
Citation: Innes, A.L.; Martinez, A.;

Gao, X.; Dinh, N.; Hoang, G.L.;

Nguyen, T.B.P.; Vu, V.H.; Luu, T.H.T.;

Le, T.T.T.; Lebrun, V.; et al.

Computer-Aided Detection for Chest

Radiography to Improve the Quality

of Tuberculosis Diagnosis in

Vietnam’s District Health Facilities:

An Implementation Study. Trop. Med.

Infect. Dis. 2023, 8, 488. https://

doi.org/10.3390/tropicalmed8110488

Academic Editor: John Frean

Received: 4 September 2023

Revised: 20 October 2023

Accepted: 25 October 2023

Published: 29 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Tropical Medicine and 

Infectious Disease

Article

Computer-Aided Detection for Chest Radiography to Improve
the Quality of Tuberculosis Diagnosis in Vietnam’s District
Health Facilities: An Implementation Study
Anh L. Innes 1,* , Andres Martinez 2, Xiaoming Gao 2 , Nhi Dinh 2, Gia Linh Hoang 3,
Thi Bich Phuong Nguyen 3 , Viet Hien Vu 3, Tuan Ho Thanh Luu 3, Thi Thu Trang Le 3, Victoria Lebrun 3,
Van Chinh Trieu 3, Nghi Do Bao Tran 3, Zhi Zhen Qin 4, Huy Minh Pham 5, Van Luong Dinh 6, Binh Hoa Nguyen 6,
Thi Thanh Huyen Truong 6, Van Cu Nguyen 6, Viet Nhung Nguyen 6,7 and Thu Hien Mai 3

1 FHI 360 Asia Pacific Regional Office, Bangkok 10330, Thailand
2 FHI 360, Durham, NC 27701, USA; amartinez@fhi360.org (A.M.); xgao@fhi360.org (X.G.);

ndinh@fhi360.org (N.D.)
3 FHI 360 Vietnam, Hanoi 10000, Vietnam; hlinh@fhi360.org (G.L.H.); nphuong@fhi360.org (T.B.P.N.);

vhien@fhi360.org (V.H.V.); ltuan@fhi360.org (T.H.T.L.); ltrang@fhi360.org (T.T.T.L.); vlebrun@fhi360.org (V.L.);
tchinh@fhi360.org (V.C.T.); tnghi@fhi360.org (N.D.B.T.); thuhien@fhi360.org (T.H.M.)

4 Stop TB Partnership, Grand-Saconnex, 1218 Geneva, Switzerland; zhizhenq@stoptb.org
5 United States Agency for International Development/Vietnam, Hanoi 10000, Vietnam; mpham@usaid.gov
6 Vietnam National Lung Hospital, Hanoi 10000, Vietnam; dinhvanluong66@gmail.com (V.L.D.);

nguyenbinhhoatb@yahoo.com (B.H.N.); thanhhuyenntp@gmail.com (T.T.H.T.);
cu_nguyen_van@yahoo.com (V.C.N.); vietnhung@yahoo.com (V.N.N.)

7 Pulmonology Department, University of Medicine and Pharmacy, Vietnam National University,
Hanoi 10000, Vietnam

* Correspondence: anh.innes@gmail.com; Tel.: +1-202-469-9890

Abstract: In Vietnam, chest radiography (CXR) is used to refer people for GeneXpert (Xpert) testing
to diagnose tuberculosis (TB), demonstrating high yield for TB but a wide range of CXR abnormality
rates. In a multi-center implementation study, computer-aided detection (CAD) was integrated into
facility-based TB case finding to standardize CXR interpretation. CAD integration was guided by a
programmatic framework developed for routine implementation. From April through December 2022,
24,945 CXRs from TB-vulnerable populations presenting to district health facilities were evaluated.
Physicians interpreted all CXRs in parallel with CAD (qXR 3.0) software, for which the selected TB
threshold score was ≥0.60. At three months, there was 47.3% concordance between physician and
CAD TB-presumptive CXR results, 7.8% of individuals who received CXRs were referred for Xpert
testing, and 858 people diagnosed with Xpert-confirmed TB per 100,000 CXRs. This increased at
nine months to 76.1% concordant physician and CAD TB-presumptive CXRs, 9.6% referred for Xpert
testing, and 2112 people with Xpert-confirmed TB per 100,000 CXRs. Our programmatic CAD-CXR
framework effectively supported physicians in district facilities to improve the quality of referral for
diagnostic testing and increase TB detection yield. Concordance between physician and CAD CXR
results improved with training and was important to optimize Xpert testing.

Keywords: tuberculosis; artificial intelligence; radiography; calibration; innovative diagnosis

1. Introduction

Tuberculosis (TB) is one of the top 10 causes of death worldwide, and it was the leading
cause of death—until COVID-19—due to a single infectious agent [1]. Approximately
10.6 million people fell ill with TB in 2021, but only 6.4 million were newly diagnosed with
and notified as having TB at the global level [1]. Improving diagnosis is an urgent priority
to address one of the biggest barriers to ending TB.

In recent years, the increased array of TB diagnostic methods and emphasis on early
detection have moved chest radiography (CXR) to the front of diagnostic algorithms [2].
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CXR abnormalities can guide confirmatory diagnostic testing for TB, but the accuracy of
this decision depends on the quality of interpretation. Using computer-aided detection
(CAD) artificial intelligence (AI) to interpret CXR films has the potential to standardize
the quality of TB case finding. Early versions of CAD software were not as accurate as
expert human readers [3,4], but the best software products now perform at or above the
accuracy of human experts [5,6]. In March 2021, the World Health Organization (WHO)
conditionally recommended CAD in place of human readers to interpret digital CXRs for
TB among individuals 15 years or older [7]. The guideline defines two use cases for CAD:
asymptomatic populations (screening) and symptomatic populations with TB risks and
symptoms (triage). Due to variable performance in different settings, implementers are
advised to calibrate CAD threshold scores to optimize yield for TB detection and ensure
accurate referral for diagnostic testing [8]. CAD for CXR interpretation is rapidly expanding,
with new and updated software each year [9] and increasing numbers of research studies
conducted in high TB-burden settings [10,11]. Recent studies highlight the importance
of threshold calibration, showing variable CAD diagnostic performance with different
versions of software and population subgroups [12,13].

WHO describes four models for integrating CAD to screen or triage for confirmatory
TB diagnosis [14]: “(1) CAD for initial screening, with any abnormal result referred to
a human reader for final interpretation; (2) CAD for initial screening, with a portion of
all results verified by a human reader (e.g., all abnormal CXRs and 10% of normal CAD
results); (3) CAD replacing a human reader, with all abnormal results referred for diagnosis;
and (4) CAD and human reading in parallel, with an abnormal result from either reading
referred for diagnosis”. In radiology, AI ideally complements human expertise [15], with
a broad range of potential applications that includes improving diagnostic accuracy [16]
and augmenting radiology training [17]. Frameworks have been proposed to develop
sustainable AI-driven solutions in lower-resource settings [18]. AI integration of image and
clinical data can produce a more holistic patient assessment, improving clinical care [19].
CAD for CXR interpretation in high TB-burden, low-resource settings can support clinical
decisions by simplifying results (TB-presumptive or not TB) to indicate confirmatory
diagnostic testing. The value of CAD support differs depending upon the user, with higher
benefit for those with less experience, such as non-radiology physicians [20].

In Vietnam, there is a large gap between the estimated TB incidence (169,000 in 2021)
and the number of people notified with TB each year—approximately 40% pre-COVID-19
and worsening to 54% in 2021, during the nadir of the pandemic [21]. To increase TB
diagnosis, the Vietnam National Tuberculosis Program (NTP) developed the “Double X”
(2X) strategy that uses CXR to indicate GeneXpert (Xpert) (Cepheid, Sunnyvale, CA, USA)
testing for pulmonary TB disease. Xpert is a commonly used, WHO-recommended rapid
diagnostic (WRD) that is sensitive and specific for diagnosing TB disease [22]. The 2X
algorithm leverages the high sensitivity of CXRs to detect TB abnormalities combined with
highly specific Xpert diagnosis, for high-yield TB detection [23].

The Vietnam NTP piloted the 2X strategy in research studies and found that it was high
yield for Xpert-confirmed TB [24,25]. However, the rate of “TB-presumptive” CXRs during
programmatic implementation varied widely across provinces, with a range of yields for TB
detection. Although TB prevalence differs for Vietnam’s three regions [26,27], the variability
in 2X results flagged possible issues with the quality of CXR interpretation. To address this,
CAD was first applied retrospectively to interpret CXRs from 2X community campaigns
in 2020 and analyzed for agreement with national and provincial radiologists. CAD was
then integrated into the real-time workflow of 2X community campaigns in 2021–2022 to
support physicians with CXR interpretation. From these results and experience, a CAD
framework was developed for routine programmatic implementation (Figure 1). From
April through December 2022, the framework was applied in an implementation study
for facility-based 2X case finding to determine if CAD integration improved the quality of
physicians’ CXR interpretation; the rate of Xpert referral; and the yield for Xpert-confirmed
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TB disease. Agreement between physician and CAD CXR results was calculated to examine
physician uptake of CAD support.
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Figure 1. Framework for programmatic computer-aided detection (CAD) artificial intelligence to
interpret chest radiography (CXR) for tuberculosis (TB) abnormalities.

2. Materials and Methods
2.1. Study Design

This multi-center implementation study integrated CAD for CXR interpretation into
facility-based TB case finding in Vietnam from April through December 2022. The study
was part of a larger project implementing the 2X strategy in communities and facilities that
started in March 2020, funded by the United States Agency for International Development.

2.2. Setting

Five provinces were selected for their representation of the country’s southern (An
Giang, Dong Thap, Tay Ninh, Tien Giang) and northern (Thai Binh) regions; baseline
provincial TB notification rates comprised approximately 13% of notified TB in Vietnam.
District facilities were selected based upon the availability of digital chest radiography,
patient volume (ranging from 1000–2280 CXRs per facility each month) and the facility’s
commitment to integrate CAD into routine TB case finding. Five, seven, and eight district
facilities launched CAD integration at three, six, and nine months of implementation,
respectively; the expansion to additional facilities over time was aligned to the capacity for
project monitoring and support.

2.3. Facility 2X Screening and Triage Algorithms

The CAD-integrated 2X strategy applied CXR and Xpert testing for a range of vulnera-
ble populations six years and older in the facility setting. The first step was the evaluation
of clinical risks for TB and respiratory symptoms and, if indicated, CXR; those with TB-
presumptive CXRs were referred for Xpert testing. Vulnerable populations evaluated by
CAD-integrated 2X comprised the following: (1) newly diagnosed diabetes outpatients
or diabetics with poorly controlled glucose (elevated hemoglobin A1C or random blood
glucose) were screened for TB symptoms; (2) inpatients with lung disease (no symptoms
required) and outpatients in general medical clinics with respiratory symptoms (of any du-
ration) were evaluated by 2X; (3) elderly individuals≥60 years old, smokers (≥10 cigarettes
per day), and those with alcohol use disorders (≥six servings at a time, each week for the
preceding three months) underwent 2X evaluation if they had TB symptoms or no CXR
within six months. (4) CAD analysis was also applied to CXRs for individuals without
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TB risks or symptoms, with the rationale to reach vulnerable populations who may have
missed the initial screening by symptoms and clinical risk factors.

2.4. CXR Interpretation

CXRs were obtained by a variety of radiography machines, which differed by facility,
and interpreted by an on-site, district-level physician who was a radiologist or a clinician
(diabetes, general, or TB physician). CXR images were interpreted by physicians as “not
TB” or “TB-presumptive”; digital images were uploaded as uncompressed Digital Imaging
and Communications in Medicine (DICOM) files to a password-protected server.

2.5. CAD Analysis

DICOM CXR images were analyzed offline using qXR [28] version 3.0 (Qure.ai, Mum-
bai, India). qBoxes were installed on stationary radiology picture archiving and communi-
cation systems (PACS). qXR analysis resulted in an output “abnormality score” between
0.00 and 1.00 that increased with the level of CXR abnormality. The manufacturer’s pre-set
threshold score for TB (0.50) produced a binary outcome for which qXR ≥ 0.50 was “TB-
presumptive” and qXR < 0.50 was “TB negative”. Using the programmatic framework that
was developed from retrospective and real-time CAD implementation in 2020–2022, the
CAD integration model was selected for 2X facility case finding, with WHO models as
reference [7]. To accommodate the facility workflow, the CAD-parallel model was selected
in which CAD software and physicians both interpreted all CXRs; it was not mandatory to
incorporate the CAD result into the final decision for Xpert testing, which was made by the
on-site physician. The decision to obtain an CXR in the facility setting, its interpretation,
and referral for Xpert testing were made by different people in separate locations; this
workflow was better aligned with the parallel, rather than sequential, CAD model. A
qXR ≥ 0.60 threshold score was selected for CAD-parallel implementation.

2.6. Xpert Testing

Xpert testing was ordered by an on-site physician after reviewing the CXR and clinical
presentation. Participants referred for Xpert testing (by CXR or symptoms) produced a
single-spot specimen that was analyzed on site or transported to a nearby facility with
Xpert capacity. Xpert MTB/RIF and Xpert Ultra cartridges were provided by the NTP.
Trace positive samples were handled according to the national guideline, in which Xpert
testing was conducted on a second sputum specimen, followed by provincial committee
evaluation of the individual’s clinical presentation, CXR interpretation, and Xpert results.

2.7. Data Sources

CAD results and DICOM files were downloaded from each qBox onto a password-
protected external hard drive during implementation and then uploaded onto a password-
protected server (Microsoft SharePoint, https://www.microsoft.com/en-us/microsoft-
365/sharepoint/collaboration, accessed on 1 January 2023). All data analyzed for this
implementation study were de-identified. Very limited demographic data were collected
on site during the routine, programmatic implementation; these data were not available for
analysis.

2.8. Data Analysis

Data were analyzed using STATA 17 [29] and R 4.3.0 [30]. Rates for TB-presumptive
CXRs and Xpert positivity were calculated for physician and CAD CXR results. The
rate of Xpert testing was calculated for CXRs with abnormality scores above and below
the qXR TB threshold, which reflected physicians’ referral decisions for Xpert testing.
Agreement was measured between physician and CAD CXR results using Cohen’s kappa.
The test of proportions was used to compare CXR TB-presumptive rates, Xpert testing
rates, and agreement by physician and CAD CXR results. Data were analyzed at quarterly

https://www.microsoft.com/en-us/microsoft-365/sharepoint/collaboration
https://www.microsoft.com/en-us/microsoft-365/sharepoint/collaboration
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intervals to enable timely monitoring for performance improvement, since this was the first
programmatic implementation of CAD for CXR interpretation in these facilities.

For CAD performance measures, analyses were limited to observations with a posi-
tive or negative Xpert result (excluding trace) and a valid qXR abnormality score, which
predicted the dichotomous Xpert outcome. Individuals with trace positive results were
excluded from analysis given the potential complexity of interpretation in a high TB-burden
setting. Using Xpert as the bacteriological reference, we calculated sensitivity, specificity,
positive predictive value (PPV), and accuracy (number of true positives plus true negatives
among all positives plus all negatives) at each threshold score. Areas under the receiver
operating characteristics curve and precision recall curve (AUROC, PRAUC) were also
calculated [31,32]. Confidence intervals were based on 2000 bootstrap replicates. Simula-
tions conducted by Google suggest that Iterative Threshold Score Calibration (ITSC) is an
alternative to conducting prospective clinical trials to identify optimal thresholds [33]. We
adapted this approach to monitor implementation, using the ITSC methodology of setting
a constraint (e.g., sensitivity) and target (e.g., PPV). An optimal threshold at which the
highest PPV could be reached, closest to the target of 20% PPV, was selected if the sensitivity
of detecting an Xpert-positive result was greater than 95%. The optimal threshold priori-
tized user-defined measures (sensitivity and PPV) to monitor implementation. Changes in
the optimal threshold may indicate changes in the population screened and/or changes
in human decisions for CXR interpretations and Xpert referral. The implementation TB
threshold (qXR ≥ 0.60) was unchanged throughout the study. Please see Supplementary
Materials for the computer code developed for this manuscript.

3. Results
3.1. Results Overall for April–December 2022

Using CAD-parallel integration to support 2X facility case finding, we found that
Xpert testing was conducted for CXRs read as TB-presumptive by physicians alone or
TB-presumptive by physicians and CAD (Figure 2). The 2105 CXRs read as TB-presumptive
by CAD alone were not referred for Xpert testing. Physicians interpreted 9.1% CXRs as
TB-presumptive, which was lower than the 14.6% CXRs interpreted as TB-presumptive by
CAD. The overall Xpert positivity rate was 19.3%, which was lower than the 28.9% Xpert
positivity for the subset with CAD and physician TB-presumptive CXRs.
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Figure 2. CAD integration into the Double X algorithm in district facilities. Data are from nine
months (April–December 2022) of CAD-parallel implementation, in which both CAD and physi-
cians interpreted all CXRs for TB vulnerable populations. 2X = Double X; MTB = mycobacterium
tuberculosis; Xpert = GeneXpert; (+) = positive by Xpert test; (−) = negative by Xpert test.
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3.2. CXR Abnormality and Xpert Positivity Analyzed by CAD and Physician CXR Interpretation

Data analysis by quarter showed that rates of CAD TB-presumptive CXRs were
significantly higher than physician TB-presumptive CXRs, and both rates were highest
at nine months (Table 1). Xpert positivity rates for facility case finding increased after
the first three months of CAD integration (from 11.0% to 21.1% and 22.0%). Across all
quarters, CXRs with concordant CAD and physician TB-presumptive results had higher
Xpert positivity rates than Xpert positivity overall. In contrast, CXRs with physician TB
presumptive but CAD non-TB results had much lower Xpert positivity rates.

Table 1. CXR and Xpert results analyzed by physician and CAD interpretation.

April–June 2022 July–September
2022

October–
December 2022

Number of district facilities implementing CAD 5 7 8
Total number of people with CXRs (N) 5826 9696 9423

CAD TB-presumptive CXR result (n [%]) 749 (12.9) 1363 (14.1) 1538 (16.3)
Physician TB-presumptive CXR result (n [%]) 480 (8.2) 755 (7.8) 1046 (11.1)

Difference of percentages (p-value) * 4.6 (<0.001) 6.3 (<0.001) 5.2 (<0.001)

Total number of people with valid Xpert tests (N) 455 703 903
Xpert positivity rate overall (n positive/N valid Xpert tests [%]) 50/455 (11.0) 148/703 (21.1) 199/903 (22.0)

Xpert positivity rate for CAD and physician TB-presumptive CXRs
(n positive/n Xperts with CAD and physician TB-presumptive

CXRs [%])
48/206 (23.3) 143/472 (30.3) 196/659 (29.7)

Xpert positivity rate for CAD non-TB and physician
TB-presumptive CXRs (n positive/n Xperts with physician

TB-presumptive CXRs [%])
2/249 (0.8) 5/229 (2.2) 3/242 (1.2)

* Test of proportions for CAD TB-presumptive CXRs vs. physician TB-presumptive CXRs. qXR TB
threshold ≥ 0.60. Trace positive Xperts were not counted as valid Xpert tests.

3.3. Analysis of Xpert Testing by CXR Abnormality Scores Relative to the CAD TB Threshold

The Xpert testing rates were 7.8%, 7.3%, and 9.6% across nine months of implemen-
tation (Table 2). Despite the slight increase in Xpert testing rates overall, the proportion
of individuals who did not receive Xpert testing but had CXR abnormality scores higher
than the CAD TB threshold remained high and was 56.6% at nine months. Among those
with Xpert tests, the proportion with CXR abnormality scores < 0.60 was 54.7% after three
months, which decreased but was still high at six (32.9%) and nine (29.6%) months.

Table 2. Analysis of Xpert testing rates by CXR scores relative to the CAD TB threshold.

April–June
2022

July–September
2022

October–
December 2022

Total number of people with valid Xpert tests (N) 455 703 903
Xpert testing rate (N valid Xpert tests/N total CXRs [%]) 455/5826 (7.8) 703/9696 (7.3) 903/9423 (9.6)

n Xpert tests not done for CXR abnormality score ≥ 0.60/n CXRs
with score ≥ 0.60 (%) 543/749 (72.5) 887/1359 (65.3) * 830/1466 (56.6) *

n Xpert tests done for CXR abnormality score < 0.60/N valid Xpert
tests (%) 249/455 (54.7) 231/703 (32.9) * 267/903 (29.6) *

* Test of proportions for April–June 2022 vs. July–September 2022 and October–December 2022, p < 0.001. qXR TB
threshold ≥ 0.60. Trace positive Xpert results were not counted as valid Xpert tests.

3.4. Analysis of Agreement between Physician and CAD CXR Results

Agreement between physician and CAD CXR results increased from three to six and
nine months (86.7%, 88.9%, and 89.5%, respectively) (Table 3). Specifically, among physician
TB-presumptive CXRs, the proportion of concordant CAD TB-presumptive CXRs increased
from 47.3% to 69.1% and 76.1%. Concordance was high between physician and CAD
non-TB CXR results throughout the nine months of implementation.
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Table 3. Agreement between physician and CAD CXR results.

April–June
2022

July–September
2022

October–
December 2022

Physician TB-presumptive CXR and CAD non-TB CXR (n [%]) 253 (52.7) 233 (30.9) * 250 (23.9) *
Physician and CAD TB-presumptive CXR (n [%]) 227 (47.3) 522 (69.1) * 796 (76.1) *

Physician non-TB CXR and CAD TB-presumptive CXR (n [%]) 522 (9.8) 841 (9.4) 742 (8.9)
Physician non-TB CXR and CAD non-TB CXR (n [%]) 4824 (90.2) 8100 (90.6) 7635 (91.1)

Total agreement (%), (Kappa [Standard error]) 86.7% (0.30 [0.01]) 88.9% * (0.44 [0.01]) 89.5% * (0.56 [0.01])

* Test of proportions for April–June 2022 vs. July–September 2022 and October–December 2022, p < 0.001. qXR TB
threshold ≥ 0.60. Trace positive Xpert results were not counted as valid Xpert tests.

3.5. Monitoring qXR Performance and Threshold Scores

The yield for Xpert-confirmed TB disease increased from 858 to 2112 per 100,000 CXRs
across nine months (Table 4). Pseudo-sensitivity for CAD performance at qXR = 0.60 was
higher than pseudo-specificity for detecting TB-presumptive CXRs among people with
Xpert-confirmed TB. Pseudo-accuracy decreased over the nine months of implementation.
These terms are described as “pseudo” values due to the algorithmic 2X implementation for
which CXRs with abnormality scores below the CAD TB threshold were not systematically
referred for Xpert testing. Optimal thresholds constrained by >95% pseudo-sensitivity were
slightly higher, and more specific, than the implementation CAD TB threshold (≥0.60).

Table 4. Evaluation of qXR performance for 2X facility case finding.

April–June 2022 July–September
2022

October–December
2022

Total number of people with CXRs 5826 9696 9423
Number with CXR and Xpert results 455 703 903
Number with Xpert-positive results 50 148 199

Yield for Xpert-confirmed TB/100,000 CXRs 858 1526 2112
Pseudo-sensitivity at qXR = 0.60 (95% CI) 96.0% (90.0–100) 96.6% (93.9–99.3) 98.5% (96.5–100)
Pseudo-specificity at qXR = 0.60 (95% CI) 61.0% (56.3–65.9) 40.7% (36.6–45.1) 37.5% (34.0–41.1)

PPV at qXR = 0.60 (95% CI) 23.4% (21.1–25.9) 30.3% (28.8–32.1) 30.8% (29.6–32.1)
Pseudo-accuracy at qXR = 0.6 (95% CI) 64.8% (60.7–69.2) 52.5% (49.2–56.1) 50.9% (48.2–53.7)

AUROC (95% CI) 0.8598
(0.8127–0.9068)

0.8267
(0.7920–0.8614)

0.8062
(0.7755–0.8368)

PRAUC 0.4375 0.5755 0.4770
Optimal qXR threshold score at >95% pseudo-sensitivity 0.615 0.677 0.654

All analyses used Xpert as the bacteriological reference standard. Confidence intervals were not calculated for
PRAUC. Trace positive Xpert results were excluded. AUROC = area under the receiver operating characteristics
curve; CI = confidence interval; PPV = positive predictive value; PRAUC = precision recall area under the curve.

4. Discussion

In Vietnam, CAD integration into TB case finding supported physicians in district
facilities to improve the quality of CXR interpretation and increase the yield for TB detection.
Concordance between CXR results from physician and CAD interpretation improved with
training and was important to optimize decisions for Xpert testing.

4.1. Using a CAD Programmatic Framework to Guide Non-Research Implementation

An operational research toolkit is available to support the effective use of CAD for
TB, guiding threshold score calibration using a bacteriological reference standard [8].
For non-research programmatic implementation, there is limited guidance on how to
evaluate CAD performance when diagnostic testing is not systematic below the CAD TB
threshold. Approaches that have been used to evaluate programmatic implementation
include estimating TB detection rates when adding CAD as a second reader [34] and
measuring associations between CXR abnormality scores and Xpert positivity when pre-
screening with CAD in a high TB-burden setting [35].
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Our framework for programmatic implementation guided the design of CAD integra-
tion into the TB workflow, the analytical approach, and interpretation of results. The first
step of implementation was selecting the model to integrate CAD into TB case finding. The
CAD-parallel model was a pragmatic choice for the facility setting; in reality, district-level
physicians, who have less expertise than at provincial and national levels, would likely have
benefited from the “CAD-first” model in which CAD interpretation is sequential before
the physician interpretation, and only CXRs read as CAD TB-presumptive are interpreted
again by physicians. The CAD-first model provides more quality assurance (while also
being more dependent upon CAD threshold performance), but the facility setting was
not conducive to this sequential approach due to the separation of decision-making at
various points in the TB workflow. Our findings show that CAD clinical decision support
depends upon human factors such as physician concordance, which improves with training
and is affected by the order in which CAD is integrated into the clinical workflow. CAD
guidance for CXR interpretation should account for human factors to optimize clinical
decision support [36,37].

Programmatic CAD implementation can be evaluated by simple analyses to measure
the rates of TB-presumptive CXRs by physician and CAD; rates of Xpert testing and Xpert
positivity; and agreement between physician and CAD interpretation of CXRs. In Vietnam’s
district facilities, physicians were less inclined than CAD to read CXRs as TB-presumptive,
as seen by the physicians’ lower rates of TB-presumptive results. In addition, when the
physician disagreed with the CAD TB-presumptive result, Xpert testing was not ordered.
It was also not unusual for the physician referring for Xpert testing to be different than
the physician reading the CXRs, further challenging the quality of decisions for Xpert
referral. It is possible that some CAD TB-presumptive CXRs were misread by the CAD
software (e.g., external foreign body over the lung fields identified as a TB-presumptive
abnormality), and the physicians correctly excluded those results before Xpert testing.
However, several findings support the overall accuracy of CAD TB-presumptive CXR
results; namely, that increased agreement between physician and CAD TB-presumptive
CXRs resulted in an increased rate of Xpert testing and increased yield for Xpert-confirmed
TB. Our findings also show that CXRs read as TB-presumptive by physicians alone had
very low Xpert positivity rates; this could be from incorrect CXR interpretation by the
physician or inaccurate screening for TB symptoms and risks.

Evaluating Xpert testing rates for CXRs with CAD abnormality scores above and below
the CAD TB threshold can also inform how physicians refer individuals for diagnostic
testing. The rate of Xpert testing for CAD non-TB CXRs (which are likely unnecessary tests)
decreased but was still nearly 30% after nine months. Equally concerning was the high rate
of “missed Xpert testing” for CAD TB-presumptive CXRs, which was 72.5% at three months
and 56.6% at nine months. TB diagnoses were likely missed among these individuals who
did not receive Xpert testing but who had CXRs that were read as TB-presumptive by CAD.
Overall, our findings suggest that the decision to obtain Xpert testing should be guided by
CAD TB-presumptive CXRs and that a higher proportion of TB-vulnerable populations
should be tested with Xpert for facility-based 2X case finding.

4.2. Monitoring the CAD Threshold Score and Evaluating CAD Performance

The CAD TB threshold score should be selected prior to implementation and then fine-
tuned and optimized as needed, based on the results. The selected qXR threshold ≥ 0.60
was guided by community 2X campaigns that preceded this implementation study, and
it was set higher than the manufacturer’s pre-set threshold in order to increase speci-
ficity given that both physicians and CAD interpreted all CXRs. Threshold monitoring
using > 95% pseudo-sensitivity targeting 20% PPV showed that the optimal threshold
(0.617–0.654) could be increased from the implementation threshold (0.60) for higher speci-
ficity without sacrificing sensitivity. It is important to note that for CAD-parallel implemen-
tation, the concordance between physician and CAD interpretations is just as important as
threshold score calibration, since physicians interpreted all CXRs and had the autonomy
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to refer for Xpert testing based on their own results (with or without consideration of the
CAD result). As such, on-site training for physicians to understand and use the CAD
results should be carried out prior to calibrating the threshold, to account for human factors.
Responses to optimal threshold monitoring could also comprise both CAD and non-CAD
adjustments; for example, specificity could be increased by raising CAD thresholds, or by
adding clinical evaluation (symptoms, history, risk factors) as an additional step to guide
decisions for diagnostic testing. Ultimately, threshold score monitoring and calibration
should be informed by goals for TB screening or triage and the availability of budget and
supplies for confirmatory diagnosis.

CAD diagnostic performance is ideally evaluated against bacteriological reference
standards [8]. When analyzing programmatic data in which Xpert testing is indicated by
CAD TB-presumptive CXRs and not carried out for all CXRs (i.e., testing is not systematic
for normal CXRs), PRC and ROC curves and their AUCs can only estimate performance;
sensitivity is likely over-estimated for programmatic results. In general, the PRC is more
accurate than ROC curves for imbalanced datasets in which one population (positive
class) is much smaller than the other (negative class) [38]. However, ROC curves are not
affected by disease prevalence in the tested population and utilize a fixed baseline of 0.50
for balanced distribution from which to calculate the AUC. In contrast, the PRC is affected
by disease prevalence in the tested population, and its baseline is not fixed but is equal
to the proportion belonging to the positive class [38], i.e., Xpert positivity. Thus, variable
disease prevalence and positivity rates will result in variable PRAUCs, and high prevalence
will “raise the bar” from which the PRAUC is calculated. The high and variable Xpert
positivity rates in this implementation study may therefore render PRAUCs less optimal
than AUROCs, notwithstanding the ROC limitations for unbalanced datasets.

PRC and ROC curves have known advantages and disadvantages for evaluating
CAD performance; optimal thresholds selected from these curves traditionally reflect the
best trade-off between sensitivity and specificity for ROC curves, or precision (PPV) and
recall (sensitivity) for PRCs. Our approach for selecting the optimal threshold prioritized
sensitivity and then used PPV to “fine-tune” the threshold selection, as long as the optimal
threshold’s sensitivity was greater than 95%. Knowing that programmatic CAD’s pseudo-
sensitivity will be higher than the true sensitivity, we selected 95% pseudo-sensitivity
for the optimal threshold, aiming for performance within the range of 90% sensitivity,
the recommended Target Product Profile. The Vietnam NTP prioritizes sensitivity above
specificity, with the goal to detect everyone with TB disease, including those who may have
early or asymptomatic TB.

qXR at a threshold score≥ 0.60 had high pseudo-sensitivity and low pseudo-specificity
for Xpert-confirmed TB in district facility settings in Vietnam. In other countries, studies
in tertiary [39] and primary [40] health facilities have also shown high CAD sensitivity
and low specificity. Of note, performance metrics may not be generalizable across settings
depending upon the CAD software and version, and population characteristics such as
HIV prevalence, history of prior TB, and age. There is increasing evidence that optimized
threshold scores vary for different vulnerable populations and settings [41,42], but the
implications for implementation are unclear. Using specific thresholds for each population
may not be pragmatic at the field and facility level, depending on the CAD software,
how easily thresholds are adjusted, and the required monitoring to ensure quality. Our
framework is one approach to analyze and interpret programmatic data when using CAD in
non-research implementation. Programmatic experience from other countries and settings
will help to inform the best analytical approach for real-world CAD implementation.

4.3. Limitations

Our implementation study had limitations. We did not collect sputum for Xpert analy-
sis in all participants, due to the programmatic design; the bacteriological reference was
thus only available for individuals with TB-presumptive CXRs or TB symptoms. Physicians
were not blinded to the CAD interpretation, and it was not possible to know if or when
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they considered the CAD result in their CXR interpretations. Individual-level demographic
and clinical characteristics were not available for the TB-vulnerable populations in facility
2X implementation, limiting our ability to conduct descriptive and subgroup analyses. We
used a single-spot sputum specimen for Xpert testing, not culture; both factors could lead
to underestimating TB prevalence. Finally, a formal cost-effectiveness analysis of CAD
implementation was not conducted as part of this study and is needed to guide scalability
and sustainability for Vietnam.

5. Conclusions

Our programmatic framework effectively integrates CAD into the TB diagnostic
workflow in district facilities in Vietnam. The framework supports physicians to improve
the quality of CXR interpretation and referral decisions for Xpert testing. CAD clinical
decision support depends upon human factors such as physician-CAD concordance, which
improves with training.

Supplementary Materials: The computer code that was developed to generate all results for this
manuscript can be downloaded at: https://github.com/anhinnes/CAD-TB-Vietnam-2023.
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