standard
triple therapy at different breakpoints. Resistance rates were estimated to be approximately
11% at a breakpoint MIC > 0.125 mg /L [26]. It was speculated that increased rates of
amoxicillin resistance correlate with the unregulated use of the antibiotic in Asia and
Southern America, where amoxicillin is available without prescription [20].

H. pylori strains resistant to clarithromycin, an inhibitor of bacterial protein biosyn-
thesis, usually carry point mutations in the 23S rRNA of the 50S ribosomal subunit.
A recent study conducted at Peking University has identified genetic determinants of
antibiotic resistance against clarithromycin and levofloxacin through high-throughput
nucleotide sequencing [27]. Mutation sites related to clarithromycin were identified as
peptidyl transferase in the V domain of 23S rRNA, while gyrA, a member of the DNA
topoisomerase type II family, was related to levofloxacin resistance. The most com-
mon mutant sites in clarithromycin-resistant gene sequences were A2143G and A2142G.
The most frequent levofloxacin resistance mutations were N87K, D91N, and D91G. A
fraction (13.5%) of the investigated isolates had double resistance mutations for both
clarithromycin and levofloxacin.

Aside from the A2142G and A2143G mutations, a study recently performed in Sudan
revealed the existence of a T2182C mutation within the V domain of the 23S rRNA gene [28].
The authors did not observe any associations of 23S rRNA point mutations with gender,
age group, or patients’ geographical location. However, the number of sequenced samples
(25) was relatively small. The screening of 169 patients positive for chronic gastritis in
Vietnam, using PCR-RFLP, found the A2143G mutation in 36.1% of samples and the A2142G
mutation in 3.6%; however, it failed to detect the A2142C mutation [29].
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A novel levofloxacin-resistance mutation in gyrA, consisting of the insertion of five
amino acid residues (QDNSV) immediately after the start codon, and a substitution muta-
tion at R295H were identified through the whole-genome level sequencing of 38 clinical
isolates from patients in Karnataka, India who had been diagnosed with gastritis, peptic
ulcer disease, or intestinal metaplasia [30]. The authors concluded that, in light of these
results, even moderate resistance to metronidazole and levofloxacin could lead to treatment
failure; therefore, they have proposed a triple therapy utilizing amoxicillin, tetracycline,
and PPI as an alternative first-line treatment regime. Double mutations (N87T, D91N) and
single mutations (N87I and N87T) were identified in the gyrA gene of isolates obtained
from the gastroesophageal mucosa, whereby the N87I mutation produced high resistance
to levofloxacin at a MIC ≥ 32 µg/mL [31]. Mutations in the gyrB gene seem to occur rarely,
and the mutation S479G and at position 463 were recently identified [31,32].

An important mechanism of H. pylori drug resistance is the reduction of drug influx by
structural modifications of the lipopolysaccharide (LPS) membrane component. The recently
described rfaF gene (previously waaF) functions as heptose transferase in the LPS core biosyn-
thesis pathway, whereby mutations are conducive to the “deep coarse lipopolysaccharide”
phenotype, which decreases the drug-permeability of the cell membrane [33]. This pheno-
type produces strains that are cross-resistant to amoxicillin, tetracycline, and clarithromycin,
whereas only marginal resistance to chloramphenicol was associated with this phenotype [34].
It was observed that the rfaF gene of drug-resistant clinical strains displayed high mutation
rates, with the K331R mutation being the most frequent (44.44%), a finding which makes the
rfaA-encoded enzyme a promising candidate for evaluation as a potential drug target.

Upregulated efflux pump activity, owing to an increased expression of tolC homol-
ogous genes (hefA), was characterized using real-time PCR with clarithromycin- and
metronidazole-resistant strains isolated from patients with gastroduodenal disorders in
Iran [35]. A small portion (9.5%) of the investigated strains were multidrug-resistant
H. pylori (MDR) strains with resistance against metronidazole and clarithromycin. A se-
quence analysis of the rdxA and frxA genes of the metronidazole-resistant strains and the
23S rRNA for the clarithromycin-resistant strains was performed to determine the genetic
modifications leading to drug resistance. The most frequently occurring mutations were
within the rdxA gene (85.5%) and the A2143G point mutation in the 23S rRNA (63.1%).
Both mutations were also present in the MDR strains. The rdxA gene encodes an oxygen-
insensitive, NADPH-dependent nitroreductase, which was associated with metronidazole
resistance in earlier reports [36]. It was proposed that mutational inactivation of rdxA and
other reductase-encoding genes, such as frxA (encoding a NAD(P)H-flavin oxidoreductase)
and fdxB (ferredoxin-like protein), would be favorable to the formation of the resistant
phenotype [37]. H. pylori strains resistant to metronidazole and levofloxacin, analyzed using
whole-genome sequencing, were shown to express non-functional or altered RdxA and/or
FrxA proteins resulting from nonsense or frameshift mutations in the coding sequences
and containing partial gene deletions [30]. However, the function of the rdxA gene product,
as well as the related frxA gene, is still subject to debate. Allelic replacement of wild-type
rdxA with truncated rdxA resulted in metronidazole resistance, whereas replacement with
missense-mutated rdxA did not result in detectable resistance [38]. It was suggested that
resistance to metronidazole can arise in H. pylori without mutations in rdxA or frxA, thus
supporting the notion that other genetic elements are likely involved in metronidazole
resistance, a finding corroborated by a recent report demonstrating that metronidazole-
resistant strains can carry intact genes for both oxidoreductases [30]. It is noteworthy that,
mainly because of the accelerating resistance development attributed to high prescription
rates, fluoroquinolones are now infrequently used as first-line treatment drugs for H. pylori
infections; however, they still may have some effectiveness as second-line drugs [39].

Several observations in the literature suggest a relationship between specific geno-
types for virulence factors and the degree of gastroduodenal diseases [40]. The absence
of the cagA genotype was proposed to be linked to the development of metronidazole
resistance [41]. VacA is an important virulence factor with pleiotropic effects involved in
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gastric mucosa colonization and disease progression [42]. The vacA gene encodes several
polymorphic regions (s, m, i), and clarithromycin resistance was significantly linked to
the vacA i-allele, whereby the clarithromycin-resistance mutation, A2142G, was 3-fold
more frequent in vacA i1 strains than vacA i2 strains [43]. Resistance to clarithromycin,
metronidazole, and amoxicillin was found to be increased in strains harboring cagE and
vacA s1a/m2 genotypes [44]. Wang et al. have attempted to correlate resistance to the five
most commonly used antibiotics (metronidazole, levofloxacin, clarithromycin, amoxicillin,
and tetracycline) to the presence of genes encoding virulence factors. Clarithromycin
resistance was associated with iceA, while resistance to metronidazole was related to vacA;
levofloxacin resistance was concerned with cagA and slyD, and amoxicillin resistance was
associated with iceA [45].

4. Rescue Therapy

Eradication confirmation 4–6 weeks post-treatment is commonly used to assess the
success of the therapeutic efforts. Failure of initial treatment can occur in up to 20% of
patients, and while patient-specific factors may play a role to some extent, major compli-
cations and, in particular, re-infection can arise due to poor medication compliance [46].
For this situation, salvage therapies have been developed that renounce the use of first-line
antibiotics, especially clarithromycin and metronidazole. Instead, bismuth quadruple ther-
apy (BQT) using a PPI, bismuth subcitrate or subsalicylate, amoxicillin, and tetracycline or
levofloxacin triple therapy (PPI, levofloxacin, and amoxicillin) are frequently considered as
alternative treatment options. Regional antibiotic resistance profiles can be analyzed using
molecular susceptibility testing, which improves treatment success rates.

Rifabutin-based triple therapy has recently emerged as a promising alternative to
conventional treatment with clarithromycin and metronidazole [47]. H. pylori is highly
susceptible to rifabutin, a derivative of rifamycin and an inhibitor of the prokaryotic
RNA polymerase. Marketed under the brand name ‘Talicia’, the therapy consists of two
antibiotics, amoxicillin and rifabutin, and the PPI omeprazole. In patients with confirmed
adherence to treatment, eradication rates can be as high as 90%, and reported resistance
development has been minimal when compared to standard drugs [48,49].

A therapeutic regimen designated as LOAD (levofloxacin, omeprazole, Alinia, and
doxycycline) has gained some attention as a second-line therapy, especially in cases of BQT
failure [50]. Alinia is the brand name for nitazoxanide, which was originally discovered as a
broad-spectrum antiparasitic drug. However, the antimicrobial activity spectrum resembles
that of metronidazole, making this drug a potential alternative to metronidazole in H. pylori
eradication regimens [51]. Three enzymes, including a pyruvate oxidoreductase, were
identified as mediators of susceptibility to nitazoxanide in H. pylori strains [52]. Notably,
no clinically significant levels of resistance were observed during clinical studies or during
long-term in vitro exposure of H. pylori strains to the drug [53].

A modification of the quadruple therapy, comprised of furazolidone, amoxicillin,
bismuth, and a PPI, was recently explored in a clinical setting [54]. Furazolidone is a
monoamine oxidase inhibitor and nitrofurantoin-type antibiotic commonly used in Asia.
The furazolidone-based therapy demonstrated high eradication rates, exceeding 90%, and
was found to be suitable as a first-line treatment for H. pylori infection in areas with a high
prevalence of clarithromycin resistance. The clinical usefulness of this therapy was further
supported by the fact that adverse effects were mild and occurred at a low incidence.

While not an antibiotic by itself, the antisecretory drug vonoprazan (Takecab) a
potassium-competitive acid blocker (P-CAP), has emerged as an acid-suppressing agent
with a much higher (~350-fold) potency than standard PPIs [55]. Unlike conventional
PPIs, vonoprazan is a reversible H+-K+ ATPase inhibitor. Eradication rates >90% were
observed in a study of patients receiving triple therapy with vonoprazan, amoxicillin, and
clarithromycin or metronidazole [56]. It is, therefore, conceivable that vonoprazan could
contribute to conquering the increasing prevalence of antibiotic resistance associated with
treatment regimens including conventional PPIs for the eradication of H. pylori infections.
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5. Antimicrobial Susceptibility Testing

The identification of mutations conducive to resistance genotypes using clinical biopsy
specimens would ideally represent a strategy for clinicians to find and adjust efficient treat-
ment options. Antimicrobial susceptibility testing allows for the identification of resistant
strains of H. pylori and excludes the use of ineffective antibiotics, especially in regions with
high antibiotic resistance [57]. In addition to standard bacterial culture methods, rapid,
culture-independent molecular assay formats exist that allow for the identification of resis-
tance mutations and the assessment of the efficacy of the intended therapy. These include
the PCR-RFLP detection of point mutations [58], droplet digital PCR [59], the amplification
refractory mutation system (ARMS-PCR) [60], and test kits, such as GenoType®HelicoDR
(Hain Lifescience GmbH, Nehren, Germany) [61], which allow for the simultaneous detec-
tion of resistance mutations to clarithromycin and fluoroquinolones [62]. Dual-priming,
oligonucleotide-based multiplex polymerase chain reaction (DPO-PCR) has been used in
tailored first-line therapies in South Korea with satisfactory results [63].

The disadvantage of these procedures is the requirement of primers, fluorescent
probes, and specialized equipment that is not available in most clinical settings. It is also
noteworthy that, whereas two prominent sites of mutation in the 23S rRNA are recognized
for clarithromycin resistance, metronidazole resistance involves several mutations in rdxA
and other genes that are more difficult to detect.

The tailored therapy has demonstrated its practical usefulness, particularly in cases of
second-line or third-line refractory infections in combination with PCR-based molecular
tests [64,65]. The surveillance of strain resistance using susceptibility testing can now be
carried out with stool samples, thus obviating the need for invasive methods, such as
endoscopy (stool polymerase chain reaction) [66].

Of particular interest is the question of whether the detection of a resistant genotype is
concurrently correlated with the existence of a drug-resistant phenotype. Zhang et al. have
compared the results of ARMS-PCR to the E-test MIC drug sensitivity assay for clar-
ithromycin and reported a statistically significant correlation (p > 0.05, area under the
receiver operating curve = 0.969) between the two methods [60]. However, some strains,
tested as wild-type using ARMS-PCR, appeared to be drug-resistant, thus suggesting that
the clarithromycin-resistant phenotypes may not be limited to sites 2142 and 2143, but may
carry mutations at different positions.

6. Novel Treatment Options

Increasing resistance rates observed for the most commonly used antibiotics against
H. pylori infections have now stimulated intensive efforts to discover novel antimicrobial
compounds and leads that are useful for structure-based drug design [67]. The conventional,
alternative, and novel treatment options for H. pylori are summarized in Table 1.

A recent study from China has described the potent antimicrobial activities of arme-
niaspirol A (ARM1) against MDR strains of H. pylori [68]. Armeniaspirols are antibiotics
containing an unusual spiro(4.4)non-8-ene moiety bio-synthesized by Streptomyces ar-
meniacus [69]. The compound has membrane-disrupting properties, which ultimately
lead to an inhibition of biofilm formation. Remarkably, dual therapy with ARM1 and
omeprazole demonstrated bactericidal effects comparable to the standard triple therapy
in a mouse model of MDR H. pylori strains, while concurrent toxicity against normal
tissues was found to be negligible [68]. The bactericidal activity of ARM1 appeared to be
significantly higher than that of metronidazole. Similar to armeniaspirol, the natural herb
compound dihydrotanshinone I (DHT) also exhibited antibacterial activity through the
elimination of preformed biofilms and biofilm-encased H. pylori cells [70]. DHT showed
strong time-dependent bactericidal activity, with MIC50/90 values of 0.25/0.5 µg/mL.

A promising opportunity for pharmacological intervention is the inhibition of the
response stimulator HsrA, an electron-transfer flavodoxin protein that is essential for
numerous metabolic functions [71,72]. A screening of 1120 compounds contained in
an FDA drug library resulted in the identification of seven natural flavonoids that in-
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hibited the DNA-binding activity of HsrA. Phytochemicals, chrysin, and galangin ex-
hibited marked synergistic bactericidal activity in combination with clarithromycin or
metronidazole [73–75]. Investigations of flavodoxin inhibitors have also been extended to
the evaluation of novel synthetic nitroethylene- and 7-nitrobenzoxadiazole-based inhibitors
of H. pylori flavodoxin, showing promising therapeutic indexes [76]. Oral administration
to a mice model of H. pylori infection revealed low toxicity and decreased rates of gastric
colonization. However, at present, detrimental effects on the gut microbiota remain to be
investigated in greater detail.

Table 1. Conventional, alternative, and novel treatment options for Helicobacter pylori.

Substance Type Mechanism
of Action

Usage
in Treatment References

Amoxicillin Antibiotic Inhibition of cell wall biosynthesis Conventional [26,54,77]

Clarithromycin Antibiotic Inhibition of bacterial
protein synthesis Conventional [28,35,60]

Levofloxacin Antibiotic Inhibition of bacterial DNA synthesis Conventional [39,78,79]

Metronidazole Antibiotic Inhibition of protein synthesis via
DNA structure and strand breakage Conventional [35,52,72]

Tetracycline Antibiotic
Inhibition of protein synthesis via the
inhibition of mRNA-ribosome
complex formation

Conventional [75,80,81]

Rifabutin Antibiotic Inhibition of bacterial
RNA polymerization Alternative, Combination [47–49]

Doxycycline Antibiotic
Inhibition of protein synthesis via the
inhibition of mRNA-ribosome
complex formation

Alternative, Combination [50,77,78]

Nitazoxanide Antibiotic Interfering with anaerobic
energy metabolism Alternative [51–53]

Furazolidone Antibiotic Inhibition of protein synthesis via
DNA cross-linkage

Clarithromycin-,
Metronidazole-resistant [54,73,74]

Armeniaspirol A Antibiotic
Disruption of the bacterial cell
membrane, inhibition of
biofilm formation

Novel
Alternative [68,69,82]

Dihydrotanshinone I Phytochemical Elimination of preformed biofilm Novel
Alternative [70,83]

Chrysin Phytochemical Interfering with cell wall formation,
vesicle formation, and cell lysis

Novel
Alternative [71,84,85]

Galangin Phytochemical Interfering with cell wall formation,
vesicle formation, and cell lysis

Novel
Alternative [71,84,85]

Curcumin Phytochemical Inhibition of vacuolation via binding
to the virulence factor

Novel
Alternative [86–88]

Pexiganan Peptide Binding to the bacterial membrane,
forming a toroidal pore

Novel
Alternative [89–91]

Tilapia Piscidins Peptide Induction of membrane
micelle formation

Novel
Alternative [90,92]

Epinecidin-1 Peptide Generation of membrane curvature,
vascularization, and pore formation

Novel
Alternative [90,92,93]

Cathelicidins Peptide Shrinking of the flagella and
pore formation on bacterial membrane

Novel
Alternative [90,94]

Defensins Peptide Permeabilization of bacterial
cell membrane

Novel
Alternative [90,95,96]

Bicarinalin Peptide Permeabilization of bacterial
cell membrane

Novel
Alternative [90,97]

Odorranain-HP Peptide Unclear Novel
Alternative [90,98]

PGLa-AM1 Peptide Binding to the bacterial cell membrane Novel
Alternative [90,99]

Bacteriocins Peptide Binding to the bacterial cell
membrane, pore formation

Novel
Alternative [90,100,101]
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Curcumin (diferuloylmethane) and polyphenolic plant metabolites display a multi-
tude of anti-microbial, anti-inflammatory, and anti-proliferative properties and are currently
being explored as potential therapeutic candidates against H. pylori [88,102]. Curcumin
has not only demonstrated pronounced antimicrobial effects in H. pylori infected C57BL/6
mice but also seems to contribute to the reduction or repair of gastric epithelium damage,
as revealed by histological analysis [103]. The cytotoxin-associated gene A protein (CagA)
is involved in the establishment of a persistent H. pylori infection, the malignant transfor-
mation of gastric cells, and consequently, is a major factor in the development of gastric
cancer [104]. The interaction of CagA with curcumin and its metabolites has been proposed
to contribute to the suppression of CagA oncogenic activity [105]. It is important to note
that curcumin failed, in a large number of studies, to demonstrate clinically useful effects;
nevertheless, the possibility exists that despite their low solubility and poor adsorption
and bioavailability, optimized derivatives of curcumin, such as EF24, may prove useful as
supplementary agents for the treatment of H. pylori infections [106,107].

Antimicrobial peptides (AMPs) with activity against drug-resistant H. pylori were
recently identified in an Iranian study through a screening of PubMed, Scopus, and Web of
Science databases [90]. Nine groups containing 22 antimicrobial peptides were comprised
of pexiganan, tilapia piscidin, epinecidin-1, cathelicidins, defensins, bicarinalin, odorranain-
HP, PGLa-AM1, and bacteriocins—whereby the highest anti-H. pylori activities were
observed for pexiganan, tilapia piscidin, and PGLa-AM1. The latter represents five kDa
peptides with a predominant α-helical structure, cationic charge, and high isoelectric
points. The 22-amino-acid residue peptide, pexiganan, which is a magainin AMP analog,
was incorporated into chitosan-alginate polyelectrolyte complex pexiganan nanoparticles
(PNPs) with a particle size of 415 ± 26 nm for enhanced delivery of the AMP to the gastric
mucosa [108]. The results confirmed that PNPs efficiently eradicated H. pylori in the
mouse stomach and showed improved peptide stability and prolonged retention times.
Moreover, the strategy of mucoadhesive delivery of nano- or microparticles offers the
benefit of effective drug penetration across the mucus layer, increased resistance against
proteolytic degradation, and would also protect acid-sensitive drugs from fast degradation.

While the use of genetically engineered symbiotic lactic acid bacteria as carriers for
AMP delivery may constitute a future treatment option for H. pylori, probiotics were
intensively studied as part of H. pylori treatment regimens [109]. Probiotics display a wide
range of antibacterial effects, including the secretion of organic acids and bacteriocins,
the formation of H2O2, the inhibition of adhesion processes, and the downregulation of
proinflammatory factor expression [110].

The results of earlier studies suggest that specific probiotics, such as Saccharomyces
boulardii and Lactobacillus johnsonni La1, probably diminish the bacterial load, but do
not completely eradicate the H. pylori bacteria when administered as monotherapy [109].
Adjuvant therapy, employing combinations of probiotics and antibiotics, appears to be
more effective, as the probiotics contribute significantly to diminishing the iatrogenic
side effects of the drug treatment. Inhibitory effects on H. pylori growth and a significant
reduction in antibiotic-associated side effects were observed with the novel preparation
of Lactobacillus reuteri [111]. Lactobacillus reuteri synthesizes a non-peptidic antipathogen
compound, reuterin, reported to downregulate the genes for virulence factors vacA and
flaA [112]. These findings have confirmed various beneficial effects of probiotics not only
for H. pylori infections but also for several other gastrointestinal diseases.

Herbal therapy for gastric diseases has a long history of demonstrated gastropro-
tective and antimicrobial effects in H. pylori infections [113]. Therapeutic strategies for
the effective treatment of H. pylori infections are now being broadly augmented through
increasing research efforts aimed at the clinical evaluation of herbal and traditional Chinese
medicine. An overview of the rapidly expanding field is presented by Li Y et al. [114]. The
current knowledge about phytomedicines used for H. pylori-associated gastric diseases
is summarized by Salehi et al. [115]. Innovative solutions to overcome current treatment
deficits, such as resistance, could conceivably arise from integrated Chinese and Western
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medicine [116,117]. Aside from their use as an herbal cure, per se, phytochemicals that
have been identified in numerous studies may offer prospects for the discovery of lead
compounds for the design of novel and synthetic therapeutic agents [118].

The emergence of the antimicrobial resistance of H. pylori to important antibiotics
keeps increasing, and antimicrobial resistance (AMR) is risky if it leads to treatment failure
clinically and (gastroduodenal) histopathologically. However, there have been no previous
reports specifying clinical status (e.g., higher prevalence rates of peptic ulcer, carcinoma,
or lymphoma) if there is treatment failure due to antimicrobial resistance. The previous
reports have only mentioned that antimicrobial resistance was associated with treatment
failure [119–121]. In individual patients, mechanisms of resistance deployed by H. pylori
cause treatment failures, diagnostic difficulties, and ambiguity in the clinical interpretation
of therapeutic outcomes. At the population scale, globally increasing antibiotic resistance
has led to a substantial decrease in efficacy of H. pylori treatment and probably an increased
risk of complications, such as peptic ulcers and gastric cancer [16,122]. This resistance
becomes more important in areas or countries where H. pylori has high resistance or
multi-resistance to the antibiotics used in treatment regimens. Since the regimens may
have a high risk of clinical or histopathological treatment failure, the drug sensitivity of
H. pylori should be regularly reported in highly antibiotic-resistant countries [119,120].
As a result, WHO has declared that AMR is a global health and development threat. It
requires urgent multisectoral action in order to achieve the Sustainable Development Goals
(SDGs) [118,123].

Taken together, intensive research efforts and the development of novel and enhanced
therapeutic options in the ‘post-antibiotic’ era have generated promising alternatives and
treatment strategies to combat infections with drug-resistant H. pylori.

7. Conclusions

The deteriorating problem of antibiotic-resistant H. pylori is now being targeted by
a multitude of research efforts aimed at understanding the molecular mechanisms of re-
sistance and the development of novel and alternative options for treatment. Research
in Asian countries has greatly contributed to the wealth of data accumulated over the
previous years. Much progress has been made in the molecular analysis of genetic al-
terations leading to drug resistance, in particular, for the frequently applied antibiotics
clarithromycin and metronidazole. Culture-independent molecular methods now allow
for the implementation of susceptibility-guided therapies adapted to local resistance pro-
files, with a largely reduced risk of treatment failure. Efficient rescue therapies using
less resistance-prone, second-line drugs, such as rifabutin, amoxicillin, and furazolidone,
can be used to achieve high eradication rates. Screening for novel antimicrobial com-
pounds has identified promising candidates for drug development, such as flavodoxin
inhibitors, antimicrobial peptides, antibiotics, and phytochemicals traditionally used in
Chinese medicine, which warrant further investigation. It can be concluded that, despite
the clinical challenges, gastrointestinal diseases caused by H. pylori can, at large, be effi-
ciently managed using appropriate diagnostic tools, improved regimens for treatment, and
post-treatment confirmation of eradication.
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