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Abstract: COVID-19 has currently become a global pandemic and caused a high number of infected
people and deaths. To restrain the coronavirus spread, many countries have implemented restrictions
on people’s movement and outdoor activities. The enforcement of health emergencies such as
quarantine has a positive impact on reducing the COVID-19 infection risk, but it also has unwanted
influences on health, social, and economic sectors. Here, we developed a compartmental mathematical
model for COVID-19 transmission dynamic accommodating quarantine process and including
tuberculosis and diabetic people compartments. We highlighted the potential negative impact
induced by quarantine implementation on the increasing number of people with tuberculosis and
diabetes. The actual COVID-19 data recorded in Indonesia during the Delta and Omicron variant
attacks were well-approximated by the model’s output. A positive relationship was indicated by
a high value of Pearson correlation coefficient, r = 0.9344 for Delta and r = 0.8961 for Omicron
with a significance level of p < 0.05. By varying the value of the quarantine parameter, this study
obtained that quarantine effectively reduces the number of COVID-19 but induces an increasing
number of tuberculosis and diabetic people. In order to minimize these negative impacts, increasing
public awareness about the dangers of TB transmission and implementing a healthy lifestyle were
considered the most effective strategies based on the simulation. The insights and results presented in
this study are potentially useful for relevant authorities to increase public awareness of the potential
risk of TB transmission and to promote a healthy lifestyle during the implementation of quarantine.

Keywords: COVID-19; tuberculosis; diabetes; mathematical model; quarantine; control strategy

1. Introduction

Since 2020, the coronavirus disease 2019 (COVID-19) pandemic has impacted countries
globally [1–4]. As of 11 November 2022, about 630 million cases and 6.5 million deaths
have been reported [5]. The unprecedented infection and mortality rates have led to the
implementation of various public health measures, i.e., lockdowns and social distancing
regulations. While these efforts are well-intended to break the chain of transmission, several
deleterious health and socioeconomic consequences have been observed [6].

In the field of tuberculosis (TB) management, the COVID-19 pandemic has reversed
decades of progress toward TB eradication. Quarantines and stay-at-home measures have
increased the risk of TB transmission, particularly among household members [7,8]. This
is reflected by the findings from Aznar et al. [9] that observed a significant increase in
active TB cases among household contacts in 2020, when compared to 2019. Given that
the pandemic also causes a general decrease in healthcare access and increasing poverty
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rates, both known TB determinants. The number of tuberculosis incidence and mortality
are projected to increase by 5–15% within the next five years. This equals hundreds of
thousands of additional TB deaths globally [7,8].

The dire situation is potentially exacerbated by comorbidities resulting from quarantine-
related lifestyle changes. Several systematic reviews reported that globally, the COVID-19
quarantine measures have led to less physical activity, poorer diet, and a more sedentary
lifestyle, all of which are risk factors for many comorbidities, including diabetes [6,10]. In
addition, another systematic review reported that lockdowns are associated with deterio-
rating glycemic control among patients with type-2 diabetes mellitus [11]. Uncontrolled
diabetes is a known risk factor for TB infections, poor treatment outcomes, and mortality.
In six countries with the highest TB cases, about 10–18% of TB cases can be attributed to
diabetes. Overall, diabetes increases the risk of active TB by two- to four-fold [12]. Despite
this relationship between TB, diabetes, and COVID-19, however, no study has attempted to
model the impact of the pandemic on TB-DM co-occurrence and case management.

This paper aims to investigate the impacts of lockdowns and regional quarantines
during the COVID-19 pandemic on TB-DM patients through a modelling study in Indonesia,
a country with high burden of TB. Here, we established a mathematical model that divides
human population into compartments of three diseases: COVID-19, tuberculosis, and
diabetes mellitus. The unobserved parameters were estimated to obtain the best data fitting
between the COVID-19 data and the model’s output that accommodates the quarantine
process. The actual data used in this study is a weekly report of the COVID-19 cases
in Indonesia during June 2021-September 2021 and December 2021-April 2022, when
Indonesia experienced the Delta and Omicron variant attacks, respectively. The Indonesian
government decided to implement the emergency social activity restriction (PPKM darurat)
during these periods. In addition, we proposed some strategies that play essential roles in
both limiting COVID-19 infection and reducing the negative impacts on TB-DM patients.

2. Material and Methods
2.1. Mathematical Model

In our mathematical model, we made some modifications to the standard disease
transmission model that describes the dynamic of infection. The model includes com-
partments of three diseases: COVID-19, tuberculosis, and diabetes. TB and diabetes were
selected in this model because of the significant impact of the COVID-19 pandemic on
TB medical treatment and diabetes progression, especially during the implementation
of quarantine and public activity restriction. TB is an infectious disease whose risk of
transmission increases during home quarantine among household members. Meanwhile,
diabetes is not a contagious disease but it is a co-morbid disease that increases the mortality
rate of COVID-19 patients. Public and social measures that restrict residents’ activities at
home possibly change lifestyles that implicate the development of diabetes.

The actual problem is complex and complicated, so we establish a model that simpli-
fies it by considering only the basic and essential compartments for COVID-19, TB, and
diabetes. The human population (N) was divided into twelve compartments: susceptible
(S); quarantined susceptible (Q1); exposed coronavirus (Eco) i.e., individuals were recently
exposed by coronavirus and not infectious; infected coronavirus (Ico) i.e., individuals
were infected and infectious; quarantined infected coronavirus (Q2) i.e., individuals were
infected, infectious, and treated; recovered coronavirus (Rco) i.e., individuals were recov-
ered from coronavirus infection; latent tuberculosis (Ltb) i.e., individuals were recently
exposed tuberculosis and not infectious; infected tuberculosis (Itb) i.e., individuals were
active TB and infectious; diagnosed tuberculosis (Dtb) i.e., individuals were active TB and
treated; recovered tuberculosis (Rtb) i.e., individuals were recovered from tuberculosis
infection; diabetes without complications (Ddm); and diabetes with complications (Cdm).
The complete transmission process is shown as transfer diagram in Figure 1.
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Figure 1. A schematic diagram of the disease transmissions including COVID-19, tuberculosis, and
diabetes mellitus. The dashed line indicates the indirect effect of the quarantine implementation.

The resulting transmission model is given by the following nonlinear ordinary differ-
ential equations system:

dS
dt

= µN −
(

β1 Ico + β2Q2

N

)
S −

(
ρ1 Itb + ρ2Dtb

N

)
S − (δ1 + θ1 + µ)S

dQ1

dt
= θ1S −

(
ε1 Ico + ε2Q2

N

)
Q1 −

(
τ1 Itb + τ2Dtb

N

)
Q1 − (δ2 + µ)Q1

dEco

dt
=

(
β1 Ico + β2Q2

N

)
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(
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N

)
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dIco

dt
= αEco − (θ2 + γ + d1 + µ)Ico

dRco
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dQ2
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= θ2 Ico − (γ + d1 + µ)Q2
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=

(
ρ1 Itb + ρ2Dtb

N

)
S +

(
τ1 Itb + τ2Dtb

N

)
Q1 − (φ1 + γ1 + µ)Ltb

dItb
dt

= φ1Ltb − (Kφ2 + γ2 + d2 + µ)Itb

dDtb
dt

= Kφ2 Itb − (γ3 + d2 + µ)Dtb

dRtb
dt

= γ1Ltb + γ2 Itb + γ3Dtb − µRtb

dDdm
dt

= δ1S + δ2Q1 + ωCdm − (ν + µ)Ddm

dCdm
dt

= νDdm − (ω + d3 + µ)Cdm

(1)

The recruitment rate of susceptible is equal to human average life expectancy, µh.
Compartments Q1 and Q2 are the additional compartments to accommodate the implemen-
tation of the COVID-19 quarantine. Persons in compartment S are transferred into Q1 with
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quarantine rate θ1 and persons in compartment Ico are transferred into Q2 with quarantine
rate θ2. Quarantined susceptibles Q1 are still possible to be infected by coronavirus when
they have a contact with Ico and Q2, but at a different infection rate with susceptible S.
Persons in compartment Q1 can be transferred into latent tuberculosis Ltb when they are in
a close contact with infectious and active TB individuals, Itb or Dtb, during the quarantine
at home. The portion of susceptibles (S) who develop diabetes without complication is
δ1 which is shown by green dashed lines in Figure 1 considering that diabetes is not an
infectious disease. Persons in compartment Q1 also can develop diabetes as an indirect
effect of quarantine through lifestyle changes and be transferred into compartment Ddm
with portion δ2. In addition, people with diabetes who initially do not expose a complica-
tion can progress into diabetes with complications (Cdm) at rate ν, and diabetic people who
recover from complications are assumed to still suffer from diabetes with rate ω.

There are disease-related deaths caused by the COVID-19 with rate d1, tuberculosis
with rate d2, and diabetes with rate d3, then we assumed that the total population N is not
constant. The dynamic of the total population N is given by the following equation:

dN
dt

= µ(N − X)− d1(Ico + Q2)− d2(Itb + Dtb)− d3Cdm

where X = S + Q1 + Eco + Ico + Rco + Q2 + Ltb + Itb + Dtb + Rtb + Ddm + Cdm.
Furthermore, to accommodate the inability of health center to optimally diagnose

and treat the infected tuberculosis during the implementation of quarantine, we defined a
constant K influencing the diagnosis rate φ2 as follow:

K =

{
1 if θ1 = 0
0.5 if 0 < θ1 ≤ 1

In this model, the population change proportion for each compartment is described
by the dynamic of equation system (1). The descriptions and values of each parameter are
shown in Table A1 for the fixed parameter values.

2.2. Data Fitting

The raw data used in the present study is a weekly recorded COVID-19 cases. The
mathematical model will be fitted to a data recorded by Indonesian Health Ministry during
the Delta variant and Omicron variant attacks. The Delta variant of the coronavirus has
been detected in Indonesia since early June 2021 and the high cases were reported in
July 2021 to August 2021, followed by high number of deaths. Indonesia experienced the
third wave of the COVID-19 infection with the Omicron variant of the coronavirus in mid-
December 2021 to April 2022. The Indonesian government announced a plan to implement
the emergency social activity restriction (PPKM darurat) in early July 2021 and mid-January
2022 to anticipate the worst possible consequences caused by the infection of these two
variants. Infected corona patients become the priority to get medical treatment during
the implementation of quarantine to reduce the number of viral transmission as soon as
possible. The inability of health centers to provide optimal services during quarantine
induces the other acute health threats to not be handled and treated properly.

The values of unobserved parameter, (β1, β2, ε1, ε2, ρ1, ρ2, τ1, τ2, δ1, δ2, φ2), were esti-
mated by minimizing error between the result of numerical simulation and the actual
data. We used Spiral Dynamics Optimization (SDO) method developed by Tamura and
Yasuda [13] to minimize root-mean-square error (RMSE) between the data of infected
COVID-19 and the model output (Ico + Q2). Further, we implemented 100 bootsrap re-
alizations to obtain the values of parameter with 95% confidence interval. The values of
the remaining parameters were obtained from the literature and the references were cited
therein (see Table 1 for the value of the fixed parameters).

The initial value of the total population, N(0), approximates the total population in
Indonesia at 270 million people. The initial values of COVID-19 compartments were ob-
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tained from data retrieved from https://www.covid19.go.id (accessed on 10 July 2022) [14]
in the first week of June 2021 for Delta period and third week of December 2021 for Omi-
cron period. In early June 2021, the number of infected was approximately 40 thousand
and the number of recovered was 1.7 million, while in mid-December 2021, there were
1287 infected people and around 4.1 milion people recovered from the coronavirus infec-
tion. We assumed that only 25% of infected people are quarantined in hospital to receive
medical treatment. The number of people exposed by coronavirus but not infectious were
considered to be 100 thousand in first week of June 2021 and 50 thousand in third week of
December 2021. Using the information obtained from https://www.tbindonesia.or.id (ac-
cessed on 10 July 2022) [15], we set the initial value Itb(0) = 200, 000 and Dtb(0) = 150, 000
at the beginning of Delta period. In the numerical simulation, we also used the initial
value Ltb(0) = 500, 000 and Rtb(0) = 2, 000, 000. The number of people with diabetes in
Indonesia is about 10.8 million, and we assumed that about 25 percent of diabetics have
complications. For the Omicron period in mid-December 2021, the initial values were
adjusted with some increases from the Delta period.

Furthermore, to accomodate the implementation of quarantine by government, we
defined parameter θ1 that denotes the quarantine rate of susceptible who stay at home to re-
strict social interaction, and parameter θ2 that represents the quarantine rate of coronavirus
infected people who get medical treatment from health services during the pandemic. In
this research, the quarantine refers to public and social measures that restrict people’s
movements and isolate them at home. The implementation of emergency social activity
restriction (PPKM darurat) by Indonesian government was considered as the macro quar-
antine, because it restricted most of non-critical public activities. We assumed that the
higher the quarantine level, the lower the ability of health services to accommodate and
provide medical treatment for infected people due to the increased number of hospital
visits during the COVID-19 pandemic. Further, the value of parameter θ2 decreases when
the quarantine was implemented. Table 1 shows the value of quarantine parameters used
in numerical simulation for three quarantine scenarios.

Table 1. The variations of quarantine rate value based on the level of quarantine.

Parameter Description
Level of Quarantine

No Micro Macro

θ1 Quarantine rate from susceptible to quarantined susceptible 0.00 0.30 0.75
θ2 Quarantine rate from infected coronavirus to quarantined infected 0.95 0.85 0.75

2.3. Control Strategies

Some continuous controls were modelled by adding a reduction or addition, ui(t)
where t represents time in weekly unit, in the differential equation of state related to the
controls. The proposed control strategies in this work help to reduce the risk of tuberculosis
infection and the risk of diabetes developement during the implementation of quarantine.
We added to the mathematical model three control functions (u1(t), u2(t), u3(t)) associated
to tuberculosis interventions and two control functions (u4(t), u5(t)) related to diabetes
interventions. The interpretation of each control is given as follow:

1. Control u1(t): proportion of awareness program for quarantined susceptible to restrict
the interaction with tuberculosis suspects in the environment.

2. Control u2(t): proportion of awareness program for latent tuberculosis by intensifying
the latent identification and putting under treatment.

3. Control u3(t): proportion of diagnosis program for infected tuberculosis by managing
a specific team for diagnosis or optimizing the use of telemedicine.

4. Control u4(t): proportion of awareness program for quarantined susceptible by im-
plementing healthy lifestyle and exercising inside the house.

5. Control u5(t): proportion of awareness program for diabetic people without compli-
cations by applying healthy diet and diet tracking in quarantine period.

https://www.covid19.go.id
https://www.tbindonesia.or.id
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The resulting states completed by the controls for each compartment are given by the
equations shown in Appendix A.2. In the numerical simulation, we also combined controls
(u1, u2, u3) to reduce the risk of tuberculosis and controls (u4, u5) to minimize the risk of
diabetes. We measured the efficacy of each control strategy by calculating the percentage of
reduced cases for some noticed compartments during the time observation.

3. Results

In this section, we present the result of numerical simulation using the estimated
parameter values that minimize error between the actual COVID-19 data during the Delta
and Omicron variant outbreaks with the model’s output. The actual COVID-19 data is data
that indicates the weekly number of people infected with COVID-19 recorded by Indonesian
government. The output of mathematical model refers to the result of numerical simulation
that shows the number of COVID-19 infected people, Ico + Q2, in a week. We examined
the effect of quarantine implementation by comparing the dynamic of TB and diabetes
compartments in three scenarios: no quarantine, micro quarantine, and macro quarantine.
In addition, we suggested the implementation of some control strategies to reduce the
risk of tuberculosis transmission and diabetes development in quarantine period. We
considered the variations of control parameter separately, and interpreted the simulation’s
result for each proposed control.

3.1. Numerical Simulation of Mathematical Model Accomodating Quarantine Process

The weekly data of COVID-19 cases during the observation time was fitted with the
output of mathematical model to obtain the estimated parameters. Table 2 displays the
estimated values for each unobserved parameter with 95% confidence interval obtained
from 100 bootstrap realizations. As can be seen in Figure 2a,b, the results of simulation
produced a good data fitting in both of Delta period and Omicron period. In order to assess
the goodness of fit, we calculated the Pearson correlation coefficient between the actual
data and the model’s output, denoted by coefficient rd for Delta and ro for Omicron. The
calculation yielded rd = 0.9343 and ro = 0.8961 with significance level p < 0.05, indicating
a strong positive relationship between data and simulation result.

Table 2. Description of parameters used in mathematical model with estimated value.

Parameter Description Delta (95% CI) Omicron (95% CI)

β1 Infection rate of susceptible by contact with infected 4.411 (4.077, 4.745) 5.569 (5.313, 5.825)
β2 Infection rate of susceptible by contact with quarantined infected 6.125 (5.671, 6.580) 6.371 (6.001, 6.742)
ε1 Infection rate of quarantined susceptible by contact with infected 3.595 (3.414, 3.776) 4.429 (4.372, 4.486)
ε2 Infection rate of quarantined susceptible by contact with quarantined infected 5.985 (5.528, 6.442) 5.129 (4.763, 5.494)
ρ1 Infection rate of susceptible by contact with infected TB 0.335 (0.291, 0.378) 1.884 (1.624, 2.144)
ρ2 Infection rate of susceptible by contact with diagnosed TB 0.349 (0.307, 0.391) 1.628 (1.302, 1.954)
τ1 Infection rate of quarantined susceptible by contact with infected TB 0.486 (0.426, 0.545) 2.101 (1.869, 2.333)
τ2 Infection rate of quarantined susceptible by contact with diagnosed TB 0.492 (0.436, 0.548) 2.839 (2.672, 3.007)
φ2 Diagnosis rate of infected TB 0.497 (0.438, 0.555) 2.237 (1.905, 2.569)
δ1 Probability of susceptible developing diabetes 0.091 (0.084, 0.098) 0.067 (0.062, 0.072)
δ2 Probability of quarantined susceptible developing diabetes 0.129 (0.121, 0.136) 0.085 (0.076, 0.093)

For the Delta period, the actual data and model’s output indicate same period of
infection peak, the second week of July 2021. The highest number of COVID-19 cases
shown in the recorded data was 341,749, while the model resulted 288,169 cases at the
peak of infection. The number of COVID-19 cases started to decline significantly in the
subsequent weeks. For the Omicron period, the peak of infection shown by data and
model’s output is in the third week of February 2022. The number of infected people on
this infection peak that recorded in actual data is 385,769 cases, whereas the simulation
result indicates that the potential highest case number is only 286,566 cases.

We used the estimated parameter values in Table 2 to simulate the dynamic of TB and
diabetes compartments in three scenarios. In Figure 2c,d, we observed that the number of
COVID-19 infected people, (Ico + Q2), decreased when the quarantine was implemented
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during the Delta and Omicron variant outbreaks. The implementation of quarantine not
only reduced positive cases but also led to the early occurrence of infection peak; thereby,
the emergency period lasted shorter. The summary of simulation results without or with
accomodating the implementation of quarantine was given in Table 3. The implementation
of micro quarantine reduced 51.48 percent of COVID-19 cases in the Delta period and
69.76 percent in the Omicron period. As expected, a higher decrease in the number of
COVID-19 cases was resulted from the implementation of macro quarantine that is 64.17%
and 79.60% for the Delta and Omicron period, respectively. When micro and macro
quarantine were implemented in Delta period, the number of infected individuals on the
peak of infection were 47.40% and 60.76%, respectively, lower than no quarantine scenario.
In Omicron period, the percentages of case reduction in the infection peak affected by micro
and macro quarantine implementation were 69.19% and 79.27%. The peak of infection
shifted two weeks later when the quarantine was not implemented. These implied that
quarantine enforced by the government could significantly limiting the spread of COVID-19
infection, particularly during the Delta and Omicron variant outbreaks.

(a) (b)
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Figure 2. The results of data fitting between the actual COVID-19 data in Indonesia and the output of
model during the period of Delta and Omicron variant were shown in (a,b), respectively. Further,
figure (c,d) show the number of COVID-19 infected people, Ico +Q2, based on the simulation results of
some quarantine scenarios when Indonesia experienced Delta and Omicron variant attacks. (a) Data
fitting during Delta period. (b) Data fitting during Omicron period. (c) The number of COVID-19
infected people for each quarantine scenario during Delta period. (d) The number of COVID-19
infected people for each quarantine scenario during Omicron period.

In Table 2, we observed that infection rate parameters of quarantined susceptible by
contact with infected and diagnosed TB, τ1 and τ2, were higher than the infection rates
of susceptible, ρ1 and ρ2, in both the Delta and Omicron periods. This implied a higher
number of tuberculosis cases during the quarantine. Figure 3 illustrates how micro and
macro quarantine increase the number of TB cases, Itb and Dtb. We considered three values
for θ1 : 0, 0.3, and 0.75. We noticed that as the quarantine rate (θ1) increases, the number of
Itb and Dtb increase. When micro and macro quarantine were implemented during Delta
variant outbreak, the number of active infected TB were 13.24% and 14.09%, respectively,
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higher than the number Itb of no quarantine scenario at the end of observation time. Similar
results were also seen in the Omicron period where Itb during micro and macro quarantine
scenarios were 36.18% and 37.5% higher than no quarantine. The significant increase
in the number of compartment Itb led to the increment in the number of tuberculosis
diagnosed individuals despite the diagnosis ability of health services decreased during
pandemic. In the last week of September 2021, the number of diagnosed TB of micro
and macro quarantine were 8.04% and 9.91%, respectively, higher than the scenario of
no implementation of quarantine. In the last week of April 2022, there were 47.10%
and 55.21% higher potential diagnosed TB for micro and macro quarantine, respectively.
Table 4 displays the summary of quarantine effect on the increasing number of people with
tuberculosis and diabetes during the observation time, the Delta and Omicron periods.

Table 3. The summary of COVID-19 infected people, Ico + Q2, in three scenarios of quarantine.

Variant Indicator No Quarantine Micro Quarantine Macro Quarantine

Delta (B.1.617.2)

Total infected individuals in 17 weeks 6,691,270 3,246,557 2,397,179
Peak of infection 4th week of July 2021 3rd week of July 2021 2nd week of July 2021
Highest potential number of cases 734,323 386,249 288,169
Number of cases at the end of observation 117,673 16,968 9201
Percentage of reduced cases - 51.48% 64.17%

Omicron (B.1.1.529)

Total infected individuals in 19 weeks 11,188,961 3,383,183 2,282,320
Peak of infection 1st week of March 2022 4th week of February 2022 3th week of February 2022
Highest potential number of cases 1,382,465 426,239 286,566
Number of cases at the end of observation 88,804 4155 2021
Percentage of reduced cases - 69.76% 79.60%
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Figure 3. The negative impact of quarantine during Delta variant and Omicron variant of the COVID-
19 pandemic to the increasing number of tuberculosis infected people, Itb and Dtb. (a) The number of
Itb during Delta period. (b) The number of Itb during Omicron period. (c) The number of Dtb during
Delta period. (d) The number of Dtb during Omicron period.
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Table 4. The number of infected tuberculosis and diabetic people in the end of observation time.

Variant Compartment No Quarantine Micro Quarantine Macro Quarantine

Delta (B.1.617.2)

Infected tuberculosis (Itb) 4.39 × 105 4.97 × 105 5.01 × 105

Diagnosed tuberculosis (Dtb) 1.38 × 106 1.49 × 106 1.51 × 106

Diabetes without complications (Ddm) 1.77 × 108 1.93 × 108 1.96 × 108

Diabetes with complications (Cdm) 2.72 × 107 2.96 × 107 3.03 × 107

Omicron (B.1.1.529)

Infected tuberculosis (Itb) 3.04 × 106 4.14 × 106 4.18 × 106

Diagnosed tuberculosis (Dtb) 2.59 × 107 3.81 × 107 4.02 × 107

Diabetes without complications (Ddm) 1.35 × 108 1.38 × 108 1.39 × 108

Diabetes with complications (Cdm) 2.50 × 107 2.63 × 107 2.66 × 107

In Table 2, the probability of quarantined susceptible developing diabetes, δ2, was
higher than the probability of susceptible developing diabetes, δ1. This indicated that
the implementation of quarantine possibly caused the increase in the number of people
with diabetes. We presented the effect of quarantine rate θ1 to the number of diabetic
without complication (Ddm) and diabetic with complications (Cdm) in Figure 4. Here,
we also considered three values of susceptible quarantine rate: θ1 = 0 (no quarantine),
θ1 = 0.3 (micro quarantine), and θ1 = 0.75 (macro quarantine). We observed that the
stricter quarantine implementation, that was, greater values for θ1, the higher number
of individuals developing diabetes (see Table 4 for the number of people with diabetes
without and with complications). More precisely, at the end of Delta variant observation
time, micro quarantine increased the number of diabetes without complications 9.53%
higher than no quarantine scenario, and macro quarantine led 10.93% increased cases. On
the other hand, the number of diabetes with complications in the last week of September
2021 increased 8.94% and 11.62% in case the government decided to enforce micro and
macro quarantine. For the Omicron period, micro quarantine resulted 2.22% and 5.20%
higher number of Ddm and Cdm, respectively. When the macro quarantine option was
selected, it was possible that the number of diabetic without complications increases 2.96%
and the number of diabetic with complications increases 6.40% in the end of observation.

3.2. Effect of Tuberculosis and Diabetes Control Strategies during COVID-19 Quarantine

We proposed some control strategies in this work to reduce the risk of tuberculosis and
diabetes during the implementation of quarantine that focus at mitigating the COVID-19
disease transmission. We added three control functions (u1, u2, u3) related to the reduction
of infected tuberculosis, and two controls (u4, u5) intended to minimize the probability of
developing diabetes. We assumed that the controls were continuous defined by a constant
rate. Each control simulated both separately and combined. Here, the percentage of
reduction in the total number of cases during observation time compared to no quarantine
scenario was chosen to illustrate the efficacy of each control strategy.

For the first scenario, we used merely the control u1(t). This control intended to
increase public awareness to protect them from tuberculosis risk during quarantine at
home. The awareness program were carried out by direct campaigns or by using mass
media and social media to inform the citizens about the dangers of TB transmission in the
close environment when they stayed at home. Using constant rate u1 = 0.5, Figure 5a,b
display significant reduction of latent TB during Delta and Omicron period. The variations
in the value of control u1, ranging 0 ≤ u1 ≤ 1, showed the efficacy in reducing latent TB up
to 72.28% for Delta variant and 98.01% for Omicron variant (see Figure 5c,d). Also, reduced
cases can be seen in the number infected TB (Itb) during both Delta and Omicron variant
outbreaks (see Figure 6a,b). In Figure 6c,d, we can see that the efficacy of control u1(t) to
reduce the number of active infected TB during the pandemic of Delta and Omicron variant
was up to 58.64% and 97.19%, respectively.



Trop. Med. Infect. Dis. 2022, 7, 407 10 of 20

1st Jun-21 4th Jun-21 2nd Jul-21 1st Aug-21 4th Aug-21 3rd Sep-21
0

0.5

1

1.5

2

N
u
m

b
e
r 

o
f 
c
a
s
e
s

10
8

No quarantine

Micro quarantine

Macro quarantine

3rd Sep 4th Sep

1.75

1.8

1.85

1.9

1.95

10
8

(a)

3rd Dec-21 2nd Jan-22 1st Feb-22 4th Feb-22 3rd Mar-22 1st Apr-22 4th Apr-22
0

5

10

15

N
u
m

b
e
r 

o
f 
c
a
s
e
s

10
7

No quarantine

Micro quarantine

Macro quarantine

3rd Apr 4th Apr

1.36

1.37

1.38

1.39

1.4
10

8

(b)

1st Jun-21 4th Jun-21 2nd Jul-21 1st Aug-21 4th Aug-21 3rd Sep-21
0

0.5

1

1.5

2

2.5

3

3.5

N
u
m

b
e
r 

o
f 
c
a
s
e
s

10
7

No quarantine

Micro quarantine

Macro quarantine

3rd Sep 4th Sep

2.5

2.6

2.7

2.8

2.9

3

10
7

(c)

3rd Dec-21 2nd Jan-22 1st Feb-22 4th Feb-22 3rd Mar-22 1st Apr-22 4th Apr-22
0

0.5

1

1.5

2

2.5

3
10

7

No quarantine

Micro quarantine

Macro quarantine

3rd Apr 4th Apr

2.4

2.5

2.6

10
7

(d)

Figure 4. The negative impact of quarantine during Delta variant and Omicron variant of the COVID-
19 pandemic to the increasing number of people with diabetes, Ddm and Cdm. (a) The number of Ddm
during Delta period. (b) The number of Ddm during Omicron period. (c) The number of Cdm during
Delta period. (d) The number of Cdm during Omicron period.

Next, we used only the control u2(t) for the second scenario. This control represented
the proportion of latent individuals Ltb that was identified and received medical treatment.
The expansion of the screening test and diagnosis for latent TB or people at high infection
risk could be adopted. In Figure 5a,b, using constant rate u2 = 0.5, we observed that
the decrease in the number of latent Ltb in both periods were less significant than the
first proposed TB control strategy. Now, by varying control rate value, 0 ≤ u2 ≤ 1, the
percentage of reduced cases were only up to 6.519% for Delta and only up to 4.463% for
Omicron, as can be seen in Figure 5b,d. In addition, control u2 also was not more effective
than u1 in reducing the number of infected TB (Itb). In Figure 6c,d, the effectiveness
measurement showed that the efficacy of this type of control was only up to 4.938% during
Delta period and 6.301% during Omicron period.

The third control proposed to reduce tuberculosis risk was u3(t). In this strategy, the
diagnosis program for the infected individuals was intensified. A specific team could be
formed to continue TB diagnosis and treatment program even though COVID-19 was a
priority during the pandemic. This control was focused on the diagnosis of infected, so the
latent was not significantly reduced. Even, in the Omicron period there was no decrease in
the number of latent TB.In Figure 5c, we observed that the number of latent decreased only
up to 0.115%. Although control u3 was not significantly affecting latent TB, this control has
potential to reduce the number of infected TB quite notably. The efficacy of this control in
reducing Itb was up to 41.17% for Delta period and 48.62% for Omicron period as shown in
Figure 6, with the values of control u3 ranging [0, 1].
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Figure 5. The impact of TB controls implementation (ui = 0.5) to the number of latent people Ltb
during Delta period (a), and Omicron period (b). Next, the efficacy of tuberculosis controls with the
variations of control value, 0 ≤ u1, u2, u3 ≤ 1 to reduce the number of latent Ltb were shown in figure
(c) for Delta and in figure (d) for Omicron. (a) The number of Ltb during Delta period. (b) The number
of Ltb during Omicron period. (c) Controls efficacy reducing Ltb during Delta period. (d) Controls
efficacy reducing Ltb during Omicron period.

For the last scenario of tuberculosis control strategy, we combined all proposed control,
u1, u2, and u3. We assumed that all controls were implemented with equal rate, that was,
u1 = u2 = u3. As expected, Figures 5 and 6 show that this combination decreased the
number of Ltb and Itb more significant than three previous single controls. More precisely,
the latent individuals decreased up to 73.99% and 98.17% during Delta and Omicron
period. For the infected individuals, there were reductions by 77.93% and 98.48% during
the observation time starting from June 2021 to September 2021 for Delta variant and from
December 2021 to April 2022 for Omicron variant, respectively.

One of the important indicators that need to be considered regarding the effectiveness
of a TB control strategy was the ratio between Dtb and Itb. The high ratio of diagnosed
who receive medical treatment from health services over the infected indicated that the
strategy was more effective. In Appendix A, Figure A1 shows the number of Dtb during the
observation time, and we observed that the highest ratio of Dtb over Itb was shown by the
combination of all controls. The control u3 significantly increased the ratio because it was
focused on the increase of diagnosis rate. The control u2, aimed to reduce the number of
latent, showed low value of Dtb/Itb and did not significantly influence the diagnosis rate.

For the first diabetes reduction scenario, we compared the number of diabetic with
complications (Cdm), with and without control u4(t). The goal of this strategy was to
increase public awareness to implement healthy lifestyle, set a good diet, and exercise at
home regularly in quarantine period. The implementation of constant control u4 = 0.5
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reduced the number of Cdm as shown in Figure 7a,b. Figure 7c,d show that the upper bound
of this control efficacy was equal to 61.28% and 59.04% for Delta and Omicron period,
respectively. This implied a reduction in the number of people with diabetes of more than
half of the total cases when control u4 was not considered.
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Figure 6. The impact of TB controls implementation (ui = 0.5) to the number of infected people Itb
during Delta period (a), and Omicron period (b). Next, the efficacy of tuberculosis controls with
the variations of control value, 0 ≤ u1, u2, u3 ≤ 1 to reduce the number of infected Itb were shown
in figure (c) for Delta and in figure (d) for Omicron. (a) The number of Itb during Delta period.
(b) The number of Itb during Omicron period. (c) Controls efficacy reducing Itb during Delta period.
(d) Controls efficacy reducing Itb during Omicron period.

Next, we used only the control u5(t) to reduce the probability of diabetics developing
complications during the implementation of quarantine. Diet tracking, regular diet, and
healthy lifestyle in the quarantine period could be adopted to prevent the emergence of
complications. In Figure 7a,b, we observed that the number of Cdm reduced more significant
than control u4. By using constant rate 0 ≤ u5 ≤ 1 shown in Figure 7c,d, the percentage of
reduced cases was up to 78.11% for Delta and 76.08% for Omicron.

In addition, we combined control u4 and control u5. In this strategy, the two controls
were applied at the same time in order to obtain better numerical results. We assumed that
the controls had equal rate, u4 = u5. In Figure 7a,b, we used controls u4 = u5 = 0.5 in the
numerical simulation. The uppper bound of the efficacy of this control combination was
equal to the upper bound of single control u5, but lower values of this combination yielded
higher efficacy than control u5 as shown in Figure 7c,d.
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Figure 7. The impact of diabetes controls implementation to the number of diabetic people with com-
plications Cdm, figure (a) for Delta period and figure (b) for Omicron period. The efficacy of diabetes
controls to reduce the number of diabetics Cdm with the variations of control value, 0 ≤ u4, u5 ≤ 1
were shown in figure (c) and (d) for Delta variant and Omicron variant, respectively. (a) The number
of Cdm during Delta period. (b) The number of Cdm during Omicron period. (c) Controls efficacy
reducing Cdm during Delta period. (d) Controls efficacy reducing Cdm during Omicron period.

In Appendix A, Figure A2 shows that control u4 significantly reduced the number of
diabetic without complications but this control did not detain the progression from Ddm
to diabetic with complications, Cdm. The implementation of control u5, that was aimed to
reduce the probability of developing complications, showed the low percentage of Ddm
becoming Cdm. The fatal impact of diabetes with complications could be minimized by
implementing strategy u5 during quarantine period. On the other hand, control u5 was not
effective to decline the number of diabetic without complications Ddm. The combination
of control u4 and u5 could be considered as the best strategy to reduce the risk of diabetes
development during quarantine implementation. These strategies decreased the number of
Ddm and Cdm, and reduced the possibility of Ddm developing complications.

4. Discussion

In order to control the COVID-19 transmission during pandemic, numerous countries
have decided to adopt lockdown and regional quarantine policies. It had been a consider-
able time since such strategies were last introduced, and currently they were implemented
on global scale. Despite the fact that quarantines have been implemented relatively recently,
some contributions have already appeared in the literature, aimed at evaluating how this
policies work, along with its efficacy in terms of controlling virus infection. Lau et al. [16]
have analysed the Wuhan case and have highlighted the significance of these measures to
reduce the contagion probability by significantly decrease the growth rate and increase the
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doubling time of cases. Guzzetta et al. [17] have reported that national lockdown in Italy
brought net reproduction ratio (Rt) below 1 within 2 weeks and the epidemic was brought
under control only after the implementation of lockdown. A similar finding was reported
by Megarbane et al. [18] that lockdown and quarantine were considered as an effective
intervention to halt coronavirus epidemic progression in nine different countries (UK, USA,
Germany, Spain, New Zealand, Italy, France, Netherlands, and Sweden).

Delta (B.1.617.2) and Omicron (B.1.1.529) are two variants of SARS-CoV-2 that causes
high infection during COVID-19 pandemic. The Delta variant was originally found in
India in December 2020 and the Omicron variant was firstly observed in South Africa
in the early days of November 2021 [19,20]. The Delta variant has spread over very fast
because of its capability to invade the host’s immune system, but the Omicron variant has
been reported to be more infectious than previous variants with a short doubling time.
In this work, we found that the infection rates of Omicron variant, (β1, β2, ε1, ε2), were
approximately 1.04–1.26 times higher than the infection rates of Delta variant. This finding
is in accordance with the results of research conducted by Lyngse et al. [21] in Denmark
that the rate of Omicron virus infection was 1.17 times higher than Delta variant, especially
for unvaccinated people. Chaguza et al. [22] also reported that Omicron variant is 1.3 times
more infectious than Delta due to the increased transmission acquired from the mutation.

The implementation of lockdown and regional quarantine to control COVID-19 pan-
demic have influenced tuberculosis clinical management and health services related to
TB. In the countries and territories where healthcare personnel assigned in TB programs
have been diverted to handle COVID-19 patients, the impact of pandemic on tuberculosis
treatments is estimated to be severe. Numerous countries have ruled out TB programs
because COVID-19 control programs are priority and urgently needed. Health facilities
throughout the country become the battleground for COVID-19. To decrease the poten-
tial risk of viral transmission to either health care workers or patients during their visits,
hospitals are minimizing the number of daily outpatient visits. Several health services are
prepared to meet the demands of the overwhelming number of COVID-19 patients.

Migliori et al. [23] have reported that COVID-19 pandemic has interfered TB-related
services globally. Data from 33 TB centers in 16 countries indicated the reductions in the
diagnosis of newly active TB and total outpatient visits of active or latent TB during lock-
down and regional quarantine in the first 4 months of 2020. The study by Lange et al. [24]
showed a significant decline in emergency department visits such as TB centers, suggesting
that patients may be avoiding care or unable to access care during the pandemic. The
reduction in the number of outpatient visits may be due to the patient’s fear of exposure
severe acute respiratory syndrome COVID-19 [25]. Because of lockdown and quarantine,
progression to active TB from latent TB who did not obtain preventive measure and medical
treatment was possibly occurred [26]. Despite the number of outpatient TB visits decreased,
the implementation of lockdown and regional quarantine have increased the interest to
use telemedicine. TB programs offered new service called telehealth. The use of telehealth
services in the United Kingdom, India, Russia, and Australia was considerably higher in
2020, driven by social distancing policies and in accordance with the innovation program to
answer challenges during the pandemic [27,28]. In Indonesia, some examples of telehealth
services are https://www.temenin.kemkes.go.id (accessed on 14 November 2022) provided
by Indonesian Health Ministry and Halodoc, an application developed by PT Media Dokter
Investama. These services bring together patients with expert doctors for online consul-
tations, diagnosing the patient’s condition, and providing medicine recommendations or
other medical treatments.

In tuberculosis epidemiology, the duration and proximity of exposure to an active
TB as the source of infection led to an increased risk of TB infection. It should be noticed
that the implementation of lockdown and regional quarantine may possibly increase the
risk of TB infection during COVID-19 pandemic. The government enforced stay-at-home
policies and confined the citizens in their family environment. In the family-household
setting, a persistent close contact with family members suffering from active TB and still

https://www.temenin.kemkes.go.id
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undiagnosed increased the transmission risk to susceptible persons [29]. The prevention
method and awareness program should be adopted, through the campaign of awareness
directly or indirectly using mass media or social media to inform the citizens about the
dangers of TB transmission in the close environment when they stay at home. By taking
preventive measures such as applying health lifestyle, covering coughs and sneezes, and
keeping hands clean, the risk of TB infection could be reduced. Family members who show
TB symptoms should immediately visit the health service or contact the health care by
using telehealth facility to avoid wider transmission caused by undetected case.

The change in nutritional habits and lifestyle are unavoidable negative consequences
of lockdown and quarantine. Limited access to food and reduced availability of goods
caused by restricted opening hours of store lead to the changing in nutritional habits
and the switching to unhealthy food. A recent review by Brooks et al. [30] reported
negative psychological effects of quarantine including stress and anxiety. Mental health
issues such as stress and anxiety are considered to be associated with unhealthy lifestyle
that drive people to eat and drink in an attempt to get better feeling. Eating unhealthy
foods regularly such as snacks, chocolates, junk foods, fast foods, and soda cola, and
drinking spirits and wine more frequently are more likely to be new habits of these stress-
driven eaters and drinkers. This leads to weight gain that may possibly contributes
to development of diabetes. In order to reduce diabetes risk as the side effect of the
implementation of lockdown and quarantine, a healthy diet should be applied. Vegetarian
diet and Mediteranian diet are the examples of healthy diet that give important metabolic
advantages for preventing and treating diabetes and its complications [31,32].

Other than the unhealthy eating habits, the reduction of physical activity also con-
tributes the weight gain in quarantine period. Pandemic-related closure of public exercise
facilities such as sports centers, gymnasiums, and swimming pools may disproportionately
influence active individuals. Notwithstanding the guidances to exercise at home, only
few citizens comply. Regular physical activity is mandatory to maintain health status.
The human body’s metabolism is strongly influenced by physical activity. Doing more
physical activity is one important factor to lowering the risk of diabetes because it decreases
the glucose level in blood circulation by increasing glucose uptake [33,34]. Promotion of
physical activity in home needs to be intensified during the implementation of lockdown
and regional quarantine. In addition, wherever and whenever possible and allowed, while
following the government rules, people should be suggested to be more active outdoors,
preferably in green open space. As in all other situations, regulations of wearing mask and
social distancing are also essential in outdoors to reduce the COVID-19 infection risk.

5. Conclusions

In this paper, we proposed a mathematical model and used numerical simulation to
describe the impact of quarantine on tuberculosis and diabetic people during COVID-19
pandemic. A compartmental nonlinear deterministic epidemic model, including three
diseases: COVID-19, tuberculosis, and diabetes, was formulated. We aimed to point out
the potential negative effects, particularly on tuberculosis and diabetic people, when the
government implemented isolation measures such as lockdown and regional quarantine.
The mathematical model fitted with the actual data of COVID-19 cases in Indonesia when
the Delta and Omicron variants were identified. We also suggested some control strategies
to reduce the negative impact in both tuberculosis and diabetic people during quarantine.
The results of numerical simulation indicate different effectiveness and efficacy of each
control strategy. By increasing public awareness about the dangers of TB transmission
in environment when they stayed at home, the number of newly infected TB during
quarantine can be reduced significantly. In addition, in order to minimize the risk of
diabetes progression with or without complications, the implementation of healthy lifestyle
and exercise inside the house are considered as the most effective strategy.

This study has several limitations that can be developed for future research. The
actual problem is complex and this study aims to simplify it. Therefore, the mathematical
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model that we developed only consists of the basic compartments and variables of the
COVID-19 disease that we consider essential. Immunity level due to vaccination, time
between infection and the acute phase of disease, symptomatic or asymptomatic infected
individuals, and other important variables can be taken into account in further studies. The
second limitation is the realtionship between TB and diabetes mellitus is not accommodated
in the mathematical model, even though diabetes is an important factor and a comorbid
of TB. Thirdly, the availability of TB and diabetes data during the COVID-19 pandemic is
potentially improve the output of model, where the results of the data fitting are not only
in accordance with the COVID-19 data but also the TB and diabetes data. In our study, we
were unable to obtain the proper TB and diabetes due to the lack of data recording.
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Appendix A

Appendix A.1

Table A1. Description of parameters used in mathematical model with fixed value.

Parameter Description Value Unit References

µh Human natural birth or mortality rate 1/(65 × 52) week−1 [35–37]
α Rate of progression to infected from exposed 7/6.5 week−1 [38–40]
d1 Mortality rate caused by COVID-19 infection 0.00039 week−1 data
γ Recovery rate of infected and quarantined of COVID-19 7/3.6 week−1 [40–42]
φ1 Rate of progression to infected from latent 7/60 week−1 [43,44]
γ1 Recovery rate of latent tuberculosis 0.01285 week−1 [43,44]
γ2 Recovery rate of infected tuberculosis 0.00122 week−1 [43]
γ3 Recovery rate of diagnosed tuberculosis 0.00764 week−1 [43]
d2 Mortality rate caused by tuberculosis infection 0.00111 week−1 [45]
ν Probability of diabetic people developing complications 0.01303 week−1 [46]
ω Probability of diabetic people recovered from complications 0.00714 week−1 [46]
d3 Mortality rate caused by diabetes mellitus 0.00013 week−1 [46]

Appendix A.2

The resulting states completed by the controls for each compartment are given by the
following equations:

dQ1

dt
= θ1S −

(
ε1 Ico + ε2Q2

N

)
Q1 − (1 − u1(t))

(
τ1 Itb + τ2Dtb

N

)
Q1 − ((1 − u4(t))δ2 + µ)Q1

dLtb
dt

=

(
ρ1 Itb + ρ2Dtb

N

)
S + (1 − u1(t))

(
τ1 Itb + τ2Dtb

N

)
Q1 − (φ1 + (1 + u2(t))γ1 + µ)Ltb
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dItb
dt

= φ1Ltb − ((1 + u3(t))Kφ2 + γ2 + d2 + µ)Itb

dDtb
dt

= (1 + u3(t))Kφ2 Itb − (γ3 + d2 + µ)Dtb

dRtb
dt

= (1 + u2(t))γ1Ltb + γ2 Itb + γ3Dtb − µRtb

dDdm
dt

= δ1S + (1 − u4(t))δ2Q1 + ωCdm − ((1 − u5(t))ν + µ)Ddm

dCdm
dt

= (1 − u5(t))νDdm − (ω + d3 + µ)Cdm

where the remaining states did not change.

Appendix A.3
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Figure A1. The impact of tuberculosis controls implementation to the number of diagnosed peo-
ple Dtb for Delta period (a), and Omicron period (b). The ratios of diagnosed people Dtb over
infected people Itb during quarantine during Delta and Omicron variant attacks were shown in figure
(c) and (d), respectively. (a) The number of Dtb during Delta period. (b) The number of Dtb during
Omicron period. (c) The ratio of Dtb to Itb during Delta period. (d) The ratio of Dtb to Itb during
Omicron period.
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Figure A2. The impact of diabetes controls implementation to the number of diabetic people without
complications Ddm during Delta period shown in (a) and during Omicron period shown in (b). The
percentage of diabetic people with complications Cdm over the diabetic without complications Ddm
on Delta and Omicron quarantine were shown in figure (c) and (d), respectively. (a) The number of
Ddm during Delta period. (b) The number of Ddm during Omicron period. (c) Percentage of Cdm to
Ddm during Delta period. (d) Percentage of Cdm to Ddm during Omicron period.
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