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Abstract: Ticks are able to transmit the highest number of pathogen species of any blood-feeding
arthropod and represent a growing threat to public health and agricultural systems worldwide. While
there are numerous and varied causes and effects of changes to tick-borne disease (re)emergence,
three primary challenges to tick control were identified in this review from a U.S. borders perspective.
(1) Climate change is implicated in current and future alterations to geographic ranges and population
densities of tick species, pathogens they can transmit, and their host and reservoir species, as
highlighted by Ixodes scapularis and its expansion across southern Canada. (2) Modern technological
advances have created an increasingly interconnected world, contributing to an increase in invasive
tick species introductions through the increased speed and frequency of trade and travel. The
introduction of the invasive Haemaphysalis longicornis in the eastern U.S. exemplifies the challenges
with control in a highly interconnected world. (3) Lastly, while not a new challenge, differences in
disease surveillance, control, and management strategies in bordering countries remains a critical
challenge in managing ticks and tick-borne diseases. International inter-agency collaborations along
the U.S.–Mexico border have been critical in control and mitigation of cattle fever ticks (Rhipicephalus
spp.) and highlight the need for continued collaboration and research into integrated tick management
strategies. These case studies were used to identify challenges and opportunities for tick control and
mitigation efforts through a One Health framework.

Keywords: climate change; global health; globalization; Haemaphysalis longicornis; Ixodes scapularis;
Lyme disease; One Health; Rhipicephalus; tick control; zoonosis

1. Introduction

In recent decades, reported cases and geographic shifts of (re)emerging vector-borne
diseases have been progressively increasing, due in part to rapid urbanization, changes
in land use, globalization leading to increased trade and travel, and the changing global
climate [1]. These factors are also increasing human exposure to animal reservoirs and
arthropod vectors, including increased transmission of pathogens to naïve human popu-
lations [1,2]. Ticks transmit the highest number of pathogen species to vertebrates of any
blood-feeding arthropod and are a growing threat to public health and agricultural systems
worldwide [3,4].

In the United States nearly 95% of reported vector-borne diseases are transmitted by
ticks [5]. Of the almost 30 different identified tick-borne diseases in the Western Hemisphere,
12 are considered current and emerging threats to human health in the U.S. [5,6]. Lyme
disease is the most frequently reported vector-borne disease in the U.S., with approximately
30,000 confirmed annual cases but upwards of 400,000 individuals that receive treatment
for Lyme disease annually [7,8]. The continued expansion of the primary vector, Ixodes
scapularis (blacklegged tick), into new habitats and geographic regions is concerning [9]. The
future poses challenges to tick-borne disease management and predicting the challenges
and mitigation strategies is difficult.
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One such challenge is climate change, which is implicated in current and future
alterations to geographic ranges and population densities of several tick species of medi-
cal and veterinary importance [10]. High infestation burdens and associated mortalities
due to Dermacentor albipictus (winter tick) on moose (Alces alces) and other cervids and
the range expansion of I. scapularis are both partially attributed to the effects of climate
change [11–15]. Warmer temperatures, particularly warmer winters, are hypothesized
to be a leading factor associated with I. scapularis range expansions across eastern and
central Canadian provinces [16]. Global climate change will affect tick biology and the
hosts and reservoirs involved in tick-borne disease cycles [17,18]. Not only are the vectors
and pathogens affected by climate change, but they are affected differentially leading to
nonlinear responses and new relationships among vectors, pathogens, and hosts [19].

In addition to transmitting disease-causing pathogens, ticks can also cause morbidity
and mortality through painful bites, inflammation, increased stress, inducing tick paralysis
and bite-associated meat allergies, toxicosis, or even exsanguination in animals [20]. High
tick infestations have led to epizootics in certain ecosystems, with climate change-driven
warmer, milder winters often implicated as a principal factor in increased tick overwintering
survival [18]. “Ghost moose” have become a banner species for this increase in high parasite
loads, with D. albipictus infestations on moose so severe that they can result in severe anemia,
decreased fecundity in cows, and mortality [21,22].

Another challenge is that modern technological advances have created an increasingly
interconnected world. The speed and frequency of trade and travel have contributed to
an increase in exotic and invasive tick species introductions [23,24]. The recently detected
invasive species to the continental U.S., Haemaphysalis longicornis (longhorned tick), is
another species with a propensity for high tick burdens on parasitized animals, particu-
larly cattle, and is of medical and veterinary importance due to this aggregation behavior,
capacity for parthenogenetic reproduction, and pathogen transmission potential [25–28].
The longhorned tick has been introduced and proliferated in numerous new regions world-
wide and requires intensive surveillance as well as rapid identification and control mea-
sures [25,29–32].

While not a new challenge, effective and consistent disease surveillance, control, and
management strategies along shared geographic borders remain a critical challenge in
managing ticks and tick-borne diseases, particularly with increased movement across bor-
ders due to globalization [23,33,34]. This movement is also fueled by increased meat and
dairy consumption and higher demand for livestock trade, increasing the importance of
management of transboundary animal diseases and their respective vector species [33,34].
For example, cattle fever ticks (Rhipicephalus spp.) are important endemic and invasive
ectoparasites of cattle in numerous regions worldwide and can result in substantial wel-
fare concerns and economic losses to the cattle industry [35]. Cattle fever ticks, vectors
of the causative agents of bovine babesiosis, are endemic throughout many regions of
Mexico [36,37]. This not only affects Mexico’s cattle herds but threatens the re-introduction
and re-establishment of cattle fever ticks into the southern U.S. through cattle trade and the
movement of wildlife alternate hosts across the Mexico–U.S. border [38–40]. This system
exemplifies the challenges of implementing effective management and control strategies in
disease systems that share common geography across international borders [33,41].

The complex epidemiology and ecology associated with tick-borne diseases presents
another challenge. Many tick species prefer one host species but will opportunistically feed
on a variety of species, and many hard ticks require two to three different hosts to complete
their life cycle [6]. This not only complicates which host species are affected, but also which
pathogens may be acquired from these different hosts and transferred to other species by a
given tick [10]. A One Health approach, which acknowledges the interconnected nature
of human, animal, and environmental health and promotes collaborations between these
sectors, is required to successfully manage vector-borne and zoonotic diseases [42–44]. This
interdisciplinary approach will be paramount for successful tick control and tick-borne
disease mitigation strategies and it is imperative for medical and veterinary profession-
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als, policy-makers, and researchers to collaborate to better understand how tick-borne
pathogens are moved in the environment and how they may manifest in disease in different
host species [45] (Figure 1). While these efforts can be led by the scientific community, input
and collaboration from scientists and non-scientists alike will be necessary to identify and
implement effective long-term solutions.
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The objectives of this review are to (1) identify the major modern challenges to tick
control and (2) develop best management strategies for tick control given these challenges.
The following three conditions were identified as the primary challenges to tick control
given our interconnected world: (1) global climate change, (2) globalization of trade and
travel, and (3) permeable political borders. To further explore these conditions, three
case studies from a U.S. borders perspective were used to highlight the challenges and
recommendations for tick control in an interconnected world (Figure 2).
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primary challenges in a globalized world are: (A) Global climate change, with a case study of Ixodes
scapularis range expansion from the northeastern U.S. into southern Canada, correlated with warmer
and milder winters and tick dispersal associated with migratory birds and range expansion of the
white-footed mouse; (B) the invasive tick Haemaphysalis longicornis introduction and range expansion
in the continental U.S., while the initial introduction is unknown it is likely related to trade and
travel with a broad host range facilitating regional dispersal; and (C) political sovereignty and shared
geography between bordering countries, highlighted by the collaborations between the U.S. and
Mexico at the southern border to reduce movement of cattle fever ticks (Rhipicephalus spp.) through
cattle trade between the bordering countries but complicated by tick dispersal via suitable wildlife
hosts (primarily white-tailed deer and nilgai antelop—an introduced species) (figure created in the
Mind the Graph platform, www.mindthegraph.com, Cactus Communications.

2. Case Studies Highlighting Challenges to Tick Control
2.1. Global Climate Change: Ixodes scapularis Range Expansion into Canada

Lyme disease is the most commonly reported vector-borne disease in the Northern
Hemisphere [46]. The causative agent, Borrelia burgdorferi sensu stricto (hereafter referred
to as B. burgdorferi), is most commonly transmitted by I. scapularis, which is endemic in
the northeastern United States. However, the recent expansion of I. scapularis into central
and eastern Canada has raised concerns about further spread of the tick vector and cases
of Lyme disease, particularly given the effects of global climate change. It is predicted
that climate change will create more suitable habitats for the blacklegged tick, in areas
previously unsuitable for this species [46,47].

Passive surveillance and identification of I. scapularis has occurred in Canada since the
early 1990s [48]. However, prior to 1997, only one established population of I. scapularis
had been documented in Canada [46]. Since then, populations of I. scapularis have been
expanding their ranges across southern and central Canada and have been found in higher
densities in certain locales [49]. Areas with increased densities are attributed to milder
temperatures and decreased precipitation related to climate change [50,51]. Given the
current climate projections, it is likely that the range of I. scapularis will continue to expand
and new locations will soon be affected by the tick and its transmissible pathogens [13].

Climate change will not only affect I. scapularis survival and range expansion, but the
ranges of host and reservoir species as well [17]. Moreover, the relationship between vector
and pathogen may also change [19]. This further complicates predictions of I. scapularis
range expansion and predicted Lyme disease risk maps [46]. Given the importance of small
mammals for the Lyme disease cycle [52,53], it is imperative to consider the current and pre-
dicted ranges of suitable hosts and reservoirs for B. burgdorferi [17,18,54,55]. An estimated
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risk index of B. burgdorferi occurrence in Canada indicated that pathogen hotspots were
highly dependent on the presence and abundance of the white-footed mouse (Peromyscus
leucopus), particularly in association with warmer winter temperatures [17]. Historical
records and models indicate northward range expansions of the white-footed mouse, with
ranges predicted to continue expanding across southern Canada [56].

Distribution modeling combined with classical surveillance can predict and verify
new areas of suitability for targeted control and continued surveillance needs [57]. By
integrating targeted surveillance results into models, more accurate predictions are attain-
able [58]. This feedback loop can provide high-quality surveillance insights for detecting
new populations of I. scapularis as well as directing control strategies to areas at greatest
risk for I. scapularis population establishment [59]. When long-term surveillance records
and modeling tools were used in tandem, temperature was found to be the principal
driver of I. scapularis range expansion, with fewer freezing days associated with tick range
expansion and establishment [59]. Using models, classical tick monitoring methods (e.g.,
dragging with a white cloth over standardized distances to estimate abundance of questing
ticks in the environment), and on-host surveillance strategies in tandem can direct surveil-
lance efforts and funnel resources to areas predicted to be most suitable for tick range
expansion [47,57,59,60].

The Canadian government instituted several critical components into their tick-borne
disease mitigation programs in the early 1990s, which aided in detecting the expansion of I.
scapularis in real-time and consequently expanding their surveillance programs [47]. While
reported cases of Lyme disease are still much lower than those in the Northeast U.S., public
education campaigns to raise awareness of the risks and protective measures available have
created a strong passive surveillance program for the public, veterinarians, and medical
professionals to submit ticks to participating laboratories for identification and testing
for nearly three decades [46,48,51]. Public education campaigns are critical to building
a successful disease mitigation program [23,47,61]. The expansion of I. scapularis into
new geographic regions exemplifies the numerous challenges associated with a warming
climate, as well as the potential for proactive mitigation strategies.

2.2. Globalization: Haemaphysalis longicornis Introduction into the Continental U.S.

Haemaphysalis longicornis, the longhorned tick, has a long history of misidentification,
introduction, and eventual establishment outside of its native range [29]. Native to eastern
Asia, this species was likely introduced to Australia, New Zealand, and other Pacific Islands
through the movement of infested cattle [29]. It has since spread and become established
in several regions throughout Asia and Oceania and most recently, in several states in the
continental U.S. [25,27–29,62,63]. Its ability to successfully become established in numerous
different climates is likely due to its broad host range, including livestock species such as
cattle and sheep, domestic animals, and wildlife species, as well as its ability to reproduce
parthenogenetically (asexually) [29,30,62].

Haemaphysalis longicornis poses both medical and veterinary risks as it can transmit a va-
riety of pathogens in its native and exotic ranges. In its native East Asia range, H. longicornis
transmits two potentially lethal pathogens to humans: severe fever with thrombocytopenia
syndrome virus (SFTSV) [64–66], and Rickettsia japonica (the etiological agent of Japanese
spotted fever) [67–69]. Livestock are particularly vulnerable to H. longicornis infestations.
Even if not infected with one of the many pathogens this tick can transmit, they can become
stressed or even die of toxicosis or exsanguination due to the high tick burdens that can
propagate on these hosts.

The first population of H. longicornis in the continental United States was identified in
2017 on a sheep in New Jersey [25]. With all life-stages of the tick present on the animal
and no history of travel outside of the U.S., an established population of H. longicornis
was suspected [25]. In 2018, enhanced surveillance and detection methods in response to
the initial infestation detected H. longicornis populations at the initial site of infestation, in
additional counties in New Jersey, as well as in seven other eastern states: Connecticut,
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Maryland, New York, North Carolina, Pennsylvania, Virginia, and West Virginia, and as
far west as Arkansas [28]. Additionally, reexamination of archived samples identified H.
longicornis in samples collected from a white-tailed deer in 2010 in West Virginia and a
domestic dog in 2013 in New Jersey, indicating the establishment of this tick prior to the
discovery of the infested sheep in New Jersey in 2017 [28]. As of August 2022, H. longicornis
local populations have been identified in 17 states: Arkansas, Connecticut, Delaware,
Georgia, Kentucky, Maryland, Missouri, New Jersey, New York, North Carolina, Ohio,
Pennsylvania, Rhode Island, South Carolina, Tennessee, Virginia, and West Virginia [70].

Haemaphysalis longicornis has a broad host range and in the U.S. has been found para-
sitizing domestic animals, livestock and equine species, and numerous mammalian wildlife
and avian species [62,71,72]. This broad host range combined with its parthenogenetic
ability has made H. longicornis a difficult species to control. However, even though H.
longicornis has been found on humans in the U.S., there have been few reported bites [26].
Additionally, a recent study found that H. longicornis preferred hair from domestic cats
and dogs and white-tailed deer and avoided hair from white-footed mice and humans [73].
This may indicate a preference for medium- and large-bodied mammalian hosts in the
U.S. [72].

Though this species is a new threat in the U.S., there have already been reports of cattle
mortality due to H. longicornis infestation [74]. Additionally, while the extent of pathogen
presence in U.S., H. longicornis populations, is unknown, Theileria orientalis Ikeda subtype
has been implicated as the cause of death of several cattle in a Virginia farm [75,76], and
is effectively transmitted to cattle by U.S.-collected H. longicornis in lab experiments [77].
This is highly concerning as T. orientalis, particularly the Ikeda subtype, can be extremely
pathogenic to livestock [30,78]. While other pathogens have been detected in H. longicornis,
it is currently unknown if this tick can successfully transmit these pathogens, including
Bourbon virus, Anaplasma, Borrelia, and Ehrlichia species [27,79]. A recent study found that
H. longicornis was not able to successfully transmit B. burgdorferi B31 strain to mice under
laboratory conditions [80], potentially providing some relief to the U.S. Northeast already
burdened by high numbers of Lyme disease cases.

Haemaphysalis longicornis presents numerous challenges to control, namely its capacity
for parthenogenetic reproduction and severe infestations, numerous suitable hosts, and few
identifying features to untrained (and trained) personnel [29,30,62]. Of available acaricides,
recent research has indicated that commercially available spray and pour-on acaricides
were effective against U.S. populations of H. longicornis [32]. However, more research is
needed to identify other methods to control H. longicornis populations and mitigate bite risk,
particularly for livestock, as chemical acaricides are currently the primary control method
and these pose environmental risks, non-target effects, and the potential for acaricide
resistance to develop [81,82].

2.3. Policy and Shared Political Borders: Rhipicephalus spp. Tick Management at the
Mexico–U.S. Border

The increased global demand for livestock products, particularly dairy and beef, have
put additional strain on typical control methods of endo- and ectoparasites in livestock
systems [81]. Ticks, in particular, can cause significant animal welfare concerns and eco-
nomic losses in dairy and cattle operations, with the southern cattle fever tick (Rhipicephalus
microplus) widely considered to be the most significant economic burden to livestock op-
erations globally [35,83]. Cattle fever ticks can transmit Babesia spp., the causative agent
of bovine babesiosis, which can result in decreased dairy and meat production, increased
abortion rates, and mortality to infected cattle [36].

The two cattle fever tick species of concern in North America are R. (Boophilus) mi-
croplus and R. (B.) annulatus, responsible for transmitting Babesia bovis and B. bigemina [84].
Of note, this particular disease system was the first time transmission between an arthropod
vector and mammalian host was discovered [85]. The high costs to cattle producers from
cattle fever ticks and bovine babesiosis resulted in a flurry of research on disease mecha-
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nisms, control, and plans for eradication [86]. Cattle fever ticks were effectively eradicated
from their range in the southern U.S. by 1960; however, R. microplus and R. annulatus are
endemic in many regions throughout Mexico, making eradication and mitigation consistent
objectives [33,39,86]. Given the propensity of R. microplus for wildlife hosts in addition to
cattle, it is likely that cattle fever ticks have been reintroduced into the U.S. on numerous
occasions from wildlife hosts moving across the Rio Grande tick eradication quarantine
area between southern Texas and northern Mexico [39].

It is estimated that 65% of Mexico’s land area is infested with R. microplus and 75% of
cattle herds are at risk for bovine babesiosis infection, with the potential total economic
losses due to R. microplus estimated at over USD 500 million ($US) [36]. While previous
control efforts focused on the use of acaricide cattle dips, regulated cattle transport and
inspections across the Mexico–US border, and a permanent quarantine zone in southern
Texas along the Rio Grande, increased acaricide resistance and wildlife reintroductions of
cattle fever ticks across the border have complicated control and eradication efforts [33,39].

To meet these challenges, an international group of livestock producers and stakehold-
ers, researchers, industry representatives, and regulators met in 2019 to discuss current
challenges, priorities, and management needs for cattle fever ticks and bovine babesio-
sis [33]. One of the primary challenges identified during this meeting was the increased
reports of acaricide resistance in cattle fever ticks [33]. Concern for the environmental effects
of acaricide disposal has also contributed to an increased need for integrated management
options for tick control [81,82].

Nearly 50% of countries have documented acaricide resistance in their veterinary
relevant tick populations, with many documenting cross-resistance in ticks and other
parasitic groups, such as helminths, mites, flies, and lice [87]. While traditional cattle
fever tick control has relied heavily on acaricide treatments, there are cattle and landscape
management strategies shown to reduce tick infestations as well as optimistic results from
rotating acaricides [81,83,88].

While cattle fever ticks have a strong historical association with host-parasite research
and innovations, there is still much to learn and develop within this system. Collaborations
across entities and international borders will continue to be important in developing inte-
grated management strategies for cattle fever ticks that reduce control and environmental
challenges associated with acaricide reliance and resistance [33,61,82]. Management strate-
gies are also in development for wildlife components to these systems, frequently within
One Health contexts to account for environmental and human health connections [81,82,89].

3. Conclusions
3.1. Lessons Learned and Future Needs

The increasing (re)emergence of numerous zoonotic and vector-borne diseases, par-
ticularly related to ticks and tick-borne diseases in the Northern Hemisphere, exemplifies
the need for efficient surveillance programs, collaborations between agencies and across
borders, the need for continued research on control and mitigation tools, and the impor-
tance of public health education campaigns (Figure 3) [33,54,90]. Nothing can highlight
the importance of these systems as well as the COVID-19 pandemic, which put the global
human health and research networks in the public eye, revealing many weaknesses in the
public health infrastructure as well as strengths in scientific collaborations and technological
advancements [91–94].
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BioRender.com).

Models have shown conflicting results on the effects of climate change on tick dis-
tributions and tick-borne disease risks, as can be expected with complex systems, and
have shown much broader habitat suitability than current species records indicate in many
cases [54]. Additionally, macro- and micro-habitats are critically important in interpreting
and extrapolating model predictions. For instance, models in Canada have shown the
importance of warmer, milder winters in the range expansion of I. scapularis. In contrast,
models in the northeastern U.S., where Lyme disease is endemic, have not detected a signif-
icant effect of weather conditions on tick densities in the following years [95]. There are
numerous varied and complex differences between these two systems, but the difference
in importance of a critical predictor such as temperature highlights the caution needed
for extrapolating results to different habitats, and particularly within policy and control
applications. Models used in combination with long-term classical surveillance have been
effective in developing control and management strategies in public health contexts, as
evidenced by I. scapularis range expansions in the U.S. and Canada [54,59,96], as well as
within veterinary health contexts, such as in Rhipicephalus spp. in cattle-wildlife grazing
systems in Kenya [97–100].

A major caveat to the disease systems discussed herein is the long-term surveillance
and research conducted and the resources allocated toward these ends. However, these
systems were also chosen for these reasons, to derive insights on surveillance, control, and
management strategies that are relevant and applicable for systems with newly discovered
diseases or vectors, less research conducted, and/or limited resources available for disease
surveillance and mitigation. A primary example of strategies that could lessen resource
requirements for surveillance is to focus surveillance efforts on model-predicted locations of
highest risk [57,59]. However, many entities may not have the resources available (technol-
ogy, expertise, personnel, time, or funds) to invest in regional or local level models [47,54].
In addition to the obvious local public health benefits, collaborations to develop models and
surveillance methods with local leaders in an increasingly interconnected world benefits
the research and public health community-at-large. By employing a One Health framework
these collaborations can also extend beyond pressing surveillance and control needs, as
evidenced by the working group established between Mexico and U.S. cattle fever tick
stakeholders and researchers. This large-scale collaboration has succeeded in establishing
best management strategies, research priorities, and control implementation policies for
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cattle fever tick importation across borders [33]. However, as with most disease systems,
this is an ongoing challenge and will continue to require collaboration, additional research
to improve control strategies, and continued dialogue on policies and regulations within
an integrated One Health context [33,82,89,101]. Additionally, as evidenced by the pressing
concerns of acaricide resistance described in the cattle fever ticks case study, there is a
persistent need for the development of integrated management tools for tick control outside
of chemical applications [83,102]. Other high-priority research endeavors to improve tick
control include parasite–host selection and interactions, with on-host selection chronically
understudied [103].

While shared borders have historically suffered from shared pests and diseases [24],
the globalization of trade and travel has increased the frequency of imported pests and
associated diseases to new locations [23,61]. Additionally, increased habitat fragmentation
due to urbanization, agricultural intensification, and other land-use changes can increase
tick burdens at habitat edges due to complex interactions between wildlife diversity and
the availability of anthropogenic food sources for generalist hosts such as white-tailed
deer [3]. These spatiotemporal challenges highlight the critical importance of continued and
increased surveillance of imported animals at borders, as well as education initiatives for
travelers to check for “hitchhikers” while traveling and upon return [23], and for continued
research on wildlife and environmental movement of ticks [39,62,72,104,105].

Education is not only important in detecting new ticks at borders, but for public health
purposes [47]. Publicly available information is particularly important in regions with
emerging ticks and tick-borne diseases as the public is frequently less aware of the risks
or the preventative options available to them [106]. However, even while the public is
frequently aware of Lyme disease, tick preventative behaviors and control options may not
be well understood or employed by the public, indicating a disconnect between disease
information and preventative behavior [106]. Even in Lyme disease endemic regions,
knowledge of tick identification, tick control and prevention, and tick-borne disease risk is
low among the public [106,107]. In cases when survey respondents had a moderate or high
knowledge of Lyme disease preventative information, many were still unaware of other tick
species and tick-borne diseases present in their geographic region [108]. However, studies
quantifying changes in behavior after education campaigns are limited for tick-borne
disease systems and is an area warranting additional study to effectively educate the public
on tick bite risk and prevention methods [109]. Additionally, to motivate and encourage
continued behavioral protective measures, it is critical to convey individual agency in tick
bite protection to avoid overwhelm and complacency. Combined with additional research
on long-term behavioral changes, research is needed on information delivery methods
to empower individuals to reduce tick bite risk. This presents another opportunity for
One Health collaborations, to address the biobehavioral, psychological, and health equity
aspects to tick-borne disease risk reduction.

3.2. Public Policy Recommendations

While ticks and tick-borne diseases have a long history with human and animal
health, there is still much to learn. The primary modern challenges identified from a U.S.
borders perspective in this review included global climate change, globalization of trade
and travel, and the continued control challenges associated with shared political borders.
The case studies selected for this review represented systems with long-term research and
control activities to best understand the challenges, resources available, and research needs
associated with tick control and tick-borne disease risk mitigation.

As evidenced in these systems, active and passive surveillance combined with mod-
eling predictions of habitat suitability of ticks and host species is critical in developing a
proactive risk management system. Collaborations using a One Health framework within
and across agencies and political borders will only become more important as globalization
continues to increase the frequency and speed of trade and travel. Increased emphasis on
professional identification training, improved detection of exotic species introductions, as
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well as improved public education will continue to strengthen tick and tick-borne disease
detection, mitigation, and control. Lastly, it is evident in this review that increased research
on integrated tick management options as well as wildlife and environmental connections
to disease cycles is imperative to better understand and control ticks and tick-borne diseases
in an increasingly interconnected world.
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