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Abstract: Anopheles mosquitoes are the vectors of Plasmodium, the etiological agent of malaria. In
addition, Anopheles funestus and Anopheles gambiae are the main vectors of the O’nyong-nyong virus.
However, research on the viruses carried by Anopheles is scarce; thus, the possible transmission of
viruses by Anopheles is still unexplored. This systematic review was carried out to identify studies that
report viruses in natural populations of Anopheles or virus infection and transmission in laboratory-
reared mosquitoes. The databases reviewed were EBSCO-Host, Google Scholar, Science Direct, Scopus
and PubMed. After the identification and screening of candidate articles, a total of 203 original studies
were included that reported on a variety of viruses detected in Anopheles natural populations. In
total, 161 viruses in 54 species from 41 countries worldwide were registered. In laboratory studies,
28 viruses in 15 Anopheles species were evaluated for mosquito viral transmission capacity or viral
infection. The viruses reported in Anopheles encompassed 25 viral families and included arboviruses,
probable arboviruses and Insect-Specific Viruses (ISVs). Insights after performing this review include
the need for (1) a better understanding of Anopheles-viral interactions, (2) characterizing the Anopheles
virome—considering the public health importance of the viruses potentially transmitted by Anopheles
and the significance of finding viruses with biological control activity—and (3) performing virological
surveillance in natural populations of Anopheles, especially in the current context of environmental
modifications that may potentiate the expansion of the Anopheles species distribution.

Keywords: Anopheles; virus; virome; Insect-Specific Virus; arbovirus

1. Introduction

Mosquitoes of the Anopheles genus are responsible for malaria transmission to hu-
mans [1], which, in 2020, caused the death of more than 600,000 people [2]. Anopheles
mosquitoes also transmit the nematode Wuchereria bancrofti, the causing agent of filariasis
in the tropics [3]; in addition, Anopheles gambiae and Anopheles funestus are the primary
vectors of the O’nyong-nyong virus (ONNV), which causes fever and polyarthritis in
Africa [4]. In general, species of this genus are not considered vectors of arboviruses;
however, anthropophilic species that blood-feed on vertebrates are constantly exposed
to circulating arboviruses; therefore, some Anopheles species may acquire and potentially
spread viruses [5], mainly in regions of Latin America and Africa where fevers of unknown
origin are common, and their etiological agents could be uncharacterized circulating
arboviruses [6]. Despite the fact that Anopheles mosquitoes may potentially transmit ar-
boviruses, their vector competence for viruses in general is uncertain; clarifying its vector
role is a matter of public health importance [7,8].

Knowledge of the capability of Anopheles arbovirus transmission is relevant in the cur-
rent context of overpopulated human settlements, where anthropogenic activities crossover
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from human settings into the natural environment [9,10], which may promote human–
mosquito interaction propitiating virus transmission [11]. Although Anopheles has not been
formally incriminated in the transmission of arboviruses other than ONNV, some studies
suggest that various species may transmit arboviruses such as the Rift Valley fever virus
(RVFV) in Africa [12], the Mayaro virus (MAYV) in Central and South America [13] and the
Japanese encephalitis virus (JEV) in the Asiatic southeast [14].

Advancement in massive sequencing technologies and the emergence of metage-
nomics has allowed the characterization of the virome of various organisms, including
some mosquito species [15]. As a result, the knowledge of the viral communities circulating
in mosquito populations has greatly increased in recent years. The evidence indicates that
most of the viruses are Insect-Specific Viruses (ISVs). Specifically, in Anopheles mosquitoes,
some ISVs showed a close phylogenetic relationship with medically relevant arboviruses,
which suggested the probable emergence of arboviruses from ISVs [7]. In addition, the
evolutionary plasticity of RNA viruses indicates that they may originate new arboviruses,
which has public health implications [16,17]. The study of vertically transmitted ISVs,
which cause prolonged infections in mosquito populations, has gained attention as a
potential tool for viral paratransgenesis and biological control [16].

The study of the viruses harbored and potentially transmitted by Anopheles is a relevant
matter with implications in public health, either in the case of transmission of pathogenic
viruses to humans or for the potential utility of appropriate viruses as biological control
agents. Therefore, this systematic literature review was carried out to identify research
studies that detected viruses in natural Anopheles populations or evaluated infection or
transmission capacity in laboratory-reared mosquitoes.

2. Materials and Methods

A systematic literature review was performed following recommendations by the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide [18].

Scientific Literature Selection and Data Extraction

Identification: The scientific literature on the topic was reviewed from 1935 (the date
of the first published study related to viruses in Anopheles mosquitoes) to November 2021
using five databases: EBSCO-Host, Google Scholar, Science Direct, Scopus and PubMed.
The search terms were (i) EBSCO-Host: TI = Anopheles AND TI = virus OR AB Anopheles
AND AB virus; (ii) Google Scholar: allintitle: Anopheles virus, allintitle: Anopheles virome;
(iii) Science Direct: (Find articles with these terms: Anopheles)/(Title, abstract or author-
specified keywords: virus), (Find articles with these terms: Anopheles)/(Title, abstract
or author-specified keywords: virome); (iv) Scopus: (TITLE-ABS-KEY (Anopheles) AND
TITLE-ABS-KEY (virus) OR TITLE-ABS-KEY (virome)) AND (LIMIT-TO (DOCTYPE, “ar”)
OR LIMIT-TO (DOCTYPE, “sh”)); y (v) Pubmed: (Anopheles [Title/Abstract]) AND (virome
[Title/Abstract]), (Anopheles [Title/Abstract]) AND (virus [Title/Abstract]). The articles ob-
tained were imported to the Rayyan QCRI web server (https://www.rayyan.ai/ (accessed
on 25 August 2023)) [19], and duplicates were manually removed.

Scientific literature screening: Documents not fulfilling the following criteria were
excluded: an original article addressing the study of viruses in Anopheles mosquitoes and
availability of the full article. To ensure reproducibility, two researchers conducted the
article search, selection and screening independently; after comparing their results, they
resolved disagreements by consensus.

Data extraction: Data extraction was performed on articles that met the inclusion
criteria, i.e., virus detection in Anopheles natural populations and infection or transmission
in laboratory-reared mosquitoes. Articles related to Anopheles cell lines were excluded. The
following variables were compiled from each article: main author, publication date, study
type (field, semi-field or laboratory), study location, geographical coordinates for field
studies, collection date, Anopheles species studied, mosquito sex, number of mosquitoes
analyzed, number of mosquitoes per pool, number of pools positive for viruses, viral
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detection method, viral species and taxonomic assignation, and viral group classification
(arbovirus, probable arbovirus, ISV or other viruses known to infect vertebrates, plants
and prokaryotic organisms). The location of the mosquito collection site was used for
studies that did not report geographic coordinates. The taxonomy of the viruses was
defined according to taxonomic rules of the International Committee on Taxonomy of
Viruses (ICTV) (https://ictv.global/taxonomy (accessed on 25 August 2023)). Arbovirus
and probable arbovirus status were specified according to the International Catalog of
Arboviruses (Arbocat) (https://wwwn.cdc.gov/arbocat/ (accessed on 25 August 2023)),
which is based on the criteria of the Subcommittee on the Evaluation of Arthropod-Borne
Status [20].

The viruses found in wild-caught Anopheles worldwide were georeferenced using
ArcGIS 10.8.2. Other figures were generated using Microsoft Excel and Past 4.11.

3. Results
3.1. Search Results

A total of 2702 articles were retrieved from the databases; after exclusion by screening,
342 were considered, and from these, 164 were discarded for not fulfilling the inclusion
criteria. Finally, 203 articles related to viruses detected in Anopheles natural populations or
infecting laboratory-reared Anopheles mosquitoes were included. In addition, 25 articles
from a previous systematic review were added, along with prior data revision of the reports
and criteria fulfillment [21] (Figure 1).

Trop. Med. Infect. Dis. 2023, 8, x FOR PEER REVIEW 3 of 26 
 

 

following variables were compiled from each article: main author, publication date, study 
type (field, semi-field or laboratory), study location, geographical coordinates for field 
studies, collection date, Anopheles species studied, mosquito sex, number of mosquitoes 
analyzed, number of mosquitoes per pool, number of pools positive for viruses, viral de-
tection method, viral species and taxonomic assignation, and viral group classification 
(arbovirus, probable arbovirus, ISV or other viruses known to infect vertebrates, plants 
and prokaryotic organisms). The location of the mosquito collection site was used for 
studies that did not report geographic coordinates. The taxonomy of the viruses was de-
fined according to taxonomic rules of the International Committee on Taxonomy of Vi-
ruses (ICTV) (https://ictv.global/taxonomy (accessed on 25 August 2023)). Arbovirus and 
probable arbovirus status were specified according to the International Catalog of Arbo-
viruses (Arbocat) (https://wwwn.cdc.gov/arbocat/ (accessed on 25 August 2023)), which is 
based on the criteria of the Subcommittee on the Evaluation of Arthropod-Borne Status 
[20]. 

The viruses found in wild-caught Anopheles worldwide were georeferenced using 
ArcGIS 10.8.2. Other figures were generated using Microsoft Excel and Past 4.11. 

3. Results 
3.1. Search Results 

A total of 2702 articles were retrieved from the databases; after exclusion by screen-
ing, 342 were considered, and from these, 164 were discarded for not fulfilling the inclu-
sion criteria. Finally, 203 articles related to viruses detected in Anopheles natural popula-
tions or infecting laboratory-reared Anopheles mosquitoes were included. In addition, 25 
articles from a previous systematic review were added, along with prior data revision of 
the reports and criteria fulfillment [21] (Figure 1). 

 
Figure 1. PRISMA flow diagram of search and selection of studies related to viruses in Anopheles 
mosquitoes [21]. 

Figure 1. PRISMA flow diagram of search and selection of studies related to viruses in Anopheles
mosquitoes [21].

https://ictv.global/taxonomy
https://wwwn.cdc.gov/arbocat/


Trop. Med. Infect. Dis. 2023, 8, 459 4 of 26

3.2. Viruses Detected in Anopheles Mosquitoes

According to the data analyzed from the first report dating from 1935 until November
2021, 161 viruses in 54 Anopheles species from 41 countries were identified. Furthermore,
viral infection or transmission in laboratory-reared mosquitoes was demonstrated for 28
viruses in 15 Anopheles species (Table S3). Worldwide, most of the studies on Anopheles
viral infection have been conducted in Asia-Oceania (44.2%) and the American continent
(26.2%), where most are from the USA, followed by Africa (22.8%). Regarding the mosquito
sex, 79% of the studies were conducted in Anopheles females, 3.3% in both sexes and 0.28%
in males; 16% of the studies did not report the mosquito sex.

The viruses detected in Anopheles mosquitoes belong to various DNA and RNA viral
families, the latter being the most prevalent in natural populations of Anopheles (Figure 2).
The most frequently reported viral families were Flaviviridae, Peribunyaviridae, Togaviri-
dae and Reoviridae (Figure 2a). Of the 161 viruses detected in wild Anopheles, 35 were
arboviruses, 24 were probable arboviruses, 84 were ISVs, 12 were viruses that infect verte-
brates, 4 infected plants and 2 infected prokaryotic organisms.
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Figure 2. Overview of viruses detected in Anopheles mosquitoes worldwide. (a) Number of detections
of arboviruses, Insect-Specific Viruses (ISVs) and other viruses (viruses of vertebrates, plants and
prokaryotes), grouped by viral family; (b) timeline of the number of viruses detected in Anopheles;
(c) the Venn diagram shows the number of viruses detected in the Anopheles per detection method or
in combination.

Viral detection in Anopheles was carried out by methods such as culture-dependent,
immunological, molecular and metagenomics. For decades, the combination of culture-
dependent and immunological methods allowed the detection of a high number of viruses
in Anopheles; however, in just 14 years of the 354 viral reports, 127 were achieved with omics
technologies, and most of them correspond to ISVs. The former demonstrates a trend in the
discovery of ISVs after the appearance of massive sequencing technologies (Figure 2b,c).
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3.2.1. Arboviruses and Probable Arboviruses Detected in Anopheles

Thirty-five arboviruses and twenty-four probable arboviruses were reported in Anophe-
les (Tables 1 and S1). The arboviruses more frequently detected were the Eastern equine
encephalitis virus (EEEV), Tensaw virus (TENV), West Nile virus (WNV), Japanese en-
cephalitis virus (JEV), Ross River virus (RRV) and the O’nyong-nyong virus (ONNV).
The arboviruses families more often detected are Peribunyaviridae, Togaviridae, Flaviviridae
and Reoviridae (Figure 2a). The studies reporting the highest number of arboviruses and
probable arboviruses in wild-caught Anopheles were conducted with mosquitoes collected
in the USA (30.5%), Australia (12.4%), China (10.0%) and Kenya (7.1%) (Figure 3, Table S1).

Table 1. Most abundant arboviruses and probable arboviruses detected in wild-caught Anopheles
mosquitoes worldwide.

Virus Name
(Abbreviation) Country Anopheles Species References *

Eastern equine encephalitis
virus
(EEE)

USA

An. crucians [22–25]

An. crucians complex [26]

An. punctipennis [25,27,28]

An. quadrimaculatus [23,25,27–29]

Tensaw virus
(TENV) USA

An. crucians [22,25,30–34]

An. crucians complex [26]

An. quadrimaculatus [22,31,32]

West Nile virus
(WNV)

Israel
An. coustani [35]

An. tenebrosus [36]

Madagascar
An. coustani [37]

An. pauliani [37,38]

Romania
An. hyrcanus [39]

An. maculipennis [39]

Serbia An. maculipennis [40]

Turkey An. claviger [41]

USA

An. atropos [42]

An. crucians [43]

An. franciscanus [44]

An. punctipennis [45–47]

An. quadrimaculatus [43]

An. walkeri [45]

Japanese encephalitis virus
(JEV)

China An. sinensis [48–51]

Philippines An. annularis [52]

India

An. barbirostris [14]

An. pallidus [14]

An. peditaeniatus [53]

An. subpictus [14,54,55]

Indonesia
An. annularis [56]

An. vagus [56]

Malaysia Anopheles spp. [57]

Taiwan An. sinensis [58]
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Table 1. Cont.

Virus Name
(Abbreviation) Country Anopheles Species References *

Ross River virus
(RRV) Australia

An. amictus [59–61]

An. annulipes [62]

An. annulipes s.l. [59]

An. bancroftii [61]

O’nyong-nyong virus
(ONNV)

Democratic Republic
of Congo Anopheles spp. [63]

Kenya
An. funestus [64,65]

An. gambiae [65]

Uganda
An. funestus [65,66]

An. gambiae [65]

Cache Valley virus
(CVV)

Jamaica An. grabhami [67]

USA

An. punctipennis [68,69]

An. quadrimaculatus [68–71]

An. walkeri [69]

Rift Valley fever virus (RVFV)

Kenya
An. squamosus [72]

Anopheles spp. [73]

Madagascar
An. coustani [74]

An. squamosus [74]

Sudan
An. arabiensis [12]

An. coustani [12]

Getah virus
(GETV)

China An. sinensis [50,75–78]

Malaysia Anopheles spp. [79]

Russia An. hyrcanus [80]

Batai virus
(BATV)

Germany

An. daciae [81]

An. maculipennus s.l. [82]

An. messeae [81]

Italy An. maculipennis [83,84]
* Table S1 displays additional arboviruses that have been identified in wild-caught Anopheles [85–140].

The Peribunyaviridae Family

Most of the arboviruses detected in natural populations of Anopheles mosquitoes corre-
spond to the Peribunyaviridae family, with 23 reports, all belonging to the Orthobunyavirus
genus. The most frequently reported viruses were TENV, Batai (BATV) and Cache Valley
virus (CVV). TENV was detected 18 times among Anopheles crucians and Anopheles quadri-
maculatus in the states of Florida, Georgia and South Carolina in the USA; detections were
performed during surveillance campaigns of arboviruses in mosquitoes [31,33] (Table 1).
Also, TENV was evaluated in laboratory-reared Anopheles quadrimaculatus and Anopheles
albimanus; these mosquitoes showed susceptibility to virus infection and transmission [141]
(Table 2). CVV, an arbovirus distributed in Central and North America, was reported seven
times, mainly in An. quadrimaculatus and Anopheles punctipennis from the USA. In addition,
infection susceptibility and transmission capacity of this virus was demonstrated in An.
quadrimaculatus and An. punctipennis [142,143] (Table 2). Finally, BATV was reported six
times in Italy and Germany, mainly in Anopheles maculipennis (Table 1).
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Less frequently detected orthobunyaviruses include Bwamba virus (BWAV) and Bun-
yamwera virus (BUNV), both of which are endemic arboviruses in East Africa. They were
detected in An. gambiae, An. funestus and Anopheles coustani from Kenya [113,115,124]; also, a
single detection of BWAV was reported in An. funestus from Uganda [66]. Laboratory-reared
An. gambiae showed infection susceptibility for both viruses and transmission capacity
for BUNV [144,145] (Table 2). In addition, Jamestown Canyon virus (JCV), Germiston
virus (GERV), Bozo virus (BOZOV) and Tahyna virus (TAHV) were detected in Anophe-
les; although, there were no studies evaluating infection or transmission in laboratory-
reared mosquitoes.
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Table 2. Viruses that may potentially be transmitted by Anopheles mosquitoes according to the vector incrimination criteria +.

Virus Name
(Abbreviation) Anopheles Species Detected in Natural Populations

(Country/Number of Detections)
Detected during an Outbreak

(Yes/No)
Results of Laboratory Studies

(Viral Infection and Transmission) References *

O’nyong-nyong virus F
(ONNV)

An. gambie Uganda/2, Kenya/1 Yes [65]

IR 75% at 7 dpi with recombinant virus, TR not
determined [4]

Infection, IR not available, TR not determined [146]

Limited infection and spread, with no differences
between transgenic and wild mosquitoes, TR 0% [147]

Studies with a recombinant virus, IR 78%, DR 15% at
6 dpi; IR 84%, DR 25% at 8 dpi, TR not determined [148]

IR 75%, TR 0% at 7 dpi; IR 95%, TR 57% at 14 dpi [149]

Rift Valley fever virus (RVFV) An. coustani Madagascar/1, Sudan/1 Yes [12,74] IR 50%, TR 100% at 8 dpi [150]

Saint Louis encephalitis virus
(SLEV) An. quadrimaculatus USA/1 Yes [106] Infection (IR not determined), transmission 0% [151]

Tensaw virus (TENV) An. quadrimaculatus USA/4 No IR 100% at 10 and 20 dpi, transmission 20% at 14 dpi [141]

Japanese encephalitis virus (JEV) An. subpictus India/4 × Yes [54,55] N/A N/A

West Nile virus (WNV)
An. punctipennis USA/3 Yes [46,47] N/A N/A

An. maculipennis Romania/1, Serbia/1 Yes [37,40] N/A N/A

Bunyamwera virus (BUNV) An. gambiae Kenya/1 No IR 38%, transmission 71% at 14 dpi [144]

Cache Valley virus (CVV)
An. quadrimaculatus USA/3

No IR 100%, transmission 20% at 7 dpi; IR 100%,
transmission 33% at 14 dpi [142]

No IR 100%, TR 0% at 10–19 dpi [143]

An. punctipennis USA/2 No IR 85%, TR 30% at 14–18 dpi [143]

Eastern equine encephalitis virus
(EEEV) An. quadrimaculatus USA/5 No Infection rate not determined; transmission 40% at 10

dpi, 50% at 11 dpi [152]

Myxoma virus §
(MYXV) An. atroparvus England/1 Yes [153] Infectious virion up to 220 dpi in mosquito

mouthparts [154]

Abbreviations: N/A, no laboratory studies were found; IR, infection rate is the percentage of engorged females with viral particles in the body; DR, dissemination rate is the percentage
of engorged females with viral particles in legs/wings; TR, transmission rate is calculated as percentage of engorged females with viral particles in the saliva/salivary glands; dpi, days
post-infection. F The Anopheles mosquito is the confirmed vector. × Detected in males and females during virus outbreaks. § Myxoma virus is not an arbovirus, but there is evidence of
its mechanical transmission by Anopheles to rabbits. + Vector incrimination criteria: 1. Virus recovery from mosquito natural populations, 2. Evidence of mosquito contact with the
vertebrate host, 3. Virus outbreaks and vector co-occurrence in space and time, and 4. Proof of virus transmission under laboratory conditions [155]. * Table S3 displays additional
studies that evaluated virus infection and transmission in laboratory-reared Anopheles [156–184].
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The Togaviridae Family

Anopheles is a recognized primary vector of the O’nyong-nyong virus (ONNV) of the
Togaviridae family. This virus has been detected in An. gambiae and An. funestus in Africa
(Table 1 and Figure 3). In addition, the capacity of laboratory-reared An. gambiae to maintain
the ONNV infection was demonstrated, and one study reported ONNV dissemination to
the mosquito salivary glands (Table 2). Moreover, the Sindbis virus (SINV) was detected in
different Anopheles species from Australia, Kenya, China and Germany (Table 1). Infection
with SINV was reported in laboratory-reared Anopheles freeborni [181] and in An. albimanus,
which also showed virus transmission capacity [180] (Table S3).

The viruses that cause equine and human encephalomyelitis, Eastern equine encephali-
tis virus (EEEV), Venezuelan equine encephalitis virus (VEEV) and Western equine en-
cephalitis virus (WEEV), have also been detected in Anopheles natural populations (Table 1
and Figure 3). EEEV was reported 20 times among An. crucians, An. quadrimaculatus and
An. punctipennis during arbovirus surveillance campaigns or virus outbreaks in the USA
(Table S3). Laboratory studies demonstrated infection of An. punctipennis with EEEV [165],
and An. albimanus and An. quadrimaculatus were competent for transmission [152,165].
Regarding VEEV, it has been detected in An. crucians in the USA and Anopheles pseudopunc-
tipennis in Mexico. A laboratory study demonstrated An. albimanus infection susceptibility
and transmission competence for this virus [184]. Finally, WEEV was detected in An.
punctipennis during an arbovirus surveillance campaign in Iowa, USA [136] (Table S3).

Chikungunya virus (CHIKV) was reported in arbovirus surveillance studies in An.
gambiae from Senegal and An. maculipennis from Iran [122,123]. Also, infection suscep-
tibility to CHIKV was reported in laboratory-reared An. albimanus [162], and infection
susceptibility and transmission capacity in Anopheles stephensi [163] (Table S3).

Other alphaviruses detected in Anopheles natural populations are the Getah virus
(GETV), Ross River virus (RRV), Barmah Forest virus (BFV), Middelburg virus (MDIV)
and Yada yada virus (YYV). RRV is endemic in Australia and other South Pacific islands;
there are nine detection reports among Anopheles amictus, Anopheles annulipes and Anopheles
bancroftii, all during surveillance campaigns of arboviruses in mosquito populations in
Australia. Moreover, GETV, a horse and pig pathogen, was detected on seven occasions
among Anopheles hyrcanus, Anopheles sinensis and Anopheles spp.; the first report of GETV
was from 1974 in Russia and Malaysia [79,80], and the other six in An. sinensis from China
between 2009 and 2021. Finally, BFV, MDIV and YYV were detected only once in Anopheles;
MDIV was detected in An. coustani from Kenya and BFV and YYV in An. annulipes and An.
amictus, respectively, both in Australia (Table S1 and Figure 3).

The Flaviviridae Family

The West Nile virus (WNV) of the Flaviviridae family was detected 17 times in 12
Anopheles species in various countries of Africa, America, Asia and Europe (Table 1 and
Figure 3); 8 of these were from the USA during WNV outbreaks occurred between 2000 and
2002 in the states of New York and Illinois; although, the detections were conducted later,
between 2004 and 2010, 3 of them in An. punctipennis [46,47]. Three detections of WNV in
An. maculipennis and An. hyrcanus were during outbreaks in Serbia and Romania [39,40].
During this systematic review, no laboratory studies were found that evaluated WNV
infection and transmission in Anopheles species.

Other flaviviruses of the same WNV serocomplex, such as Japanese encephalitis virus
(JEV), Saint Louis encephalitis virus (SLEV) and Usutu virus (USUV), have also been
detected in Anopheles natural populations (Table 1 and Figure 3). JEV, the most important
etiologic agent of human encephalitis, was identified 16 times in eight Anopheles species
in Asia; four of these in Anopheles subpictus and two during virus outbreaks in Alappuzha
and Cuddalore districts in India; and of note, JEV was also recovered from An. subpictus
males [54,55] (Table 2). There are four JEV reports on An. sinensis from China; the first
was in 1987 [48], and the most recent one was in 2018 [49]. In addition, there were five
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JEV detections in various Anopheles species from Southeast Asia [52,56–58]. Regarding
SLEV, it was reported three times in An. crucians and An. quadrimaculatus in encephalitis
outbreaks that occurred during the 1960s in Florida and Texas in the USA [30,105,106]. Two
studies demonstrated SLEV infection of laboratory-reared An. quadrimaculatus [151] and
An. maculipennis [176] (Tables 2 and S3). Finally, USUV, an arbovirus that emerged in Italy
in the 1990s, was detected three times in An. maculipennis from Italy [109–111] (Table S1).

Other arboviruses of the Flavivirus genus found in Anopheles included the Zika virus
(ZIKV), detected five times; three of them in An. sinensis from China [93]. Of note, the
Yellow Fever virus (YFV) was identified in Anopheles neivai during a Yellow Fever outbreak
that occurred at the end of the 1940s in Panamá [137] (Table S1).

Other Arboviruses

After the Peribunyaviridae, Togaviridae and Flaviviridae families, the Reoviridae family
is next for the greatest number of viruses detected in natural populations of Anopheles,
with the Banna virus (BAV) and Liao ning virus (LNV) being the most detected (Table S1).
BAV has been detected five times in An. sinensis, in Gansu, Yunnan, Yichang and Hubei
provinces of China. Regarding LNV, it causes human encephalitis, and it is classified as
a probable arbovirus; it was considered to be geographically limited to China, but it was
later isolated from Anopheles populations in Australia on four occasions between 2014
and 2018. Among other arboviruses identified in Anopheles, the Rift Valley fever virus
(RVFV) of the Phenuiviridae family was detected seven times in natural populations of An.
coustani, Anopheles squamosus and Anopheles arabiensis in Africa. In laboratory studies, An.
stephensi and An. coustani were susceptible to infection and had transmission capacity for
RVFV [150,174] (Tables 2 and S3).

3.2.2. Insect-Specific Viruses (ISVs) Detected in Anopheles

Of the 84 ISV detections in Anopheles mosquitoes, 97% of reports were during the
last 14 years (Figure 2b). The highest proportion of these ISVs belonged to the Flaviviridae
and Rhabdoviridae families; however, for a large number of the more recently detected
ISVs, their taxonomic classification at the family level was not possible (Figure 2a). The
countries reporting the highest number of ISVs in Anopheles are China (21.8%), Senegal
(17.6%), Australia (15.1%) and Brazil (10.9%) (Table 3 and Figure 4). The Anopheles
flavivirus (AnFV) and its phylogenetically related variants, AnFV1 and AnFV2, are the ISVs
more frequently detected in Anopheles natural populations, with 14 reports in the African
and European continents (Table 3 and Figure 4). In particular, the Anopheles gambiae
densovirus (AgDNV), a DNA virus of the Parvoviridae family isolated from the Sua5B
cell line of An. gambiae is an attractive candidate for viral paratransgenesis in Anopheles
mosquitoes [160]. This is due to features such as its capacity to infect various tissues of
laboratory-reared An. gambiae larvae and adults and the establishment of a productive
infection that is transmitted horizontally [159,160] (Table S3).

Other ISVs detected in Anopheles mosquitoes are Anopheles C virus (AnCV) and
Anopheles cypovirus (AnCPV), both identified and isolated from natural populations of
An. gambiae from Cambodia and Senegal [185] (Table S2). Under laboratory conditions,
both viruses establish a productive infection and are transmitted transovarially in Anopheles
coluzzii [158]. Similarly, the Dianke virus (DKV) was recently identified in natural popula-
tions of An. funestus, An. gambiae, Anopheles pharoensis and Anopheles rufipes from Senegal.
DKV generates a productive infection in various tissues of An. gambiae [164]. Finally, in
this review, no studies were found that identified Thai-strain densovirus (AThDNV) from
Anopheles natural populations; however, a laboratory study indicated that this virus infects
and is vertically transmitted in laboratory-reared Anopheles minimus [183] (Table S3).



Trop. Med. Infect. Dis. 2023, 8, 459 11 of 26

Trop. Med. Infect. Dis. 2023, 8, x FOR PEER REVIEW 11 of 26 
 

 

Senegal Anopheles spp. [148] 

Culex flavivirus (CxFV) 
China An. sinensis [192] 

Guinea/Mali Anopheles spp. [193] 

Beaumont virus 
Australia An. annulipes s.l. [59] 

Cambodia Anopheles spp. [116] 
Senegal Anopheles spp. [116] 

Xincheng mosquito virus 
Cambodia Anopheles spp. [116] 

China An. sinensis [191] 
Senegal Anopheles spp. [116] 

Tanay virus (TANAV) China An. sinensis [89,194] 
Hubei mosquito virus 2 

(HMV2) China An. sinensis [49,89] 

Wuhan mosquito virus 1 
Cambodia Anopheles spp. [116] 

Senegal Anopheles spp. [116] 

Wuhan mosquito virus 9 
Cambodia Anopheles spp. [116] 

Senegal Anopheles spp. [116] 
Anopheles flavivirus 1 

(AnFV1) 
Guinea/Mali Anopheles spp. [193] 

Liberia An. gambiae [195] 
Anopheles flavivirus 2 

(AnFV2) 
Guinea/Mali Anopheles spp. [193] 

Liberia An. gambiae [195] 
Culex tritaeniorhynchus 

rhabdovirus 
Cambodia Anopheles spp. [116] 

Senegal Anopheles spp. [116] 
Anopheles minimus iri-

dovirus (AMIV) China An. minimus [50,196] 

* Table S2 displays additional ISV that have been identified in wild-caught Anopheles [197–214]. 

 
Figure 4. Worldwide distribution of Insect-Specific Viruses (ISVs) detected in wild-caught Anopheles. Figure 4. Worldwide distribution of Insect-Specific Viruses (ISVs) detected in wild-caught Anopheles.

Table 3. Most abundant Insect-Specific Viruses (ISVs) detected in wild-caught Anopheles mosquitoes
worldwide.

Virus Name/Abbreviation Country Anopheles Species References *

Anopheles flavivirus
(AnFV)

Angola Anopheles spp. [186]

Kenya

An. gambiae [135]

An. gambiae s.l. [187]

An. squamosus [135]

Turkey An. maculipennis s.l. [188]

Karumba virus
(KRBV) Australia An. meraukensis [101,189]

Dianke virus
(DKV)

Senegal

An. funestus [190]

An. gambiae [190]

An. pharoensis [190]

An. rufipes [190]

Xinzhou mosquito virus

Cambodia Anopheles spp. [116]

China An. sinensis [191]

Senegal Anopheles spp. [148]



Trop. Med. Infect. Dis. 2023, 8, 459 12 of 26

Table 3. Cont.

Virus Name/Abbreviation Country Anopheles Species References *

Culex flavivirus (CxFV)
China An. sinensis [192]

Guinea/Mali Anopheles spp. [193]

Beaumont virus

Australia An. annulipes s.l. [59]

Cambodia Anopheles spp. [116]

Senegal Anopheles spp. [116]

Xincheng mosquito virus

Cambodia Anopheles spp. [116]

China An. sinensis [191]

Senegal Anopheles spp. [116]

Tanay virus (TANAV) China An. sinensis [89,194]

Hubei mosquito virus 2 (HMV2) China An. sinensis [49,89]

Wuhan mosquito virus 1
Cambodia Anopheles spp. [116]

Senegal Anopheles spp. [116]

Wuhan mosquito virus 9
Cambodia Anopheles spp. [116]

Senegal Anopheles spp. [116]

Anopheles flavivirus 1 (AnFV1)
Guinea/Mali Anopheles spp. [193]

Liberia An. gambiae [195]

Anopheles flavivirus 2 (AnFV2)
Guinea/Mali Anopheles spp. [193]

Liberia An. gambiae [195]

Culex tritaeniorhynchus
rhabdovirus

Cambodia Anopheles spp. [116]

Senegal Anopheles spp. [116]

Anopheles minimus iridovirus
(AMIV) China An. minimus [50,196]

* Table S2 displays additional ISV that have been identified in wild-caught Anopheles [197–214].

3.2.3. Other Viruses Detected in Anopheles

Although arboviruses and ISVs are the most frequently detected in Anopheles natural
populations, this systematic review reports on other viruses known to infect vertebrates,
plants or bacteria detected in Anopheles (Table 4 and Figure 5). Mosquitoes or other insects
can act as mechanical vectors for some of the viruses that infect vertebrates. For example,
Myxoma virus (MYXV), a virus that causes myxomatosis with the death of domestic
rabbits, was reported twice in Anopheles mosquitoes from England; the first detection was
in Anopheles atroparvus during an outbreak of myxomatosis in Newhaven County in 1954.
Following this outbreak, a laboratory study demonstrated that members of a colony of
semi-hibernating An. atroparvus can maintain MYXV infection up to 220 days post-infection
and act as a mechanical vector of this virus [153] (Table S3). The other detection of MYXV
was in specimens of the An. maculipennis complex collected while feeding on Oryctolagus
cuniculus (European rabbit) in Kent County [215] (Table 2). Lastly, in recent studies, variants
of the Porcine parvovirus (PPV), PPV2, PPV3, PPV4 and PPV6, were detected in Anopheles
natural populations of China, most of them in An. sinensis (Table 4 and Figure 5).
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Table 4. Other viruses detected in wild-caught Anopheles mosquitoes worldwide.

Virus Name/
Abbreviation Category Country Anopheles Species References

Classical swine fever virus
(CSFV) Vertebrates China Anopheles spp. [200]

Common bean-associated
gemycircularvirus

(CBaGmV)
Plants China An. sinensis [89]

Enterobacteria phage phi92 Bacteria China An. sinensis [89]

Escherichia virus CC31 Bacteria China An. sinensis [89]

Myxoma virus (MYXV) Vertebrates England
An. atroparvus [153]

An. maculipennis s.l. [215]

Oat golden stripe virus
RNA1 Plants Cambodia Anopheles spp. [116]

Oya virus (OYAV) Vertebrates Vietnam
An. sinensis [107]

An. vagus [107]

Porcine circovirus 3
(PCV3) Vertebrates China An. sinensis [216]

Porcine parvovirus 2
(PPV2) Vertebrates China

An. sinensis [49,89]

Anopheles spp. [200]

Porcine parvovirus 3
(PPV3) Vertebrates China

An. sinensis [49]

Anopheles spp. [200]

Porcine parvovirus 4
(PPV4) Vertebrates China Anopheles spp. [200]

Porcine parvovirus 6
(PPV6) Vertebrates China Anopheles spp. [200]

Red clover powdery
Mildew-associated

totivirus 2
Plants China An. sinensis [89]

Tobacco streak virus isolate
pumpkin Plants Cambodia Anopheles spp. [116]

Torque teno sus virus 1a
(TTSV) Vertebrates China

An. sinensis [89]

Anopheles spp. [200]

Torque teno sus virus 1b
(TTSV)

Vertebrates
China

An. sinensis [89]

Vertebrates Anopheles spp. [200]

Torque teno sus virus k2
(TTSV) Vertebrates China An. sinensis [89]

Wellfleet Bay virus (WBV) Vertebrates Cambodia Anopheles spp. [116]

Vertebrates Senegal Anopheles spp. [116]
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4. Discussion

During this systematic review, 161 viruses detected in Anopheles natural populations
worldwide were found, as well as 28 viruses infecting Anopheles in laboratory conditions.
Thirty-five of the viruses detected in the natural Anopheles population are arboviruses,
and twenty-four have been classified as probable arboviruses by the CDC’s International
Catalog of Arboviruses [20]. Most of these studies have been conducted in Anopheles species
of countries of Oceania, East and Southeast Asia, Europe and North America. The majority
of studies and records of viruses detected in Anopheles are from the Global North, and
fewer are from African, Latin American, Central and South Asian countries. Notably, this
distribution coincides with the level of investment in science at a historical level in those
countries [217].

For approximately eight decades, the methodologies or techniques used for viral
detection in Anopheles have included cultured-dependent, immunological and molecular
methods (Figure 2c); however, since the application of the Next Generation Sequence
(NGS) methodologies, the number of viruses detected in Anopheles has increased exponen-
tially [15,218] (Figure 2b,c). The use of NGS as a tool for viral detection evidenced that
the utilization of animal models and cell cultures biased the reports towards the arboviral
component, given that ISVs cannot be recovered in those systems [7]. In just a decade
(2011–2021), NGS contributed to the detection of 97% of ISVs in Anopheles, which are
the most abundant viral component in this mosquito population; in fact, they represent
approximately ~52% of the total number of viruses reported in the scientific literature.

Most ISVs have been described in mosquitoes of the Culicidae family, mainly in the
Aedes, Culex and Anopheles genera [219,220], known as Mosquito-specific viruses (MSVs).
Of interest, some of the reported MSVs have the ability to generate a productive infection in
their host and can be transmitted vertically or horizontally, as is the case of AgDNV, AnCV,
AnCPV and DKV [164,185,221]. The ISVs have the potential to be used in biological control
strategies against disease vectors; for example, AgDNV is a virus susceptible to genetic
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manipulation which could function as an expression vector in Anopheles mosquitoes on a
viral paratransgenesis strategy [221].

The discovery of ISVs in Anopheles has also contributed to the field of evolutionary
virology; for example, a close phylogenetic relationship has been established among some
ISVs with medically relevant arboviruses [222]. As such, the Eilat Virus (EILV) of the
Togaviridae family, isolated from Anopheles coustani in Egypt [223], is at the base of the
phylogeny of the Alphavirus genus and is closely related to WEEV, although it is unable
to infect vertebrate cells [224,225]. A similar relationship was found between ISVs of
the Bunyavirales order and the Flavivirus genus [157,226]. These observations led to the
hypothesis that arboviruses originated from ISVs circulating in mosquitoes and other
vectors [223,224,227]. Moreover, some studies showed viral exclusion by superinfection of
EILV and arboviruses of the Alphavirus genus in C7/10 cells of Aedes albopictus, given their
genetic similarities [225]. In addition, because of the genetic similarities, EILV has been
used as a platform for vaccine development against the WNV and EEEV viruses [228] and
also as a model for the generation of antigens for the diagnosis of CHIKV in ELISA-type
assays [229].

Furthermore, this review found 59 different arboviruses and probable arboviruses
reported in Anopheles natural populations. Although their presence does not necessarily
indicate that Anopheles is an arbovirus vector, various studies suggested that some Anopheles
species could transmit arboviruses in addition to ONNV (Table 2). This assumption is
supported by the following vector incrimination criteria: 1. Virus recovery from mosquito
natural populations, 2. Evidence of mosquito contact with the vertebrate host, 3. Virus
outbreaks and vector co-occurrence in space and time, and 4. Proof of virus transmission
under laboratory conditions [155]. For example, RVFV was detected in the anthropophilic
species An. coustani during outbreaks in Madagascar [74] and Sudan [12], and it was
competent for RVFV transmission under laboratory conditions [150]. Similarly, the anthro-
pophilic species An. quadrimaculatus was found infected with SLEV during an epidemic
outbreak [106], and it was susceptible to SLEV infection under laboratory conditions [151].
Furthermore, various studies often reported arbovirus isolated during virus outbreaks
(Table 2); conversely, there were no studies evidencing infection or transmission in Anophe-
les laboratory-reared mosquitoes by other arbovirus. As such, An. subpictus has been
found with JEV in natural populations in India during JEV outbreaks [55]. In addition,
JEV was detected in An. subpictus males, a possible indication of infection by transmission
through transovarial/transovum or sexual route [54]. Also, WNV was detected in An.
punctipennis in the USA and An. maculipennis in Romania and Serbia during WNV epidemic
outbreaks [37,40].

In addition to arboviruses and ISVs, some studies detected specific viruses of verte-
brates, plants and bacteria in Anopheles. Plant viruses detected in mosquitoes have been
associated with acquisition through contact while resting on vegetation or during nectar
feeding [230,231]. Their presence does not indicate that the mosquito is acting as their
biological vector, but probably as a mechanical vector, facilitating their circulation in the
ecosystems; though, the role of the mosquitoes in plant viruses spread has to be further
explored [231–233].

Regarding the vertebrate-specific viruses detected in Anopheles, most are acquired
by mosquito contact with host skin or during blood meal ingestion [144]. Some of these
viruses are mechanically transmitted by vectors [231]; when a mosquito contaminates its
mouthparts and head while in contact with a viremic host, it becomes able to transmit
the virus to another host [234,235]. For instance, some works suggest that Anopheles can
be a mechanical vector of vertebrate viruses such as MYXV, which was detected in An.
atroparvus during an outbreak of myxomatosis in rabbits; also, An. atroparvus can maintain
MYXV for up to 220 dpi and transmit it mechanically [154] (Table S3). Another virus, PPV,
was repeatedly detected in An. sinensis from pig farms in China [49]. Although there is
no evidence of mechanical transmission of PPV by mosquitoes, this virus can resist and
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survive on surfaces (e.g., metals, plastics, etc.), which enables its transmission to susceptible
hosts [236], playing a role in their spread [237].

Finally, regarding the interaction of viruses with the Plasmodium parasite, few studies
have addressed this subject. One study found that co-infection of RVFV and Plasmodium
enhances the transmission of RVFV in An. stephensi. This is because Plasmodium disrupts
the salivary gland barriers, facilitating the arbovirus passage [175]. Although virus-like
particles have been detected in Plasmodium sporozoites [238], to date, there are no viruses
infecting Plasmodium that have been characterized. Future works aimed to investigate the
viruses harbored by both the parasite and host will contribute to elucidating trans-kingdom
interactions among viruses, pathogens and mosquitoes; this research line has the potential
to generate useful knowledge for the design of control strategies.

In conclusion, the knowledge of the viral component in Anopheles generated to date
demonstrates the relevance of this topic for public health and basic science. The accelerated
discovery of viruses associated with Anopheles in recent years has greatly contributed to
the understanding of microbial community diversity virus–host relationships and has
increased research on the potential practical applications of ISVs [7,221,222].

Despite these advances, more research on the viral component of Anopheles is needed,
mostly when comparing the available information for other epidemiologically important
mosquitoes such as Aedes and Culex. Also, a better understanding of the interaction dynam-
ics between Anopheles and its arboviruses and their potential transmission is required. This
is even more relevant in tropical regions where Anopheles is distributed, and arboviral dis-
eases are often undiagnosed or confused with other febrile illnesses or malaria [6,239,240].
Furthermore, the Anopheles species with anthropophilic tendencies are constantly exposed
to arboviruses during blood-feeding on humans and also on other vertebrates, possibly
enabling the spread of viral pathogens. Finally, the accelerated anthropogenic alterations of
wild environments are causing modifications in Anopheles species distribution, affecting
the dynamics of disease transmission [241,242]. Altogether, this information reinforces the
relevance of implementing the surveillance of viruses harbored and potentially transmitted
by Anopheles mosquitoes, especially those of public health importance.
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